Link | NPTEL Course Name | NPTEL Lecture Title |
---|---|---|

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 1 - Scalar field and its Gradient |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 2 - Line and Surface Integrals |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 3 - Divergence and Curl of Vector Fields |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 4 - Conservative Field, Stoke's Theorem |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 5 - Laplacian |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 6 - Electric Field Potential |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 7 - Gauss's Law, Potential |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 8 - Electric Field and Potential |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 9 - Potential and Potential Energy - I |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 10 - Potential and Potential Energy - II |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 11 - Potential and Potential Energy - III |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 12 - Coefficients of Potential and Capacitance |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 13 - Poission and Laplace Equation |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 14 - Solutions of Laplace Equation - I |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 15 - Solutions of Laplace Equation - II |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 16 - Solutions of Laplace Equation - III |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 17 - Special Techniques - I |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 18 - Special Techniques - II |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 19 - Special Techniques - III |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 20 - Dielectrics - I |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 21 - Dielectrics - II |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 22 - Dielectrics - III |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 23 - Equation of Continuity |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 24 - a) Force between current loops b) Magnetic Vector Potential |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 25 - Magnetic Vector Potential |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 26 - Boundary Conditions |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 27 - Magnetized Material |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 28 - Magentostatics (Continued...), Time Varying Field (Introduction) |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 29 - Faraday's Law and Inductance |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 30 - Maxwell's Equations |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 31 - Maxwell's Equations and Conservation Laws |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 32 - Conservation Laws |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 33 - a) Angular Momentum Conservation b) Electromagnetic Waves |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 34 - Electromagnetic Waves |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 35 - Propagation of Electromagnetic Waves in a metal |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 36 - Waveguides - I |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 37 - Waveguides - II |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 38 - Resonating Cavity |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 39 - Radiation - I |

Link | Electromagnetic Theory (Prof. D.K. Ghosh) | Lecture 40 - Radiation - II |

Link | Special Theory of Relativity | Lecture 1 - Problem with Classical Physics |

Link | Special Theory of Relativity | Lecture 2 - Michelson-Morley Experiment |

Link | Special Theory of Relativity | Lecture 3 - Postulates of Special Theory of Relativity and Galilean Transformation |

Link | Special Theory of Relativity | Lecture 4 - Look out for a New Transformation |

Link | Special Theory of Relativity | Lecture 5 - Lorentz Transformation |

Link | Special Theory of Relativity | Lecture 6 - Length Contraction and Time Dilation |

Link | Special Theory of Relativity | Lecture 7 - Examples of Length Contraction and Time Dilation |

Link | Special Theory of Relativity | Lecture 8 - Velocity Transformation and Examples |

Link | Special Theory of Relativity | Lecture 9 - A Three Event Problem |

Link | Special Theory of Relativity | Lecture 10 - A Problem involving Light and Concept of Casuality |

Link | Special Theory of Relativity | Lecture 11 - Problems involving Casuality and Need to Redefine Momentum |

Link | Special Theory of Relativity | Lecture 12 - Minikowski Space and Four Vectors |

Link | Special Theory of Relativity | Lecture 13 - Proper Time a Four Scalar |

Link | Special Theory of Relativity | Lecture 14 - Velocity Four Vector |

Link | Special Theory of Relativity | Lecture 15 - Momentum Energy Four Vector |

Link | Special Theory of Relativity | Lecture 16 - Relook at Collision Problems |

Link | Special Theory of Relativity | Lecture 17 - Zero Rest Mass Particle and Photon |

Link | Special Theory of Relativity | Lecture 18 - Doppler Effect in Light |

Link | Special Theory of Relativity | Lecture 19 - Example in C-Frame |

Link | Special Theory of Relativity | Lecture 20 - Force in Relativity |

Link | Special Theory of Relativity | Lecture 21 - Force Four-Vector |

Link | Special Theory of Relativity | Lecture 22 - Electric & Magnetic Field Transformation |

Link | Special Theory of Relativity | Lecture 23 - Example of EM Field Transformation |

Link | Special Theory of Relativity | Lecture 24 - Current Density Four Vector and Maxwell Equation |

Link | NOC:Quantum Information and Computing | Lecture 1 - Why Quantum Computing? |

Link | NOC:Quantum Information and Computing | Lecture 2 - Postulates of Quantum Mechanics - I |

Link | NOC:Quantum Information and Computing | Lecture 3 - Postulates of Quantum Mechanics - II |

Link | NOC:Quantum Information and Computing | Lecture 4 - Qubit - The smallest unit |

Link | NOC:Quantum Information and Computing | Lecture 5 - Qubit - Bloch sphere representation |

Link | NOC:Quantum Information and Computing | Lecture 6 - Multiple Qubit States and Quantum Gates |

Link | NOC:Quantum Information and Computing | Lecture 7 - Quantum Gates |

Link | NOC:Quantum Information and Computing | Lecture 8 - Quantum Circuts |

Link | NOC:Quantum Information and Computing | Lecture 9 - No-Cloning Theorem and Quantum Teleportation |

Link | NOC:Quantum Information and Computing | Lecture 10 - Super Dense Coding |

Link | NOC:Quantum Information and Computing | Lecture 11 - Density Matrix - I |

Link | NOC:Quantum Information and Computing | Lecture 12 - Density Matrix - II |

Link | NOC:Quantum Information and Computing | Lecture 13 - Bloch Sphere and Density Matrix |

Link | NOC:Quantum Information and Computing | Lecture 14 - Measurement Postulates - I |

Link | NOC:Quantum Information and Computing | Lecture 15 - Measurement Postulates - II |

Link | NOC:Quantum Information and Computing | Lecture 16 - Simple Algorithms-Deutsch Algorithm |

Link | NOC:Quantum Information and Computing | Lecture 17 - Deutsch-Josza and Bernstein - Vazirani Algorithms |

Link | NOC:Quantum Information and Computing | Lecture 18 - Simon Problem |

Link | NOC:Quantum Information and Computing | Lecture 19 - Grover's Search Algorithm - I |

Link | NOC:Quantum Information and Computing | Lecture 20 - Grover's Search Algorithm - II |

Link | NOC:Quantum Information and Computing | Lecture 21 - Grover's Search Algorithm - III |

Link | NOC:Quantum Information and Computing | Lecture 22 - Grover's Search Algorithm - IV |

Link | NOC:Quantum Information and Computing | Lecture 23 - Quantum Fourier Transform |

Link | NOC:Quantum Information and Computing | Lecture 24 - Period Finding and QFT |

Link | NOC:Quantum Information and Computing | Lecture 25 - Implementing QFT |

Link | NOC:Quantum Information and Computing | Lecture 26 - Implementing QFT-3 qubits (and more) |

Link | NOC:Quantum Information and Computing | Lecture 27 - Shor's Factorization Algorithm |

Link | NOC:Quantum Information and Computing | Lecture 28 - Shor's Factorization Algorithm-Implementation |

Link | NOC:Quantum Information and Computing | Lecture 29 - Shor's Algorithm-Continued Fraction |

Link | NOC:Quantum Information and Computing | Lecture 30 - Quantum Error Correction - I |

Link | NOC:Quantum Information and Computing | Lecture 31 - Quantum Error Correction - II Three Qubit Code |

Link | NOC:Quantum Information and Computing | Lecture 32 - Quantum Error Correction - III Shor's 9 Qubit Code - I |

Link | NOC:Quantum Information and Computing | Lecture 33 - Quantum Error Correction - IV Shor's 9 Qubit Code - II |

Link | NOC:Quantum Information and Computing | Lecture 34 - Classical Information Theory |

Link | NOC:Quantum Information and Computing | Lecture 35 - Shannon Entropy |

Link | NOC:Quantum Information and Computing | Lecture 36 - Shannon's Noiseless Coding Theorem |

Link | NOC:Quantum Information and Computing | Lecture 37 - Ven Neumann Entropy |

Link | NOC:Quantum Information and Computing | Lecture 38 - EPR and Bell's Inequalities - I |

Link | NOC:Quantum Information and Computing | Lecture 39 - EPR and Bell's Inequalities - II |

Link | NOC:Quantum Information and Computing | Lecture 40 - EPR and Bell's Inequalities - III |

Link | NOC:Quantum Information and Computing | Lecture 41 - Cryptography-RSA Algorithm - I |

Link | NOC:Quantum Information and Computing | Lecture 42 - Cryptography-RSA Algorithm - II |

Link | NOC:Quantum Information and Computing | Lecture 43 - Quantum Cryptography - I |

Link | NOC:Quantum Information and Computing | Lecture 44 - Quantum Cryptography - II |

Link | NOC:Quantum Information and Computing | Lecture 45 - Experimental Aspects of Quantum Computing - I |

Link | NOC:Quantum Information and Computing | Lecture 46 - Experimental Aspects of Quantum Computing - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 1 - Introduction |

Link | NOC:Theory of Groups for Physics Applications | Lecture 2 - Algebraic Preliminaries |

Link | NOC:Theory of Groups for Physics Applications | Lecture 3 - Basic Group Concepts and Low Order Groups - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 4 - Basic Group Concepts and Low Order Groups - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 5 - Lagrange's Theorem and Cayley's Theorem - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 6 - Lagrange's Theorem and Cayley's Theorem - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 7 - Factor Group Conjugacy Classes - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 8 - Factor Group Conjugacy Classes - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 9 - Cycle Structures and Molecular Notation - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 10 - Cycle Structures and Molecular Notation - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 11 - Cycle Structures and Classification - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 12 - Cycle Structures and Classification - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 13 - Point Group Notation and Factor Group - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 14 - Point Group Notation and Factor Group - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 15 - Representation Theory - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 16 - Representation Theory - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 17 - Representation Theory - III |

Link | NOC:Theory of Groups for Physics Applications | Lecture 18 - Representation Theory - IV |

Link | NOC:Theory of Groups for Physics Applications | Lecture 19 - Schur's Lemma and Orthogonality Theorem - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 20 - Schur's Lemma and Orthogonality Theorem - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 21 - Orthogonality For Characters - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 22 - Orthogonality For Characters - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 23 - Character Tables and Molecular Applications - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 24 - Character Tables and Molecular Applications - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 25 - Preliminaries About The Continuum - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 26 - Preliminaries About The Continuum - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 27 - Classical Groups - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 28 - Classical Groups - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 29 - Classical Groups-Topology - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 30 - Classical Groups-Topology - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 31 - SO(3) And Matrix Exponent - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 32 - SO(3) And Matrix Exponent - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 33 - Generators, Discussion Of Lie's Theorems - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 34 - Generators, Discussion Of Lie's Theorems - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 35 - Group Algebras; SO(3)-SU(2) Correspondence - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 36 - Group Algebras; SO(3)-SU(2) Correspondence - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 37 - SO(3), SU(2) Representations - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 38 - SO(3), SU(2) Representations - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 39 - Representation On Function Spaces - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 40 - Representation On Function Spaces - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 41 - Lorentz Boosts, SO(3,1) Algebra - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 42 - Lorentz Boosts, SO(3,1) Algebra - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 43 - Representation Of Lorentz Group And Clifford Algebra - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 44 - Representation Of Lorentz Group And Clifford Algebra - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 45 - SU(3) And Lie's Classification - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 46 - SU(3) And Lie's Classification - II |

Link | NOC:Theory of Groups for Physics Applications | Lecture 47 - Fundamental Symmetries Of Physics - I |

Link | NOC:Theory of Groups for Physics Applications | Lecture 48 - Fundamental Symmetries Of Physics - II |

Link | NOC:Quantum Mechanics-I | Lecture 1 - Introduction to Quantum Mechanics - I |

Link | NOC:Quantum Mechanics-I | Lecture 2 - Introduction to Quantum Mechanics - II |

Link | NOC:Quantum Mechanics-I | Lecture 3 - Review of Particle in Box, Potential Well, Barrier, Harmonic Oscillator - I |

Link | NOC:Quantum Mechanics-I | Lecture 4 - Review of Particle in Box, Potential Well, Barrier, Harmonic Oscillator - II |

Link | NOC:Quantum Mechanics-I | Lecture 5 - Tutorial 1 - Part I |

Link | NOC:Quantum Mechanics-I | Lecture 6 - Tutorial 1 - Part II |

Link | NOC:Quantum Mechanics-I | Lecture 7 - Bound States - I |

Link | NOC:Quantum Mechanics-I | Lecture 8 - Bound States - II |

Link | NOC:Quantum Mechanics-I | Lecture 9 - Conditions and Solutions for one Dimensional Bound States - I |

Link | NOC:Quantum Mechanics-I | Lecture 10 - Conditions and Solutions for one Dimensional Bound States - II |

Link | NOC:Quantum Mechanics-I | Lecture 11 - Tutorial 2 |

Link | NOC:Quantum Mechanics-I | Lecture 12 - Linear Vector Space (LVS) - I |

Link | NOC:Quantum Mechanics-I | Lecture 13 - Linear Vector Space (LVS) - II |

Link | NOC:Quantum Mechanics-I | Lecture 14 - Linear Vector Space (LVS) - III |

Link | NOC:Quantum Mechanics-I | Lecture 15 - Basis for Operators and States in LVS - I |

Link | NOC:Quantum Mechanics-I | Lecture 16 - Basis for Operators and States in LVS - II |

Link | NOC:Quantum Mechanics-I | Lecture 17 - Tutorial 3 - Part I |

Link | NOC:Quantum Mechanics-I | Lecture 18 - Tutorial 3 - Part II |

Link | NOC:Quantum Mechanics-I | Lecture 19 - Function Spaces - I |

Link | NOC:Quantum Mechanics-I | Lecture 20 - Function Spaces - II |

Link | NOC:Quantum Mechanics-I | Lecture 21 - Postulates of Quantum Mechanics - I |

Link | NOC:Quantum Mechanics-I | Lecture 22 - Postulates of Quantum Mechanics - II |

Link | NOC:Quantum Mechanics-I | Lecture 23 - Tutorial 4 - Part I |

Link | NOC:Quantum Mechanics-I | Lecture 24 - Tutorial 4 - Part II |

Link | NOC:Quantum Mechanics-I | Lecture 25 - Classical vs Quantum Mechanics - I |

Link | NOC:Quantum Mechanics-I | Lecture 26 - Classical vs Quantum Mechanics - II |

Link | NOC:Quantum Mechanics-I | Lecture 27 - Compatible vs Incompatible Observable - I |

Link | NOC:Quantum Mechanics-I | Lecture 28 - Compatible vs Incompatible Observable - II |

Link | NOC:Quantum Mechanics-I | Lecture 29 - Tutorial 5 - Part I |

Link | NOC:Quantum Mechanics-I | Lecture 30 - Tutorial 5 - Part II |

Link | NOC:Quantum Mechanics-I | Lecture 31 - Tutorial 5 - Part III |

Link | NOC:Quantum Mechanics-I | Lecture 32 - Schrodinger and Heisenberg Pictures - I |

Link | NOC:Quantum Mechanics-I | Lecture 33 - Schrodinger and Heisenberg Pictures - II |

Link | NOC:Quantum Mechanics-I | Lecture 34 - Solutions to other Coupled Potential Energies - I |

Link | NOC:Quantum Mechanics-I | Lecture 35 - Solutions to other Coupled Potential Energies - II |

Link | NOC:Quantum Mechanics-I | Lecture 36 - Tutorial 6 - Part I |

Link | NOC:Quantum Mechanics-I | Lecture 37 - Tutorial 6 - Part II |

Link | NOC:Quantum Mechanics-I | Lecture 38 - Hydrogen Atom and Wave Functions, Angular Momentum Operators, Identical Particles - I |

Link | NOC:Quantum Mechanics-I | Lecture 39 - Hydrogen Atom and Wave Functions, Angular Momentum Operators, Identical Particles - II |

Link | NOC:Quantum Mechanics-I | Lecture 40 - Identical Particles and Quantum Computer - I |

Link | NOC:Quantum Mechanics-I | Lecture 41 - Identical Particles and Quantum Computer - II |

Link | NOC:Quantum Mechanics-I | Lecture 42 - Tutorial 7 - Part I |

Link | NOC:Quantum Mechanics-I | Lecture 43 - Tutorial 7 - Part II |

Link | NOC:Quantum Mechanics-I | Lecture 44 - Harmonic Oscillator - I |

Link | NOC:Quantum Mechanics-I | Lecture 45 - Harmonic Oscillator - II |

Link | NOC:Quantum Mechanics-I | Lecture 46 - Ladder Operators - I |

Link | NOC:Quantum Mechanics-I | Lecture 47 - Ladder Operators - II |

Link | NOC:Quantum Mechanics-I | Lecture 48 - Tutorial 8 - Part I |

Link | NOC:Quantum Mechanics-I | Lecture 49 - Tutorial 8 - Part II |

Link | NOC:Quantum Mechanics-I | Lecture 50 - Stern-Gerlach Experiment - I |

Link | NOC:Quantum Mechanics-I | Lecture 51 - Stern-Gerlach Experiment - II |

Link | NOC:Quantum Mechanics-I | Lecture 52 - Oscillator Algebra |

Link | NOC:Quantum Mechanics-I | Lecture 53 - Tutorial 9 - Part I |

Link | NOC:Quantum Mechanics-I | Lecture 54 - Tutorial 9 - Part II |

Link | NOC:Quantum Mechanics-I | Lecture 55 - Angular Momentum - I |

Link | NOC:Quantum Mechanics-I | Lecture 56 - Angular Momentum - II |

Link | NOC:Quantum Mechanics-I | Lecture 57 - Rotations Groups - I |

Link | NOC:Quantum Mechanics-I | Lecture 58 - Rotations Groups - II |

Link | NOC:Quantum Mechanics-I | Lecture 59 - Tutorial 10 - Part I |

Link | NOC:Quantum Mechanics-I | Lecture 60 - Tutorial 10 - Part II |

Link | NOC:Quantum Mechanics-I | Lecture 61 - Addition of Angular Momentum - I |

Link | NOC:Quantum Mechanics-I | Lecture 62 - Addition of Angular Momentum - II |

Link | NOC:Quantum Mechanics-I | Lecture 63 - Clebsch-Gordan Coe cients - I |

Link | NOC:Quantum Mechanics-I | Lecture 64 - Clebsch-Gordan Coe cients - II |

Link | NOC:Quantum Mechanics-I | Lecture 65 - Tutorial 11 - Part I |

Link | NOC:Quantum Mechanics-I | Lecture 66 - Tutorial 11 - Part II |

Link | NOC:Quantum Mechanics-I | Lecture 67 - Clebsch-Gordan Coe cients - III |

Link | NOC:Quantum Mechanics-I | Lecture 68 - Tensor Operators and Wigner-Eckart Theorem - I |

Link | NOC:Quantum Mechanics-I | Lecture 69 - Tensor Operators and Wigner-Eckart Theorem - II |

Link | NOC:Quantum Mechanics-I | Lecture 70 - Tensor Operators and Wigner-Eckart Theorem - III |

Link | NOC:Quantum Mechanics-I | Lecture 71 - Tutorial 12 |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 1 - Quantum Theory Fundamental Quantisation - I |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 2 - Quantum Theory Fundamental Quantisation - II |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 3 - Path Integral Formulation - I |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 4 - Path Integral Formulation - II |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 5 - Path Integral Formulation - III |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 6 - Path Integral Formulation - IV |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 7 - Correlation Functions - I |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 8 - Correlation Functions - II |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 9 - Generating Functional, Forced Harmonic Oscillator - I |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 10 - Generating Functional, Forced Harmonic Oscillator - II |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 11 - Generating Function in Field Theory - I |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 12 - Generating Function in Field Theory - II |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 13 - Effective Potential - I |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 14 - Effective Potential - II |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 15 - Effective Potential - III |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 16 - Effective Potential - IV |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 17 - Asymptotic Theory - I |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 18 - Asymptotic Theory - II |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 19 - Asymptotic Condition Kallen-Lehmann representation - I |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 20 - Asymptotic Condition Kallen-Lehmann representation - II |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 21 - Gauge Invariance - Minimal Coupling |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 22 - Gauge Invariance - Geometric Picture |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 23 - Gauge Invariance - Abelian Case |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 24 - Gauge Invariance - Non-abelian case |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 25 - Yang Mills Theory - Coupling to Matter |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 26 - Yang Mills Theory - Physical Content |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 27 - Yang Mills Theory Constraint Dynamics - I |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 28 - Yang Mills Theory Constraint Dynamics - II |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 29 - Gauge Fixing and Faddeev Popov Ghosts - I |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 30 - Gauge Fixing and Faddeev Popov Ghosts - II |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 31 - Topological Vacuum of Yang Mills Theories - I |

Link | NOC:Path Integral and Functional Methods in Quantum Field Theory | Lecture 32 - Topological Vacuum of Yang Mills Theories - II |

Link | NOC:Physics of Biological Systems | Lecture 1 - Introduction |

Link | NOC:Physics of Biological Systems | Lecture 2 - DNA packing and structure |

Link | NOC:Physics of Biological Systems | Lecture 3 - Shape and function |

Link | NOC:Physics of Biological Systems | Lecture 4 - Numbers and sizes |

Link | NOC:Physics of Biological Systems | Lecture 5 - Spatial scales and System variation |

Link | NOC:Physics of Biological Systems | Lecture 6 - Timescales in Biology |

Link | NOC:Physics of Biological Systems | Lecture 7 - Random walks and Passive diffusion |

Link | NOC:Physics of Biological Systems | Lecture 8 - Random walks to model Biology |

Link | NOC:Physics of Biological Systems | Lecture 9 - Derivation of FRAP equations |

Link | NOC:Physics of Biological Systems | Lecture 10 - Drift-diffusion equations |

Link | NOC:Physics of Biological Systems | Lecture 11 - Solutions of the drift-diffusion equations |

Link | NOC:Physics of Biological Systems | Lecture 12 - The cell signaling problem |

Link | NOC:Physics of Biological Systems | Lecture 13 - Cell Signalling and Capture Probability of absorbing sphere |

Link | NOC:Physics of Biological Systems | Lecture 14 - Capture probability of reflecting sphere |

Link | NOC:Physics of Biological Systems | Lecture 15 - Mean capture time |

Link | NOC:Physics of Biological Systems | Lecture 16 - Introduction to fluids, viscosity and reynolds number |

Link | NOC:Physics of Biological Systems | Lecture 17 - Introduction to the navier stokes equation |

Link | NOC:Physics of Biological Systems | Lecture 18 - Understanding reynolds number |

Link | NOC:Physics of Biological Systems | Lecture 19 - Life at low reynolds number |

Link | NOC:Physics of Biological Systems | Lecture 20 - Various phenomena at low reynolds number |

Link | NOC:Physics of Biological Systems | Lecture 21 - Bacterial flagellar motion |

Link | NOC:Physics of Biological Systems | Lecture 22 - Rotating flagellum |

Link | NOC:Physics of Biological Systems | Lecture 23 - Energy and equilibrium |

Link | NOC:Physics of Biological Systems | Lecture 24 - Binding problems |

Link | NOC:Physics of Biological Systems | Lecture 25 - Transcription and translation |

Link | NOC:Physics of Biological Systems | Lecture 26 - Internal states of macromolecules |

Link | NOC:Physics of Biological Systems | Lecture 27 - Protein modification problem |

Link | NOC:Physics of Biological Systems | Lecture 28 - Haemoglobin-Oxygen binding problem |

Link | NOC:Physics of Biological Systems | Lecture 29 - Freely jointed polymer model |

Link | NOC:Physics of Biological Systems | Lecture 30 - Entropic springs and persistence length |

Link | NOC:Physics of Biological Systems | Lecture 31 - Freely rotating chain model and radius of gyration |

Link | NOC:Physics of Biological Systems | Lecture 32 - The hierarchical chromatin packing model |

Link | NOC:Physics of Biological Systems | Lecture 33 - FISH and DNA looping |

Link | NOC:Physics of Biological Systems | Lecture 34 - Nucleosomes as barriers, Hi-C, and contact probabilities |

Link | NOC:Physics of Biological Systems | Lecture 35 - Deriving the full force extension curve |

Link | NOC:Physics of Biological Systems | Lecture 36 - Random walk models for proteins |

Link | NOC:Physics of Biological Systems | Lecture 37 - Hydrophobic polar protein model |

Link | NOC:Physics of Biological Systems | Lecture 38 - Diffusion in crowded environments |

Link | NOC:Physics of Biological Systems | Lecture 39 - Depletion interactions |

Link | NOC:Physics of Biological Systems | Lecture 40 - Examples and implications of depletion interactions |

Link | NOC:Physics of Biological Systems | Lecture 41 - Introduction to Biological dynamics |

Link | NOC:Physics of Biological Systems | Lecture 42 - Introduction to rate equations |

Link | NOC:Physics of Biological Systems | Lecture 43 - Separation of timescales in enzyme kinetics |

Link | NOC:Physics of Biological Systems | Lecture 44 - Structure and treadmilling of actins and microtubules |

Link | NOC:Physics of Biological Systems | Lecture 45 - Average length of polymers in equilibrium |

Link | NOC:Physics of Biological Systems | Lecture 46 - Growth rate of polymers |

Link | NOC:Physics of Biological Systems | Lecture 47 - Dynamic treadmilling in microtubules |

Link | NOC:Physics of Biological Systems | Lecture 48 - Introduction to molecular motors |

Link | NOC:Physics of Biological Systems | Lecture 49 - Force generation by molecular motors |

Link | NOC:Physics of Biological Systems | Lecture 50 - Models of motor motion |

Link | NOC:Physics of Biological Systems | Lecture 51 - molecular motors |

Link | NOC:Physics of Biological Systems | Lecture 52 - Free energies of motor for stepping |

Link | NOC:Physics of Biological Systems | Lecture 53 - Two state models |

Link | NOC:Physics of Biological Systems | Lecture 54 - cooperative transport of cargo |

Link | NOC:Physics of Biological Systems | Lecture 55 - Cytoskeleton as a motor |

Link | NOC:Physics of Biological Systems | Lecture 56 - translocation ratchet |

Link | NOC:Physics of Biological Systems | Lecture 57 - Spatial pattern in biology |

Link | NOC:Physics of Biological Systems | Lecture 58 - Some common spatial patterns in biology |

Link | NOC:Physics of Biological Systems | Lecture 59 - reaction diffusion and spatial pattern |

Link | NOC:Physics of Biological Systems | Lecture 60 - Pattern formation in reaction diffusion system with stability |

Link | NOC:Physics of Biological Systems | Lecture 61 - Condition for destablization in pattern formation |

Link | NOC:Physics of Biological Systems | Lecture 62 - Schnakenberg kinetics |

Link | NOC:Group Theory Methods in Physics | Lecture 1 - Introduction - I |

Link | NOC:Group Theory Methods in Physics | Lecture 2 - Introduction - II |

Link | NOC:Group Theory Methods in Physics | Lecture 3 - Normal subgroup, Coset, Conjugate group |

Link | NOC:Group Theory Methods in Physics | Lecture 4 - Factor group, Homomorphism, Isomorphism |

Link | NOC:Group Theory Methods in Physics | Lecture 5 - Factor group, Homomorphism, Isomorphism |

Link | NOC:Group Theory Methods in Physics | Lecture 6 - Conjugacy Classes |

Link | NOC:Group Theory Methods in Physics | Lecture 7 - Permutation Groups |

Link | NOC:Group Theory Methods in Physics | Lecture 8 - Cycle Structure |

Link | NOC:Group Theory Methods in Physics | Lecture 9 - Cycle Structure (Continued...) |

Link | NOC:Group Theory Methods in Physics | Lecture 10 - Young Diagram and Molecular Symmetry |

Link | NOC:Group Theory Methods in Physics | Lecture 11 - Point Groups |

Link | NOC:Group Theory Methods in Physics | Lecture 12 - Symmetries of Molecules, Schoenflies Notation |

Link | NOC:Group Theory Methods in Physics | Lecture 13 - Symmetries of Molecules, Stereographic Projection |

Link | NOC:Group Theory Methods in Physics | Lecture 14 - Examples of Molecular Symmetries and Proof of Cayley Theorem |

Link | NOC:Group Theory Methods in Physics | Lecture 15 - Matrix Representation of Groups - I |

Link | NOC:Group Theory Methods in Physics | Lecture 16 - Matrix Representation of Groups - II |

Link | NOC:Group Theory Methods in Physics | Lecture 17 - Reducible and Irreducible Representation - I |

Link | NOC:Group Theory Methods in Physics | Lecture 18 - Reducible and Irreducible Representation - II |

Link | NOC:Group Theory Methods in Physics | Lecture 19 - Great Orthogonality Theorem and Character Table - I |

Link | NOC:Group Theory Methods in Physics | Lecture 20 - Great Orthogonality Theorem and Character Table - II |

Link | NOC:Group Theory Methods in Physics | Lecture 21 - Mulliken Notation, Character Table and Basis |

Link | NOC:Group Theory Methods in Physics | Lecture 22 - Tensor Product of Representation |

Link | NOC:Group Theory Methods in Physics | Lecture 23 - Tensor Product and Projection Operator - I |

Link | NOC:Group Theory Methods in Physics | Lecture 24 - Tensor Product and Projection Operator - II |

Link | NOC:Group Theory Methods in Physics | Lecture 25 - Tensor Product and Projection Operator with an example |

Link | NOC:Group Theory Methods in Physics | Lecture 26 - Binary Basis and Observables |

Link | NOC:Group Theory Methods in Physics | Lecture 27 - Selection Rules |

Link | NOC:Group Theory Methods in Physics | Lecture 28 - Selection Rules and Molecular Vibrations |

Link | NOC:Group Theory Methods in Physics | Lecture 29 - Molecular vibration normal modes: Classical Mechanics approach |

Link | NOC:Group Theory Methods in Physics | Lecture 30 - Molecular vibration normal modes: Group Theory approach |

Link | NOC:Group Theory Methods in Physics | Lecture 31 - Molecular vibration modes using projection operator |

Link | NOC:Group Theory Methods in Physics | Lecture 32 - Vibrational representation of character |

Link | NOC:Group Theory Methods in Physics | Lecture 33 - Infrared Spectra and Raman Spectra |

Link | NOC:Group Theory Methods in Physics | Lecture 34 - Introduction to continuous group |

Link | NOC:Group Theory Methods in Physics | Lecture 35 - Generators of translational and rotational transformation |

Link | NOC:Group Theory Methods in Physics | Lecture 36 - Generators of Lorentz transformation |

Link | NOC:Group Theory Methods in Physics | Lecture 37 - Introduction to O(3) and SO(3) group |

Link | NOC:Group Theory Methods in Physics | Lecture 38 - SO(n) and Lorentz group |

Link | NOC:Group Theory Methods in Physics | Lecture 39 - Generalised orthogonal group and Lie algebra |

Link | NOC:Group Theory Methods in Physics | Lecture 40 - Subalgebra of Lie algebra |

Link | NOC:Group Theory Methods in Physics | Lecture 41 - gl(2,C) and sl(2,C) group |

Link | NOC:Group Theory Methods in Physics | Lecture 42 - U(n) and SU(n) group |

Link | NOC:Group Theory Methods in Physics | Lecture 43 - Symplectic group |

Link | NOC:Group Theory Methods in Physics | Lecture 44 - SU(2) and SU(3) groups |

Link | NOC:Group Theory Methods in Physics | Lecture 45 - Rank, weight and weight vector |

Link | NOC:Group Theory Methods in Physics | Lecture 46 - Weight vector, root vector, comparison between SU(2) and SU(3) algebra |

Link | NOC:Group Theory Methods in Physics | Lecture 47 - Root diagram, simple roots, adjoint representation |

Link | NOC:Group Theory Methods in Physics | Lecture 48 - SU(2) sub-algebra, Dynkin diagrams |

Link | NOC:Group Theory Methods in Physics | Lecture 49 - Fundamental weights, Young diagrams, dimension of irreducible representation |

Link | NOC:Group Theory Methods in Physics | Lecture 50 - Young diagrams and tensor products |

Link | NOC:Group Theory Methods in Physics | Lecture 51 - Tensor product, Wigner - Eckart theorem |

Link | NOC:Group Theory Methods in Physics | Lecture 52 - Tensor product of irreducible representation 1: Composite objects from fundamental particles |

Link | NOC:Group Theory Methods in Physics | Lecture 53 - Tensor product of irreducible representation 2: Decimet and octet diagrams in the Quark Model |

Link | NOC:Group Theory Methods in Physics | Lecture 54 - Clebsch - Gordan coefficients |

Link | NOC:Group Theory Methods in Physics | Lecture 55 - 1) Quadrupole moment tensor (Wigner-Eckart theorem) 2) Decimet Baryon wavefunction |

Link | NOC:Group Theory Methods in Physics | Lecture 56 - Higher dimensional multiplets in the quark model |

Link | NOC:Group Theory Methods in Physics | Lecture 57 - Symmetry breaking in continuous groups |

Link | NOC:Group Theory Methods in Physics | Lecture 58 - Dynamical symmetry in hydrogen atom: SO(4) algebra |

Link | NOC:Group Theory Methods in Physics | Lecture 59 - Hydrogen atom energy spectrum and degeneracy using Runge-Lenz vector |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 1 - Neutrons as Probe of Condensed Matter |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 2 - Sources for thermal neutrons used in neutron scattering |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 3 |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 4 - Calculating Neutron Scattering cross-section |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 5 |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 6 - Scattering theory and introducing dynamics in the formalism |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 7 - Scattering theory and introducing dynamics in the formalism |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 8 - Scattering theory and introducing dynamics in the formalism |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 9 - Scattering law's correlation with double-Fourier transform of real space correlation function |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 10 - Scattering law's correlation with double-Fourier transform of real space correlation function |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 11 - Correlation function to resolution and accessible(Q,Ï‰). Introducing experimental facilities |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 12 - Correlation function to resolution and accessible(Q,Ï‰). Introducing experimental facilities |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 13 - Correlation function to resolution and accessible(Q,Ï‰). Introducing experimental facilities |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 14 - Correlation function to resolution and accessible(Q,Ï‰). Introducing experimental facilities |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 15 - Introducing resolution and components of neutron scattering facilities. |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 16 - Introducing resolution and components of neutron scattering facilities. |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 17 - Continue with neutron scattering set up and its components like collimators, filters, detectors etc |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 18 - Continue with neutron scattering set up and its components like collimators, filters, detectors etc |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 19 - Describe the operation of various kinds of neutron detectors |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 20 - Describe the operation of various kinds of neutron detectors |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 21 - Introducing neutron choppers, velocity selectors and polarizers, some important components of beam tailoring devices |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 22 - Introducing neutron choppers, velocity selectors and polarizers, some important components of beam tailoring devices |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 23 - Neutron polarizers and spin-flippers |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 24 - Neutron polarizers and spin-flippers |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 25 - Diffraction at various length scales at a reactor and at a spallation neutron source |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 26 - Diffraction at various length scales at a reactor and at a spallation neutron source |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 27 - Application of neutron crystallography |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 28 - Application of neutron crystallography |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 29 - Magnetism in solids |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 30 - Magnetism in solids |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 31 - Magnetic interaction in solids and magnetic neutron diffarction |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 32 - Magnetic interaction in solids and magnetic neutron diffarction |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 33 - Magnetic interaction in solids and magnetic neutron diffarction |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 34 - Magnetic neutron diffraction |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 35 - Magnetic neutron diffraction |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 36 - Neutron diffraction from liquid and amorphous systems |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 37 - Neutron diffraction from liquid and amorphous systems |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 38 - Small Angle Neutron Scattering (SANS) for mesoscopic structure |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 39 - Small Angle Neutron Scattering (SANS) for mesoscopic structure |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 40 - Small Angle Neutron Scattering (SANS) for mesoscopic structure |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 41 - Small Angle Neutron Scattering (SANS) for mesoscopic structure |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 42 - SANS for soft condensed matter |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 43 - SANS for soft condensed matter |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 44 - SANS for polymers, biological systems, nanoparticle aggregates, rocks, Superconducting vortex lattice |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 45 - SANS for polymers, biological systems, nanoparticle aggregates, rocks, Superconducting vortex lattice |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 46 - Neutron reflectometry for thin films |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 47 - Neutron reflectometry for thin films |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 48 - Neutron reflectometry for thin films |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 49 - Details formalism to evaluate specular neutron reflectivity and comparison with x-ray reflectometry |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 50 - Details formalism to evaluate specular neutron reflectivity and comparison with x-ray reflectometry |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 51 - Neutron reflectometry data analysis and reflectometers at various sources |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 52 - Neutron reflectometry data analysis and reflectometers at various sources |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 53 - Neutron reflectometry data analysis and reflectometers at various sources |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 54 - Examples of PNR with and without spin analysis and introduction to off-specular reflectometry |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 55 - Examples of PNR with and without spin analysis and introduction to off-specular reflectometry |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 56 - Examples of PNR with and without spin analysis and introduction to off-specular reflectometry |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 57 - Off-specular neutron reflectometry and introduction to inelastic neutron scattering |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 58 - Off-specular neutron reflectometry and introduction to inelastic neutron scattering |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 59 - Off-specular neutron reflectometry and introduction to inelastic neutron scattering |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 60 - Phonon measurements with neutrons |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 61 - Phonon measurements with neutrons |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 62 - Phonon measurements; single crystals |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 63 |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 64 - Phonon: Density of States measurements |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 65 - Stochastic dynamics with neutrons |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 66 - Stochastic motion and various types of diffusion |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 67 - Stochastic motion and various types of diffusion |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 68 - Spin echo spectrometer, Summary of the course |

Link | NOC:Neutron Scattering for Condensed Matter Studies | Lecture 69 - Spin echo spectrometer, Summary of the course |

Link | NOC:Accelerator Physics | Lecture 1 - Why accelerators |

Link | NOC:Accelerator Physics | Lecture 2 - Accelerator as a microscope |

Link | NOC:Accelerator Physics | Lecture 3 - Charging and Discharging of capacitors |

Link | NOC:Accelerator Physics | Lecture 4 - Charging and Discharging of capacitors (Continued...) |

Link | NOC:Accelerator Physics | Lecture 5 - Introduction to DC accelerators |

Link | NOC:Accelerator Physics | Lecture 6 - Cockcroft Walton Accelerator (1929) |

Link | NOC:Accelerator Physics | Lecture 7 - Van-de-Graaff accelerator and Tandem and Pelletron accelerators |

Link | NOC:Accelerator Physics | Lecture 8 - Van-de-Graaff accelerator and Tandem and Pelletron accelerators |

Link | NOC:Accelerator Physics | Lecture 9 - Voltage measurement and stabilisation |

Link | NOC:Accelerator Physics | Lecture 10 - Voltage measurement and stabilisation |

Link | NOC:Accelerator Physics | Lecture 11 - Beam energy calibration/measurement |

Link | NOC:Accelerator Physics | Lecture 12 - Beam energy calibration/measurement |

Link | NOC:Accelerator Physics | Lecture 13 - Beam focussing using electrostatic and magnetic lenses and beam optics |

Link | NOC:Accelerator Physics | Lecture 14 - Beam focussing using electrostatic and magnetic lenses and beam optics |

Link | NOC:Accelerator Physics | Lecture 15 - Beam focussing using electrostatic and magnetic lenses and beam optics |

Link | NOC:Accelerator Physics | Lecture 16 - Ion Sources |

Link | NOC:Accelerator Physics | Lecture 17 - Ion Sources |

Link | NOC:Accelerator Physics | Lecture 18 - Introduction and Basic concepts of linear accelerators |

Link | NOC:Accelerator Physics | Lecture 19 - Introduction and Basic concepts of linear accelerators |

Link | NOC:Accelerator Physics | Lecture 20 - RF Acceleration - 1 |

Link | NOC:Accelerator Physics | Lecture 21 - RF Acceleration - 1 |

Link | NOC:Accelerator Physics | Lecture 22 - RF Acceleration - 2 |

Link | NOC:Accelerator Physics | Lecture 23 - RF Acceleration - 2 |

Link | NOC:Accelerator Physics | Lecture 24 - RF Acceleration - 3 - Waveguides and cavities |

Link | NOC:Accelerator Physics | Lecture 25 - RF Acceleration - 3 - Waveguides and cavities |

Link | NOC:Accelerator Physics | Lecture 26 - Accelerating structures - Pillbox cavity and DTL |

Link | NOC:Accelerator Physics | Lecture 27 - Accelerating structures - Pillbox cavity and DTL |

Link | NOC:Accelerator Physics | Lecture 28 - Accelerating structures - Travelling wave linacs and periodic accelerating structures |

Link | NOC:Accelerator Physics | Lecture 29 - Accelerating structures - Travelling wave linacs and periodic accelerating structures |

Link | NOC:Accelerator Physics | Lecture 30 - Superconducting cavities |

Link | NOC:Accelerator Physics | Lecture 31 - Superconducting cavities |

Link | NOC:Accelerator Physics | Lecture 32 - Transverse Dynamics - 1 |

Link | NOC:Accelerator Physics | Lecture 33 - Transverse Dynamics - 1 |

Link | NOC:Accelerator Physics | Lecture 34 - Transverse Dynamics - 2 |

Link | NOC:Accelerator Physics | Lecture 35 - Transverse Dynamics - 2 |

Link | NOC:Accelerator Physics | Lecture 36 - Transverse Dynamics - 3 |

Link | NOC:Accelerator Physics | Lecture 37 - Transverse Dynamics - 3 |

Link | NOC:Accelerator Physics | Lecture 38 - Longitudinal Dynamics - 1 |

Link | NOC:Accelerator Physics | Lecture 39 - Longitudinal Dynamics - 1 |

Link | NOC:Accelerator Physics | Lecture 40 - Longitudinal Dynamics - 2 |

Link | NOC:Accelerator Physics | Lecture 41 - Longitudinal Dynamics - 2 |

Link | NOC:Accelerator Physics | Lecture 42 - Radio Frequency Quadrupole |

Link | NOC:Accelerator Physics | Lecture 43 - Radio Frequency Quadrupole |

Link | NOC:Accelerator Physics | Lecture 44 - Cyclic accelerators: Some basic principles |

Link | NOC:Accelerator Physics | Lecture 45 - Cyclic accelerators: Some basic principles |

Link | NOC:Accelerator Physics | Lecture 46 - About the cyclotron |

Link | NOC:Accelerator Physics | Lecture 47 - About the cyclotron |

Link | NOC:Accelerator Physics | Lecture 48 - Microtron |

Link | NOC:Accelerator Physics | Lecture 49 - Equation of motion, Focusing |

Link | NOC:Accelerator Physics | Lecture 50 - Equation of motion, Focusing |

Link | NOC:Accelerator Physics | Lecture 51 - Strong focusing, Edge focusing, AG principle |

Link | NOC:Accelerator Physics | Lecture 52 - Strong focusing, Edge focusing, AG principle |

Link | NOC:Accelerator Physics | Lecture 53 - Matrix methods |

Link | NOC:Accelerator Physics | Lecture 54 - Matrix methods |

Link | NOC:Accelerator Physics | Lecture 55 - Hill's equation and parameterization - 1 |

Link | NOC:Accelerator Physics | Lecture 56 - Hill's equation and parameterization - 1 |

Link | NOC:Accelerator Physics | Lecture 57 - Hill's equation and parameterization - 2 |

Link | NOC:Accelerator Physics | Lecture 58 - Hill's equation and parameterization - 2 |

Link | NOC:Accelerator Physics | Lecture 59 - Hill's equation and parameterization - 3 |

Link | NOC:Accelerator Physics | Lecture 60 - Hill's equation and parameterization - 3 |

Link | NOC:Accelerator Physics | Lecture 61 |

Link | NOC:Accelerator Physics | Lecture 62 |

Link | NOC:Accelerator Physics | Lecture 63 |

Link | NOC:Accelerator Physics | Lecture 64 |

Link | NOC:Accelerator Physics | Lecture 65 |

Link | NOC:Accelerator Physics | Lecture 66 |

Link | NOC:Accelerator Physics | Lecture 67 - Proton synchrotron for spallation source |

Link | NOC:Accelerator Physics | Lecture 68 - Proton synchrotron for spallation source |

Link | NOC:Accelerator Physics | Lecture 69 - Colliders |

Link | NOC:Accelerator Physics | Lecture 70 - Colliders |

Link | NOC:Accelerator Physics | Lecture 71 - Laser Plasma accelerators and Accelerator Driven Systems (ADS) |

Link | NOC:Accelerator Physics | Lecture 72 - Laser Plasma accelerators and Accelerator Driven Systems (ADS) |

Link | Electronics | Lecture 1 - p-n diode |

Link | Electronics | Lecture 2 - p-n Junction/Diode (Continued...) |

Link | Electronics | Lecture 3 - p-n diode (Continued...) |

Link | Electronics | Lecture 4 - Diode Application |

Link | Electronics | Lecture 5 - Transistors |

Link | Electronics | Lecture 6 - Reverse - bias (Continued...) |

Link | Electronics | Lecture 7 - Transistors (Continued...) |

Link | Electronics | Lecture 8 - Transistors (Continued...) |

Link | Electronics | Lecture 9 - Biasing a transistor unit 2 (Continued...) |

Link | Electronics | Lecture 10 - Biasing of transistor |

Link | Electronics | Lecture 11 - H and R Parameters and their use in small amplifiers |

Link | Electronics | Lecture 12 - Small signal amplifiers analysis using H - Parameters |

Link | Electronics | Lecture 13 - Small signal amplifiers analysis using R - Parameters |

Link | Electronics | Lecture 14 - R - analysis (Continued...) |

Link | Electronics | Lecture 15 - Common Collector(CC) amplifier (Continued...) |

Link | Electronics | Lecture 16 - Feedback in amplifiers, Feedback Configurations and multi stage amplifiers |

Link | Electronics | Lecture 17 - Reduction in non-linear distortion |

Link | Electronics | Lecture 18 - Input/Output impedances in negative feedback amplifiers (Continued...) |

Link | Electronics | Lecture 19 - RC Coupled Amplifiers |

Link | Electronics | Lecture 20 - RC Coupled Amplifiers (Continued...) |

Link | Electronics | Lecture 21 - RC Coupled Amplifiers (Continued...) |

Link | Electronics | Lecture 22 - FETs ans MOSFET |

Link | Electronics | Lecture 23 - FETs ans MOSFET (Continued...) |

Link | Electronics | Lecture 24 - Depletion - MOSFET |

Link | Electronics | Lecture 25 - Drain and transfer characteristic of E - MOSFET |

Link | Electronics | Lecture 26 - Self Bias (Continued...) Design Procedure |

Link | Electronics | Lecture 27 - FET/MOSFET Amplifiers and their Analysis |

Link | Electronics | Lecture 28 - CMOS Inverter |

Link | Electronics | Lecture 29 - CMOS Inverter (Continued...) |

Link | Electronics | Lecture 30 - Power Amplifier |

Link | Electronics | Lecture 31 - Power Amplifier (Continued...) |

Link | Electronics | Lecture 32 - Power Amplifier (Continued...) |

Link | Electronics | Lecture 33 - Power Amplifier (Continued...) |

Link | Electronics | Lecture 34 - Differential and Operational Amplifier |

Link | Electronics | Lecture 35 - Differential and Operational Amplifier (Continued...) dc and ac analysis |

Link | Electronics | Lecture 36 - Differential and Operational Amplifier dc and ac analysis (Continued...) |

Link | Electronics | Lecture 37 - Operational Amplifiers |

Link | Electronics | Lecture 38 - Operational amplifiers in open loop (Continued...) |

Link | Electronics | Lecture 39 - Summing Amplifiers |

Link | Electronics | Lecture 40 - Frequency response of an intigration |

Link | Electronics | Lecture 41 - Filters |

Link | Electronics | Lecture 42 - Specification of OP Amplifiers |

Link | Plasma Physics: Fundamentals and Applications | Lecture 1 - Introduction to Plasmas |

Link | Plasma Physics: Fundamentals and Applications | Lecture 2 - Plasma Response to fields: Fluid Equations |

Link | Plasma Physics: Fundamentals and Applications | Lecture 3 - DC Conductivity and Negative Differential Conductivity |

Link | Plasma Physics: Fundamentals and Applications | Lecture 4 - RF Conductivity of Plasma |

Link | Plasma Physics: Fundamentals and Applications | Lecture 5 - RF Conductivity of Plasma (Continued...) |

Link | Plasma Physics: Fundamentals and Applications | Lecture 6 - Hall Effect, Cowling Effect and Cyclotron Resonance Heating |

Link | Plasma Physics: Fundamentals and Applications | Lecture 7 - Electromagnetic Wave Propagation in Plasma |

Link | Plasma Physics: Fundamentals and Applications | Lecture 8 - Electromagnetic Wave Propagation in Plasma (Continued...) |

Link | Plasma Physics: Fundamentals and Applications | Lecture 9 - Electromagnetic Wave Propagation Inhomogeneous Plasma |

Link | Plasma Physics: Fundamentals and Applications | Lecture 10 - Electrostatic Waves in Plasmas |

Link | Plasma Physics: Fundamentals and Applications | Lecture 11 - Energy Flow with an Electrostatic Wave |

Link | Plasma Physics: Fundamentals and Applications | Lecture 12 - Two Stream Instability |

Link | Plasma Physics: Fundamentals and Applications | Lecture 13 - Relativistic electron Beam- Plasma Interaction |

Link | Plasma Physics: Fundamentals and Applications | Lecture 14 - Cerenkov Free Electron Laser |

Link | Plasma Physics: Fundamentals and Applications | Lecture 15 - Free Electron Laser |

Link | Plasma Physics: Fundamentals and Applications | Lecture 16 - Free Electron Laser: Energy gain |

Link | Plasma Physics: Fundamentals and Applications | Lecture 17 - Free Electron Laser: Wiggler Tapering and Compton Regime Operation |

Link | Plasma Physics: Fundamentals and Applications | Lecture 18 - Weibel Instability |

Link | Plasma Physics: Fundamentals and Applications | Lecture 19 - Rayleigh Taylor Instability |

Link | Plasma Physics: Fundamentals and Applications | Lecture 20 - Single Particle Motion in Static Magnetic and Electric Fields |

Link | Plasma Physics: Fundamentals and Applications | Lecture 21 - Plasma Physics Grad B and Curvature Drifts |

Link | Plasma Physics: Fundamentals and Applications | Lecture 22 - Adiabatic Invariance of Magnetic Moment and Mirror confinement |

Link | Plasma Physics: Fundamentals and Applications | Lecture 23 - Mirror machine |

Link | Plasma Physics: Fundamentals and Applications | Lecture 24 - Thermonuclear fusion |

Link | Plasma Physics: Fundamentals and Applications | Lecture 25 - Tokamak |

Link | Plasma Physics: Fundamentals and Applications | Lecture 26 - Tokamak operation |

Link | Plasma Physics: Fundamentals and Applications | Lecture 27 - Auxiliary heating and current drive in tokamak |

Link | Plasma Physics: Fundamentals and Applications | Lecture 28 - Electromagnetic waves propagation in magnetise plasma |

Link | Plasma Physics: Fundamentals and Applications | Lecture 29 - Longitudinal electromagnetic wave propagation cutoffs, resonances and faraday rotation |

Link | Plasma Physics: Fundamentals and Applications | Lecture 30 - Electromagnetic propagation at oblique angles to magnetic field in a plasma |

Link | Plasma Physics: Fundamentals and Applications | Lecture 31 - Low frequency EM waves magnetized plasma |

Link | Plasma Physics: Fundamentals and Applications | Lecture 32 - Electrostatic waves in magnetized plasma |

Link | Plasma Physics: Fundamentals and Applications | Lecture 33 - Ion acoustic, ion cyclotron and magneto sonic waves in magnetized plasma |

Link | Plasma Physics: Fundamentals and Applications | Lecture 34 - VIasov theory of plasma waves |

Link | Plasma Physics: Fundamentals and Applications | Lecture 35 - Landau damping and growth of waves |

Link | Plasma Physics: Fundamentals and Applications | Lecture 36 - Landau damping and growth of waves (Continued...) |

Link | Plasma Physics: Fundamentals and Applications | Lecture 37 - Anomalous resistivity in a plasma |

Link | Plasma Physics: Fundamentals and Applications | Lecture 38 - Diffusion in plasma |

Link | Plasma Physics: Fundamentals and Applications | Lecture 39 - Diffusion in magnetized plasma |

Link | Plasma Physics: Fundamentals and Applications | Lecture 40 - Surface plasma wave |

Link | Plasma Physics: Fundamentals and Applications | Lecture 41 - Laser interaction with plasmas embedded with clusters |

Link | Plasma Physics: Fundamentals and Applications | Lecture 42 - Current trends and epilogue |

Link | Quantum Electronics | Lecture 1 - Introduction |

Link | Quantum Electronics | Lecture 2 - Anisotropic Media |

Link | Quantum Electronics | Lecture 3 - Anisotropic Media (Continued...) |

Link | Quantum Electronics | Lecture 4 - Anisotropic Media (Continued...) |

Link | Quantum Electronics | Lecture 5 - Nonlinear optical effects and nonlinear polarization |

Link | Quantum Electronics | Lecture 6 - Non - Linear Optics (Continued...) |

Link | Quantum Electronics | Lecture 7 - Non - Linear Optics (Continued...) |

Link | Quantum Electronics | Lecture 8 - Non - Linear Optics (Continued...) |

Link | Quantum Electronics | Lecture 9 - Non - Linear Optics (Continued...) |

Link | Quantum Electronics | Lecture 10 - Non - Linear Optics - Quasi Phase Matching |

Link | Quantum Electronics | Lecture 11 - Non - Linear Optics |

Link | Quantum Electronics | Lecture 12 - Non Linear Optics (Continued...) |

Link | Quantum Electronics | Lecture 13 - Non Linear Optics (Continued...) |

Link | Quantum Electronics | Lecture 14 - Non Linear Optics (Continued...) |

Link | Quantum Electronics | Lecture 15 - Non Linear Optics (Continued...) |

Link | Quantum Electronics | Lecture 16 - Non Linear Optics (Continued...) |

Link | Quantum Electronics | Lecture 17 - Non Linear Optics (Continued...) |

Link | Quantum Electronics | Lecture 18 - Non Linear Optics (Continued...) |

Link | Quantum Electronics | Lecture 19 - Non Linear Optics (Continued...) |

Link | Quantum Electronics | Lecture 20 - Third Order Non - Linear Effects |

Link | Quantum Electronics | Lecture 21 - Third Order Non - Linear Effects (Continued...) |

Link | Quantum Electronics | Lecture 22 - Third Order Non - Linear Effects (Continued...) |

Link | Quantum Electronics | Lecture 23 - Third Order Non - Linear Effects (Continued...) |

Link | Quantum Electronics | Lecture 24 - Review of Quantum Mechanics |

Link | Quantum Electronics | Lecture 25 - Review of Quantum Mechanics (Continued...) |

Link | Quantum Electronics | Lecture 26 - Review of Quantum Mechanics (Continued...) |

Link | Quantum Electronics | Lecture 27 - Quantization of EM Field |

Link | Quantum Electronics | Lecture 28 - Quantization of EM Field (Continued...) |

Link | Quantum Electronics | Lecture 29 - Quantization of EM Field (Continued...) |

Link | Quantum Electronics | Lecture 30 - Quantum States of EM Field |

Link | Quantum Electronics | Lecture 31 - Quantum States of EM Field (Continued...) |

Link | Quantum Electronics | Lecture 32 - Quantization of EM Field (Continued...) |

Link | Quantum Electronics | Lecture 33 - Quantization of EM Field (Continued...) |

Link | Quantum Electronics | Lecture 34 - Quantization of EM Field (Continued...) |

Link | Quantum Electronics | Lecture 35 - Quantization of EM Field (Continued...) |

Link | Quantum Electronics | Lecture 36 - Quantization of EM Field (Continued...) |

Link | Quantum Electronics | Lecture 37 - Beam Splitter |

Link | Quantum Electronics | Lecture 38 - Beam Splitter (Continued...) |

Link | Quantum Electronics | Lecture 39 - Beam Splitter and Balanced Homodyning |

Link | Quantum Electronics | Lecture 40 - Balanced Homodyning |

Link | Quantum Electronics | Lecture 41 - Quantum Picture of Parametric Down Conversion |

Link | Quantum Electronics | Lecture 42 - Questions |

Link | Quantum Mechanics and Applications | Lecture 1 - Basic Quantum Mechanics I: Wave Particle Duality |

Link | Quantum Mechanics and Applications | Lecture 2 - Basic Quantum Mechanics II: The Schrodinger Equation and The Dirac Delta Function |

Link | Quantum Mechanics and Applications | Lecture 3 - Dirac Delta Function & Fourier Transforms |

Link | Quantum Mechanics and Applications | Lecture 4 - The Free Particle |

Link | Quantum Mechanics and Applications | Lecture 5 - Physical Interpretation of The Wave Function |

Link | Quantum Mechanics and Applications | Lecture 6 - Expectation Values & The Uncertainty Principle |

Link | Quantum Mechanics and Applications | Lecture 7 - The Free Particle (Continued...) |

Link | Quantum Mechanics and Applications | Lecture 8 - Interference Experiment & The Particle in a Box Problem |

Link | Quantum Mechanics and Applications | Lecture 9 - On Eigen Values and Eigen Functions of the 1 Dimensional Schrodinger Equation |

Link | Quantum Mechanics and Applications | Lecture 10 - Linear Harmonic Oscillator |

Link | Quantum Mechanics and Applications | Lecture 11 - Linear Harmonic Oscillator (Continued...1) |

Link | Quantum Mechanics and Applications | Lecture 12 - Linear Harmonic Oscillator (Continued...2) |

Link | Quantum Mechanics and Applications | Lecture 13 - Linear Harmonic Oscillator (Continued...3) |

Link | Quantum Mechanics and Applications | Lecture 14 - Tunneling through a Barrier |

Link | Quantum Mechanics and Applications | Lecture 15 - The 1-Dimensional Potential Wall & Particle in a Box |

Link | Quantum Mechanics and Applications | Lecture 16 - Particle in a Box and Density of States |

Link | Quantum Mechanics and Applications | Lecture 17 - The Angular Momentum Problem |

Link | Quantum Mechanics and Applications | Lecture 18 - The Angular Momentum Problem (Continued...) |

Link | Quantum Mechanics and Applications | Lecture 19 - The Hydrogen Atom Problem |

Link | Quantum Mechanics and Applications | Lecture 20 - The Two Body Problem |

Link | Quantum Mechanics and Applications | Lecture 21 - TheTwo Body Problem: The Hydrogen atom, The Deutron and The Diatomic Molecule |

Link | Quantum Mechanics and Applications | Lecture 22 - Two Body Problem: The Diatomic molecule (Continued...) and the 3 Dimensional Oscillator |

Link | Quantum Mechanics and Applications | Lecture 23 - 3d Oscillator & Dirac's Bra and Ket Algebra |

Link | Quantum Mechanics and Applications | Lecture 24 - Dirac’s Bra and Ket Algebra |

Link | Quantum Mechanics and Applications | Lecture 25 - Dirac’s Bra and Ket Algebra : The Linear Harmonic Oscillator |

Link | Quantum Mechanics and Applications | Lecture 26 - The Linear Harmonic Oscillator using Bra and Ket Algebra (Continued...) |

Link | Quantum Mechanics and Applications | Lecture 27 - The Linear Harmonic Oscillator: Coherent State and Relationship with the Classical Oscillator |

Link | Quantum Mechanics and Applications | Lecture 28 - Coherent State and Relationship with the Classical Oscillator |

Link | Quantum Mechanics and Applications | Lecture 29 - Angular Momentum Problem using Operator Algebra |

Link | Quantum Mechanics and Applications | Lecture 30 - Angular Momentum Problem (Continued...) |

Link | Quantum Mechanics and Applications | Lecture 31 - Pauli Spin Matrices and The Stern Gerlach Experiment |

Link | Quantum Mechanics and Applications | Lecture 32 - The Larmor Precession and NMR Spherical Harmonics using Operator Algebra |

Link | Quantum Mechanics and Applications | Lecture 33 - Addition of Angular Momentum: Clebsch Gordon Coefficient |

Link | Quantum Mechanics and Applications | Lecture 34 - Clebsch Gordon Coefficients |

Link | Quantum Mechanics and Applications | Lecture 35 - The JWKB Approximation |

Link | Quantum Mechanics and Applications | Lecture 36 - The JWKB Approximation: Use of Connection Formulae to solve Eigen value Problems. |

Link | Quantum Mechanics and Applications | Lecture 37 - The JWKB Approximation: Use of Connection Formulae to calculate Tunneling Probability. |

Link | Quantum Mechanics and Applications | Lecture 38 - The JWKB Approximation: Tunneling Probability Calculations and Applications. |

Link | Quantum Mechanics and Applications | Lecture 39 - The JWKB Approximation: Justification of the Connection Formulae |

Link | Quantum Mechanics and Applications | Lecture 40 - Time Independent Perturbation Theory |

Link | Quantum Mechanics and Applications | Lecture 41 - Time Independent Perturbation Theory (Continued...1) |

Link | Quantum Mechanics and Applications | Lecture 42 - Time Independent Perturbation Theory (Continued...2) |

Link | Semiconductor Optoelectronics | Lecture 1 - Context and Scope of the Course |

Link | Semiconductor Optoelectronics | Lecture 2 - Energy Bands in Solids |

Link | Semiconductor Optoelectronics | Lecture 3 - E-K Diagram |

Link | Semiconductor Optoelectronics | Lecture 4 - The Density of States |

Link | Semiconductor Optoelectronics | Lecture 5 - The Density of States (Continued...) |

Link | Semiconductor Optoelectronics | Lecture 6 - The Density of states in a Quantum well Structure |

Link | Semiconductor Optoelectronics | Lecture 7 - Occupation Probability and Carrier Concentration |

Link | Semiconductor Optoelectronics | Lecture 8 - Carrier Concentration and Fermi Level |

Link | Semiconductor Optoelectronics | Lecture 9 - Quasi Fermi Levels |

Link | Semiconductor Optoelectronics | Lecture 10 - Semiconductor Materials |

Link | Semiconductor Optoelectronics | Lecture 11 - Semiconductor Hetrostructures-Lattice-Matched Layers |

Link | Semiconductor Optoelectronics | Lecture 12 - Strained -Layer Epitaxy and Quantum Well Structures |

Link | Semiconductor Optoelectronics | Lecture 13 - Bandgap Engineering |

Link | Semiconductor Optoelectronics | Lecture 14 - Hetrostructure p-n junctions |

Link | Semiconductor Optoelectronics | Lecture 15 - Schottky Junction and Ohmic Contacts |

Link | Semiconductor Optoelectronics | Lecture 16 - Fabrication of Heterostructure Devices |

Link | Semiconductor Optoelectronics | Lecture 17 - Interaction od Photons with Electrons and Holes in a Semiconductor |

Link | Semiconductor Optoelectronics | Lecture 18 - Optical Joint Density of States |

Link | Semiconductor Optoelectronics | Lecture 19 - Rates of Emission and Absorption |

Link | Semiconductor Optoelectronics | Lecture 20 - Amplication by Stimulated Emission |

Link | Semiconductor Optoelectronics | Lecture 21 - The Semiconductor (Laser) Amplifier |

Link | Semiconductor Optoelectronics | Lecture 22 - Absorption Spectrum of Semiconductor |

Link | Semiconductor Optoelectronics | Lecture 23 - Gain and Absorption Spectrum of Quantum Well Structures |

Link | Semiconductor Optoelectronics | Lecture 24 - Electro-absorption Modulator |

Link | Semiconductor Optoelectronics | Lecture 25 - Electro-absorption Modulator - II Device Configuration |

Link | Semiconductor Optoelectronics | Lecture 26 - Mid-Term Revision Question and Discussion |

Link | Semiconductor Optoelectronics | Lecture 27 - Part - III Semiconductor Light Sources |

Link | Semiconductor Optoelectronics | Lecture 28 - Light Emitting Diode-I Device Structure and Parameters |

Link | Semiconductor Optoelectronics | Lecture 29 - Light Emitting Diode-II Device Chracteristics |

Link | Semiconductor Optoelectronics | Lecture 30 - Light Emitting Diode-III Output Characteristics |

Link | Semiconductor Optoelectronics | Lecture 31 - Light Emitting Diode-IV Modulation Bandwidth |

Link | Semiconductor Optoelectronics | Lecture 32 - Light Emitting Diode-V materials and Applications |

Link | Semiconductor Optoelectronics | Lecture 33 - Laser Basics |

Link | Semiconductor Optoelectronics | Lecture 34 - Semiconductor Laser-I Device Structure |

Link | Semiconductor Optoelectronics | Lecture 35 - Semiconductor Laser-II Output Characteristics |

Link | Semiconductor Optoelectronics | Lecture 36 - Semiconductor Laser-III Single Frequency Lasers |

Link | Semiconductor Optoelectronics | Lecture 37 - Vertical Cavity Surface Emitting Laser (VCSEL) |

Link | Semiconductor Optoelectronics | Lecture 38 - Quantum Well Laser |

Link | Semiconductor Optoelectronics | Lecture 39 - Practical Laser Diodes and Handling |

Link | Semiconductor Optoelectronics | Lecture 40 - General Characteristics of Photodetectors |

Link | Semiconductor Optoelectronics | Lecture 41 - Responsivity and Impulse Response |

Link | Semiconductor Optoelectronics | Lecture 42 - Photoconductors |

Link | Semiconductor Optoelectronics | Lecture 43 - Semiconductor Photo-Diodes |

Link | Semiconductor Optoelectronics | Lecture 44 - Semiconductor Photo-Diodes-II : APD |

Link | Semiconductor Optoelectronics | Lecture 45 - Other Photodectors |

Link | Semiconductor Optoelectronics | Lecture 46 - Photonic Integrated Circuits |

Link | NOC:Semiconductor Optoelectronics | Lecture 1 - Context, Scope and Contents of the Course |

Link | NOC:Semiconductor Optoelectronics | Lecture 2 - Energy Bands in Solids |

Link | NOC:Semiconductor Optoelectronics | Lecture 3 - E-k Diagram - The Band Structure |

Link | NOC:Semiconductor Optoelectronics | Lecture 4 - The Density of States |

Link | NOC:Semiconductor Optoelectronics | Lecture 5 - The Density of States ρ(k), ρ(E) |

Link | NOC:Semiconductor Optoelectronics | Lecture 6 - Density of States in a Quantum Well Structure |

Link | NOC:Semiconductor Optoelectronics | Lecture 7 - Occupation Probability and Carrier Concentration |

Link | NOC:Semiconductor Optoelectronics | Lecture 8 - Carrier Concentration and Fermi Level |

Link | NOC:Semiconductor Optoelectronics | Lecture 9 - Quasi Fermi Levels |

Link | NOC:Semiconductor Optoelectronics | Lecture 10 - Semiconductor Materials |

Link | NOC:Semiconductor Optoelectronics | Lecture 11 - Semiconductor Heterostructures-Lattice-Matched Layers |

Link | NOC:Semiconductor Optoelectronics | Lecture 12 - Strained-Layer Epitaxy and Quantum Well Structures |

Link | NOC:Semiconductor Optoelectronics | Lecture 13 - Bandgap Engineering |

Link | NOC:Semiconductor Optoelectronics | Lecture 14 - Heterostructure p-n junctions |

Link | NOC:Semiconductor Optoelectronics | Lecture 15 - Schottky Junctions and Ohmic Contacts |

Link | NOC:Semiconductor Optoelectronics | Lecture 16 - Fabrication of Heterostructure Devices |

Link | NOC:Semiconductor Optoelectronics | Lecture 17 - Interaction of Photons with Electrons and Holes in a Semiconductor |

Link | NOC:Semiconductor Optoelectronics | Lecture 18 - Optical Joint Density of States, and Probabilities of Emission and Absorption |

Link | NOC:Semiconductor Optoelectronics | Lecture 19 - Rates of Emission and Absorption |

Link | NOC:Semiconductor Optoelectronics | Lecture 20 - Amplification by Stimulated Emission |

Link | NOC:Semiconductor Optoelectronics | Lecture 21 - The Semiconductor (Laser) Amplifier |

Link | NOC:Semiconductor Optoelectronics | Lecture 22 - Absorption Spectrum of Semiconductors |

Link | NOC:Semiconductor Optoelectronics | Lecture 23 - Gain and Absorption Spectrum of Quantum Well Structures |

Link | NOC:Semiconductor Optoelectronics | Lecture 24 - Electro-absorption Modulator-I Principle of Operation |

Link | NOC:Semiconductor Optoelectronics | Lecture 25 - Electro-absorption Modulator-II Device Configuration |

Link | NOC:Semiconductor Optoelectronics | Lecture 26 - Injuction Electroluminescence |

Link | NOC:Semiconductor Optoelectronics | Lecture 27 - Light emitting diode-1 Device structure and parameters |

Link | NOC:Semiconductor Optoelectronics | Lecture 28 - Light emitting diode-II Device Characteristics |

Link | NOC:Semiconductor Optoelectronics | Lecture 29 - Light emitting diode-III Output Characteristics |

Link | NOC:Semiconductor Optoelectronics | Lecture 30 - Light emitting diode-IV Modulation Bandwidth |

Link | NOC:Semiconductor Optoelectronics | Lecture 31 - Light emitting diode-V Material and Applications |

Link | NOC:Semiconductor Optoelectronics | Lecture 32 - Laser Basics |

Link | NOC:Semiconductor Optoelectronics | Lecture 33 - Semiconductor Laser-I Device Structure |

Link | NOC:Semiconductor Optoelectronics | Lecture 34 - Semiconductor Laser-II Output Characteristics |

Link | NOC:Semiconductor Optoelectronics | Lecture 35 - Semiconductor Laser-III Single Frequency Lasers |

Link | NOC:Semiconductor Optoelectronics | Lecture 36 - Vertical cavity Surface Emitting Laser (VCSEL) |

Link | NOC:Semiconductor Optoelectronics | Lecture 37 - Quantum Well Laser |

Link | NOC:Semiconductor Optoelectronics | Lecture 38 - Practical Laser Diodes and Handling |

Link | NOC:Semiconductor Optoelectronics | Lecture 39 - General Characteristics of Photodetectors |

Link | NOC:Semiconductor Optoelectronics | Lecture 40 - Responsivity and Impulse Response |

Link | NOC:Semiconductor Optoelectronics | Lecture 41 - Photoconductors |

Link | NOC:Semiconductor Optoelectronics | Lecture 42 - Semiconductor Photo-Diodes-I: PIN Diode |

Link | NOC:Semiconductor Optoelectronics | Lecture 43 - Semiconductor Photo-Diodes-II: APD |

Link | NOC:Semiconductor Optoelectronics | Lecture 44 - Other Photodetectors |

Link | NOC:Semiconductor Optoelectronics | Lecture 45 - Photonic Integrated Circuits |

Link | NOC:Introduction to LASER | Lecture 1 - General Introduction, Scope and Contents |

Link | NOC:Introduction to LASER | Lecture 2 - Interaction of Radiation with Matter |

Link | NOC:Introduction to LASER | Lecture 3 - The Einstein Coefficients |

Link | NOC:Introduction to LASER | Lecture 4 - Atomic Lineshape Function, g(ν) |

Link | NOC:Introduction to LASER | Lecture 5 - Amplification by Stimulated Emission |

Link | NOC:Introduction to LASER | Lecture 6 - Line Broadening Mechanisms - 1 |

Link | NOC:Introduction to LASER | Lecture 7 - Line Broadening Mechanisms - 2 |

Link | NOC:Introduction to LASER | Lecture 8 - Laser Rate Equations: 2-Level System |

Link | NOC:Introduction to LASER | Lecture 9 - Laser Rate Equations: 3-Level System |

Link | NOC:Introduction to LASER | Lecture 10 - Laser Rate Equations: 4-Level System |

Link | NOC:Introduction to LASER | Lecture 11 - Laser Amplifiers |

Link | NOC:Introduction to LASER | Lecture 12 - Er-Doped Fiber Amplifier |

Link | NOC:Introduction to LASER | Lecture 13 - Resonance Frequencies |

Link | NOC:Introduction to LASER | Lecture 14 - Spectral Response of an Optical Resonator |

Link | NOC:Introduction to LASER | Lecture 15 - Resonator Loss and Cavity Lifetime |

Link | NOC:Introduction to LASER | Lecture 16 - Spherical Mirror Resonators |

Link | NOC:Introduction to LASER | Lecture 17 - Resonator Stability Condition |

Link | NOC:Introduction to LASER | Lecture 18 - Ray Paths in Spherical Mirror Resonators |

Link | NOC:Introduction to LASER | Lecture 19 - Tranverse Modes of a Spherical Mirror Resonator |

Link | NOC:Introduction to LASER | Lecture 20 - Gaussian Mode of the Spherical Mirror Resonator |

Link | NOC:Introduction to LASER | Lecture 21 - Longitudinal Modes of a Spherical Mirror Resonator |

Link | NOC:Introduction to LASER | Lecture 22 - Laser Oscillations and The Threshold Condition |

Link | NOC:Introduction to LASER | Lecture 23 - Spectral Hole Burning |

Link | NOC:Introduction to LASER | Lecture 24 - Variation of Laser Power around Threshold |

Link | NOC:Introduction to LASER | Lecture 25 - Optimum Output Coupling |

Link | NOC:Introduction to LASER | Lecture 26 - Laser Output Characteristics |

Link | NOC:Introduction to LASER | Lecture 27 - Laser Beam Properties |

Link | NOC:Introduction to LASER | Lecture 28 - Ultimate Linewidth of a Laser |

Link | NOC:Introduction to LASER | Lecture 29 - Pulsed Lasers |

Link | NOC:Introduction to LASER | Lecture 30 - Q-Switching |

Link | NOC:Introduction to LASER | Lecture 31 - Mode Locking |

Link | NOC:Introduction to LASER | Lecture 32 - Methods of Mode Locking |

Link | NOC:Introduction to LASER | Lecture 33 - Some Common Lasers |

Link | NOC:Introduction to LASER | Lecture 34 - Fiber Lasers |

Link | NOC:Introduction to LASER | Lecture 35 - Semiconductor Lasers |

Link | NOC:Introduction to LASER | Lecture 36 - Lasers and Laser Amplifiers in Optical Fiber Communication |

Link | NOC:Introduction to LASER | Lecture 37 - Lasers in Nonlinear Optics |

Link | NOC:Introduction to LASER | Lecture 38 - Laser Safety |

Link | NOC:Nuclear and Particle Physics | Lecture 1 - Introduction |

Link | NOC:Nuclear and Particle Physics | Lecture 2 - Nuclear Properties |

Link | NOC:Nuclear and Particle Physics | Lecture 3 - Properties of Nuclear Force |

Link | NOC:Nuclear and Particle Physics | Lecture 4 - Deuteron |

Link | NOC:Nuclear and Particle Physics | Lecture 5 - Nucleons Scattering |

Link | NOC:Nuclear and Particle Physics | Lecture 6 - Nuclear Models - I |

Link | NOC:Nuclear and Particle Physics | Lecture 7 - Nuclear Models - II |

Link | NOC:Nuclear and Particle Physics | Lecture 8 - Radioactive Decay - General Properties |

Link | NOC:Nuclear and Particle Physics | Lecture 9 - Nuclear Alpha Decay |

Link | NOC:Nuclear and Particle Physics | Lecture 10 - Nuclear Beta decay |

Link | NOC:Nuclear and Particle Physics | Lecture 11 - Beta-decay details |

Link | NOC:Nuclear and Particle Physics | Lecture 12 - Gamma decay |

Link | NOC:Nuclear and Particle Physics | Lecture 13 - Nuclear Scattering - Preliminaries |

Link | NOC:Nuclear and Particle Physics | Lecture 14 - Types of Reactions |

Link | NOC:Nuclear and Particle Physics | Lecture 15 - Particle Accelerators - I |

Link | NOC:Nuclear and Particle Physics | Lecture 16 - Particle Accelerators - II |

Link | NOC:Nuclear and Particle Physics | Lecture 17 - Detectors |

Link | NOC:Nuclear and Particle Physics | Lecture 18 - Elementary Particles - Introduction and Overview |

Link | NOC:Nuclear and Particle Physics | Lecture 19 - Quark Model - I |

Link | NOC:Nuclear and Particle Physics | Lecture 20 - Quark Model - II |

Link | NOC:Nuclear and Particle Physics | Lecture 21 - Quark Model - III |

Link | NOC:Nuclear and Particle Physics | Lecture 22 - Structure of the Hadron - Nucleus |

Link | NOC:Nuclear and Particle Physics | Lecture 23 - Structure of the Hadron - Proton |

Link | NOC:Nuclear and Particle Physics | Lecture 24 - Deep Inelastic Scattering |

Link | NOC:Nuclear and Particle Physics | Lecture 25 - Relativistic Kinematics |

Link | NOC:Nuclear and Particle Physics | Lecture 26 - Klein-Gordon Equation |

Link | NOC:Nuclear and Particle Physics | Lecture 27 - Interaction of charged scalar with EM field |

Link | NOC:Nuclear and Particle Physics | Lecture 28 - Relativistic Electrodynamics |

Link | NOC:Nuclear and Particle Physics | Lecture 29 - Quantum Electrodynamics |

Link | NOC:Nuclear and Particle Physics | Lecture 30 - Interaction between charged scalars |

Link | NOC:Nuclear and Particle Physics | Lecture 31 - Dirac Equation - 1 |

Link | NOC:Nuclear and Particle Physics | Lecture 32 - Dirac Equation - 2 |

Link | NOC:Nuclear and Particle Physics | Lecture 33 - Interacting charged fermions - 1 |

Link | NOC:Nuclear and Particle Physics | Lecture 34 - Interacting charged fermions - 2 |

Link | NOC:Nuclear and Particle Physics | Lecture 35 - Interacting charged fermions - 3 |

Link | NOC:Nuclear and Particle Physics | Lecture 36 - Scattering Cross Section Revisited - 1 |

Link | NOC:Nuclear and Particle Physics | Lecture 37 - Scattering Cross Section Revisited - 2 |

Link | NOC:Nuclear and Particle Physics | Lecture 38 - Weak Interactions - 1 |

Link | NOC:Nuclear and Particle Physics | Lecture 39 - Weak Interactions - 2 |

Link | NOC:Nuclear and Particle Physics | Lecture 40 - Lagrangian Framework |

Link | NOC:Nuclear and Particle Physics | Lecture 41 - Gauge Symmetry - U(1) |

Link | NOC:Nuclear and Particle Physics | Lecture 42 - Electroweak Theory - 1 |

Link | NOC:Nuclear and Particle Physics | Lecture 43 - Electroweak Theory - 2 |

Link | NOC:Nuclear and Particle Physics | Lecture 44 - SSB and the Higgs Mechanism |

Link | NOC:Advanced Condensed Matter Physics | Lecture 1 - Propagators - I |

Link | NOC:Advanced Condensed Matter Physics | Lecture 2 - Propagators - II |

Link | NOC:Advanced Condensed Matter Physics | Lecture 3 - Second quantization - I |

Link | NOC:Advanced Condensed Matter Physics | Lecture 4 - Second quantization - II |

Link | NOC:Advanced Condensed Matter Physics | Lecture 5 - Second quantized Hamiltonian |

Link | NOC:Advanced Condensed Matter Physics | Lecture 6 - Tight Binding Hamiltonian, Hubbard model |

Link | NOC:Advanced Condensed Matter Physics | Lecture 7 - Magnetism |

Link | NOC:Advanced Condensed Matter Physics | Lecture 8 - Singlet and Triplet State: Magnetic Hamiltonian |

Link | NOC:Advanced Condensed Matter Physics | Lecture 9 - Antiferromagnetism in Hubbard model |

Link | NOC:Advanced Condensed Matter Physics | Lecture 10 - Green's function and representations in quantum mechanics |

Link | NOC:Advanced Condensed Matter Physics | Lecture 11 - S matrix and free electron Green's function |

Link | NOC:Advanced Condensed Matter Physics | Lecture 12 - Wick's theorem and normal ordering |

Link | NOC:Advanced Condensed Matter Physics | Lecture 13 - Green's function and Feynman diagrams |

Link | NOC:Advanced Condensed Matter Physics | Lecture 14 - Feynman diagram |

Link | NOC:Advanced Condensed Matter Physics | Lecture 15 - phonon Green' function and Hartree Fock approaximation |

Link | NOC:Advanced Condensed Matter Physics | Lecture 16 - Finite temperature Green's function and Matsubara frequencies |

Link | NOC:Advanced Condensed Matter Physics | Lecture 17 - Dyson's equation and disorder in electronic systems |

Link | NOC:Advanced Condensed Matter Physics | Lecture 18 - Introduction to electrodynamics, Meissner effect |

Link | NOC:Advanced Condensed Matter Physics | Lecture 19 - London penetration depth, Type I and II superconductors |

Link | NOC:Advanced Condensed Matter Physics | Lecture 20 - Cooper's problem, BCS gap equation |

Link | NOC:Advanced Condensed Matter Physics | Lecture 21 - BCS theory, Transition temperature |

Link | NOC:Advanced Condensed Matter Physics | Lecture 22 - Ginzburg Landau Theory, Coherence length and penetration depth |

Link | NOC:Advanced Condensed Matter Physics | Lecture 23 - Quantum Hall Effect |

Link | NOC:Advanced Condensed Matter Physics | Lecture 24 - Spin Hall effect, 2D topological insulator |

Link | NOC:Advanced Condensed Matter Physics | Lecture 25 - Bose-Einstein condensation |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 1 - Introduction, Postulates of Quantum Mechanics |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 2 - Stern Gerlach Experiment, Spin Quantization, Young's Double Slit Experiment |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 3 - The Mathematical Formalism of Quantum Mechanics, Uncertainty Principle |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 4 - The Density Matrix Formalism, Expectation values of Operators |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 5 - Qunatum Harmonic Oscillator, Creation and annihilation Operators |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 6 - Coherent States and their Properties |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 7 - Applications of Coherent States, squeezed states |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 8 - Symmetries and Conservational Principles in Quantum Mechanics |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 9 - Rotation Operator and Invariance of Angular Momentum, Parity |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 10 - Spherically Symmetric System and Applications to quantum dots |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 11 - Spin Angular Momentum, Addition of Angular Momentum, Clebsch gordan coefficients |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 12 - Magnetic Hamiltonian, Heisenberg Model |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 13 - Nuclear Magnetic Resonance (NMR) |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 14 - Applications of NMR, time evolution of Magnetic Moments |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 15 - Introduction to Quantum Computing |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 16 - Qubits,EPR Paradox |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 17 - Quantum Entanglement (QE) |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 18 - Teleportation, Quantum Teleportation for one spin |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 19 - Entangled state for two spins |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 20 - Quantum Gates, Walsh Hadamard Transportation, No cloning theorem |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 21 - Perturbation Theory |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 22 - Stark Effect: First order in ground state |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 23 - Stark Effect: Second order in ground state |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 24 - Variational method, Variation of constants, Upper bound on ground state energy |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 25 - Application of Variational method,Hydrogen,Helium atom,Comparison with perturbation theory |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 26 - WKB Approximation, Bohr Sommerfeld quantization condition |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 27 - Summary of Approximation methods, Time dependent Perturbation Theory |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 28 - Time dependent Perturbation Theory, Fermi's Golden rule, Einstein's A and B coefficients |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 29 - Scattering Theory |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 30 - Linear Response Theory: Derivation of Kubo formula |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 31 - Quantum Dynamics: Two level system |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 32 - Examples |

Link | NOC:Advanced Quantum Mechanics with Applications | Lecture 33 - Interaction of Radiation with matter, Landau levels |

Link | NOC:A Brief Course on Superconductivity | Lecture 1 - Historical introduction of superconductivity |

Link | NOC:A Brief Course on Superconductivity | Lecture 2 - Meissner effect, Electrodynamics of Superconductors, coherence length and penetration depth |

Link | NOC:A Brief Course on Superconductivity | Lecture 3 - Electron Pairing, Basics of BCS Theory |

Link | NOC:A Brief Course on Superconductivity | Lecture 4 - BCS ground state, variational calculation, expression for Tc |

Link | NOC:A Brief Course on Superconductivity | Lecture 5 - Order parameter, Free energy functional, Ginzburg-Landau (GL) Theory, GL equations |

Link | NOC:A Brief Course on Superconductivity | Lecture 6 - London Equations, Flux quantization |

Link | NOC:A Brief Course on Superconductivity | Lecture 7 - Thermodynamic properties of superconductors, specific heat |

Link | NOC:A Brief Course on Superconductivity | Lecture 8 - Experimental determination of Superconducting properties |

Link | NOC:A Brief Course on Superconductivity | Lecture 9 - Unconventional Superconductivity, Uemura plot, High-Tc superconductivity, d-wave pairing, ARPES |

Link | NOC:A Brief Course on Superconductivity | Lecture 10 - Singlet and triplet states of two s =1/2, magnetic Hamiltonian |

Link | NOC:A Brief Course on Superconductivity | Lecture 11 - t-J model, discrete symmetry groups, example square lattice |

Link | NOC:A Brief Course on Superconductivity | Lecture 12 - Cuprate Superconductors, electron vs hole doped superconductors |

Link | NOC:A Brief Course on Superconductivity | Lecture 13 - Non-Fermi Liquid Theory, Adiabatic continuity |

Link | NOC:A Brief Course on Superconductivity | Lecture 14 - Quasiparticle lifetime, breakdown of Fermi Liquid Theory in cuprate superconductors |

Link | NOC:A Brief Course on Superconductivity | Lecture 15 - Josephson junctions, Josephson equations |

Link | NOC:A Brief Course on Superconductivity | Lecture 16 - AC Josephson effect, Superconducting Quantum Interference devices (SQUID) and its Applications |

Link | NOC:A Brief Course on Superconductivity | Lecture 17 - RF SQUID, DC SQUID, Applications of Magnetoencephalography (MEG) |

Link | NOC:Introduction to Statistical Mechanics | Lecture 1 - Prerequisites and Introduction |

Link | NOC:Introduction to Statistical Mechanics | Lecture 2 - Combinatorics and Entropy |

Link | NOC:Introduction to Statistical Mechanics | Lecture 3 - Method of steepest descent |

Link | NOC:Introduction to Statistical Mechanics | Lecture 4 - Bose and Fermi gases |

Link | NOC:Introduction to Statistical Mechanics | Lecture 5 - Maxwell Boltzmann distribution |

Link | NOC:Introduction to Statistical Mechanics | Lecture 6 - Thermodynamic potentials |

Link | NOC:Introduction to Statistical Mechanics | Lecture 7 - Legendre transformation |

Link | NOC:Introduction to Statistical Mechanics | Lecture 8 - Specific heats of quantum gases |

Link | NOC:Introduction to Statistical Mechanics | Lecture 9 - Low and high temperature equations of state |

Link | NOC:Introduction to Statistical Mechanics | Lecture 10 - Chandrasekhar Limit |

Link | NOC:Introduction to Statistical Mechanics | Lecture 11 - Radiation thermodynamics |

Link | NOC:Introduction to Statistical Mechanics | Lecture 12 - Thermodyamics of black holes |

Link | NOC:Introduction to Statistical Mechanics | Lecture 13 - Van der Waals fluid |

Link | NOC:Introduction to Statistical Mechanics | Lecture 14 - Landau Diamagnetism |

Link | NOC:Introduction to Statistical Mechanics | Lecture 15 - Relations between ensembles and Pauli paramagnetism |

Link | NOC:Introduction to Statistical Mechanics | Lecture 16 - Ferromagnetism |

Link | NOC:Introduction to Statistical Mechanics | Lecture 17 - Correlations and Mean Field |

Link | NOC:Introduction to Statistical Mechanics | Lecture 18 - Theories of Specific Heat of Solids |

Link | NOC:Introduction to Statistical Mechanics | Lecture 19 - Tutorial - I |

Link | NOC:Introduction to Statistical Mechanics | Lecture 20 - Tutorial - II |

Link | NOC:Introduction to Statistical Mechanics | Lecture 21 - Tutorial - III |

Link | NOC:Introduction to Statistical Mechanics | Lecture 22 - Tutorial - IV |

Link | NOC:Introduction to Statistical Mechanics | Lecture 23 - Tutorial - V |

Link | NOC:Introduction to Statistical Mechanics | Lecture 24 - RG method Ising model |

Link | NOC:Introduction to Statistical Mechanics | Lecture 25 - Introduction to Second Quantisation: Harmonic Oscillator |

Link | NOC:Introduction to Statistical Mechanics | Lecture 26 - Quantum Theory of EM Field - I |

Link | NOC:Introduction to Statistical Mechanics | Lecture 27 - Quantum Theory of EM Field - II |

Link | NOC:Introduction to Statistical Mechanics | Lecture 28 - Creation and Annihilation in Fock Space - I |

Link | NOC:Introduction to Statistical Mechanics | Lecture 29 - Creation and Annihilation in Fock Space - II |

Link | NOC:Introduction to Statistical Mechanics | Lecture 30 - Green functions in many particle systems |

Link | NOC:Introduction to Statistical Mechanics | Lecture 31 - Second quantised hamiltonians |

Link | NOC:Introduction to Statistical Mechanics | Lecture 32 - Current algebra |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 1 - Error analysis and estimates, significant digits, convergence |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 2 - Roots of Non-linear equations, Bisection method |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 3 - Newton Raphson method, Secant method |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 4 - Newton Raphson Method |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 5 - Newton Raphson Method (example), Curve fitting and interpolation of data |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 6 - Newton’s interpolation formula, statistical interpolation of data |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 7 - Linear and Polynomial regression |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 8 - Numerical differentiation |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 9 - Numerical differentiation, Error analysis |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 10 - Numerical integration, Trapezoidal rule |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 11 - Simpson’s 1/3rd rule |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 12 - Simpson’s 1/3rd rule, Gaussian integration |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 13 - Ordinary Differential equations |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 14 - Solution of differential equation, Taylor series and Euler method |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 15 - Heun’s method |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 16 - Runge Kutta method |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 17 - Examples of differential equation: Heat conduction equation |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 18 - Introduction to Monte Carlo technique |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 19 - Details of the Monte Carlo method |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 20 - Importance sampling |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 21 - Applications: Ising model |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 22 - Introduction to Molecular Dynamics |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 23 - Verlet algorithm |

Link | NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers | Lecture 24 - Applications of Molecular dynamics |

Link | NOC:Theoretical Mechanics | Lecture 1 - Introduction, Constraints |

Link | NOC:Theoretical Mechanics | Lecture 2 - Generalized Coordinates, Configuration Space |

Link | NOC:Theoretical Mechanics | Lecture 3 - Principle of Virtual Work |

Link | NOC:Theoretical Mechanics | Lecture 4 - D'Alembert's Principle |

Link | NOC:Theoretical Mechanics | Lecture 5 - Lagrange's Equations |

Link | NOC:Theoretical Mechanics | Lecture 6 - Hamilton's Principle |

Link | NOC:Theoretical Mechanics | Lecture 7 - Variational Calculus, Lagrange's Equations |

Link | NOC:Theoretical Mechanics | Lecture 8 - Conservation Laws and Symmetries |

Link | NOC:Theoretical Mechanics | Lecture 9 - Velocity Dependent Potentials, Non-holonomic Constraints |

Link | NOC:Theoretical Mechanics | Lecture 10 - An Example: Hoop on a ramp |

Link | NOC:Theoretical Mechanics | Lecture 11 - Phase Space |

Link | NOC:Theoretical Mechanics | Lecture 12 - Legendre Transforms |

Link | NOC:Theoretical Mechanics | Lecture 13 - Hamilton's Equations |

Link | NOC:Theoretical Mechanics | Lecture 14 - Conservation Laws, Routh's procedure |

Link | NOC:Theoretical Mechanics | Lecture 15 - An Example:Bead on Spinning Ring |

Link | NOC:Theoretical Mechanics | Lecture 16 - Canonical Transformations |

Link | NOC:Theoretical Mechanics | Lecture 17 - Symplectic Condition |

Link | NOC:Theoretical Mechanics | Lecture 18 - Canonical Invariants, Harmonic Oscillator |

Link | NOC:Theoretical Mechanics | Lecture 19 - Poisson Bracket Formulation |

Link | NOC:Theoretical Mechanics | Lecture 20 - Infinitesimal Canonical Transformations |

Link | NOC:Theoretical Mechanics | Lecture 21 - Symmetry Groups of Mechanical Systems |

Link | NOC:Theoretical Mechanics | Lecture 22 - Hamilton Jacobi Theory |

Link | NOC:Theoretical Mechanics | Lecture 23 - Action-Angle Variables |

Link | NOC:Theoretical Mechanics | Lecture 24 - Separation of Variables and Examples |

Link | NOC:Theoretical Mechanics | Lecture 25 - Continuous Systems and Fields |

Link | NOC:Theoretical Mechanics | Lecture 26 - The Stress-Energy Tensor |

Link | NOC:Theoretical Mechanics | Lecture 27 - Hamiltonian Formulation |

Link | NOC:Solar Energy Engineering and Technology | Lecture 1 - Energy Scenarios |

Link | NOC:Solar Energy Engineering and Technology | Lecture 2 - Overview of solar energy conversion devices and applications |

Link | NOC:Solar Energy Engineering and Technology | Lecture 3 - Physics of propagation of solar radiation from the sun to the earth |

Link | NOC:Solar Energy Engineering and Technology | Lecture 4 - Solar radiation and sunshine measuring instruments |

Link | NOC:Solar Energy Engineering and Technology | Lecture 5 - Geometry, angles and measurement - I |

Link | NOC:Solar Energy Engineering and Technology | Lecture 6 - Geometry, angles and measurement - II |

Link | NOC:Solar Energy Engineering and Technology | Lecture 7 - Estimation of radiation under different climatic conditions |

Link | NOC:Solar Energy Engineering and Technology | Lecture 8 - Estimation of radiation in horizontal and inclined surface |

Link | NOC:Solar Energy Engineering and Technology | Lecture 9 - Fundamentals of PV cells |

Link | NOC:Solar Energy Engineering and Technology | Lecture 10 - Semiconductor physics |

Link | NOC:Solar Energy Engineering and Technology | Lecture 11 - Performance characterization of PV cells |

Link | NOC:Solar Energy Engineering and Technology | Lecture 12 - Photovoltaic modules and arrays |

Link | NOC:Solar Energy Engineering and Technology | Lecture 13 - Components of standalone PV system |

Link | NOC:Solar Energy Engineering and Technology | Lecture 14 - Design of standalone PV system |

Link | NOC:Solar Energy Engineering and Technology | Lecture 15 - Functioning and components of PV system |

Link | NOC:Solar Energy Engineering and Technology | Lecture 16 - Design of a grid connected PV system |

Link | NOC:Solar Energy Engineering and Technology | Lecture 17 - Performance analysis of a grid connected PV system |

Link | NOC:Solar Energy Engineering and Technology | Lecture 18 - Basics of thermal collectors |

Link | NOC:Solar Energy Engineering and Technology | Lecture 19 - Basics of heat transfer |

Link | NOC:Solar Energy Engineering and Technology | Lecture 20 - Solar collector losses and loss estimation |

Link | NOC:Solar Energy Engineering and Technology | Lecture 21 - Analysis of flat plate collector |

Link | NOC:Solar Energy Engineering and Technology | Lecture 22 - Influence of various parameters on the performance of LFPC |

Link | NOC:Solar Energy Engineering and Technology | Lecture 23 - Testing and application of LFPC |

Link | NOC:Solar Energy Engineering and Technology | Lecture 24 - Basics and performance analysis of solar air heaters |

Link | NOC:Solar Energy Engineering and Technology | Lecture 25 - Testing and application of solar air heaters |

Link | NOC:Solar Energy Engineering and Technology | Lecture 26 - Fundamentals of concentrating collectors |

Link | NOC:Solar Energy Engineering and Technology | Lecture 27 - Concentrating collector technologies and working principle |

Link | NOC:Solar Energy Engineering and Technology | Lecture 28 - Tutorial: Concentrating Collector |

Link | NOC:Solar Energy Engineering and Technology | Lecture 29 - Sensible heat, latent heat and thermochemical energy storage |

Link | NOC:Solar Energy Engineering and Technology | Lecture 30 - Solar pond |

Link | NOC:Solar Energy Engineering and Technology | Lecture 31 - Tutorial: Solar pond power plant design |

Link | NOC:Solar Energy Engineering and Technology | Lecture 32 - Emerging technologies |

Link | NOC:Solar Energy Engineering and Technology | Lecture 33 - Solar energy applications in cooking, desalination, refrigeration and electricity generation |

Link | NOC:Solar Energy Engineering and Technology | Lecture 34 - Tutorial: COP of VARS and performance analysis of PVT collector |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 1 - Introduction and Basic Quantum Mechanics |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 2 - Problem Solving Session - 1 |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 3 - Two-level System - I |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 4 - Bloch Sphere: Supplementary Lecture - I |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 5 - Two-level Systems - II |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 6 - Two-level Systems - III |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 7 - Dressed States;Introduction to Density Matrix |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 8 - Problem Solving Session - 2 |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 9 - Density-matrix formalism |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 10 - Quantum Harmonic Oscillators |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 11 - Quantization of Electromagnetic Radiation |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 12 - Quantization of Standing EM Waves;Quantum States of Radiation Fields - I |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 13 - Problem Solving Session - 3 |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 14 - Quantum States of Radiation Fields-II: Squeezed States |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 15 - Problem Solving Session - 4 |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 16 - Introduction and Basics of Superconductivity |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 17 - Cooper Pair Box as TLS;Introduction to Transmission Line |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 18 - Quantization of Transmission Line - I |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 19 - Quantization of Transmission Line - II |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 20 - The Jaynes Cummings Model - I |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 21 - Problem Solving Session - 5 |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 22 - The Jaynes Cummings Model - II |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 23 - Josephson Junctions - I |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 24 - Josephson Junctions - II |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 25 - Problem Solving Session - 6 |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 26 - Transmon;Introduction to Dissipation in Quantum Systems |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 27 - Quantum Master Equation |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 28 - Pure dephasing and Dissipative Bloch Equations |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 29 - Derivation of Fermi-Golden Rule |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 30 - Introduction to Cavity Optomechanics;Fabry-Perot Cavity |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 31 - Cavity Optomechanics: Basic Physics - I |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 32 - Problem Solving Session - 7 |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 33 - Cavity Optomechanics: Basic Physics - II |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 34 - Classical Regime - I |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 35 - Classical Regime - II; Classical Langevin Equation |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 36 - Problem Solving Session - 8 |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 37 - Langevin Equation |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 38 - Quantum Langevin Noise |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 39 - Problem Solving Session - 9 |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 40 - Input-Output Relation |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 41 - Cavity Quantum Optomechanics |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 42 - Linearized Cavity Optomechanics; Ground state cooling |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 43 - Normal-Mode Splitting |

Link | NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems | Lecture 44 - Quantum Optomechanics: Squeezed States |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 1 - Introduction |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 2 - Lagrangian Formalism |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 3 - Hamiltonian Mechanics |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 4 - Flows and Symmetries |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 5 - Examples of Continuum Systems |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 6 - Symmetries and Noether's Theorem |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 7 - Dynamical Symmetries |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 8 - Symmetries in Field Theories |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 9 - The Relativistic Electromagnetic Field |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 10 - Stress-Energy (Energy-Momentum) Tensor |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 11 - Green's Theorem and Green's Functions |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 12 - Diffraction Theory |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 13 - Introduction to Elasticity Theory |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 14 - Solution of the rubber band problem |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 15 - The Stress Function Method |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 16 - Strain Energy |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 17 - The Euler Equation |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 18 - Bernoulli's Principle |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 19 - Matter, Momentum and Energy Transport |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 20 - Stokes' Drag - I |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 21 - Stokes' Drag - II |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 22 - Towards Quantum Fields |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 23 - Right and Left Movers |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 24 - Functional Integration - I |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 25 - Functional Integration - II |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 26 - Perturbation theory |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 27 - Quantum Mechanics using Lagrangians |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 28 - Path Integrals - Formalism |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 29 - Path Integrals - Free particles |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 30 - Path Integrals - Harmonic oscillator |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 31 - Creation and annihilation operators - Excitations |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 32 - Creation and annihilation operators - Photons |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 33 - Creation and annihilation operators - Many-body physics |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 34 - Particle and Hole Green functions |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 35 - Current Algebra |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 36 - Tight Binding Models - I |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 37 - Tight Binding Models - II |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 38 - Order Parameters |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 39 - Schrieffer Wolff Transformation |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 40 - Matsubara Green functions - I |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 41 - Matsubara Green functions - II |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 42 - Self Energy and Spectral Functions |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 43 - S-Matrix Perturbation Theory |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 44 - Keldysh Contour |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 45 - Bosonic Coherent States |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 46 - Fermionic Coherent States |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 47 - Nonlocal particle hole operators - Bosons |

Link | NOC:Dynamics of Classical and Quantum Fields | Lecture 48 - Nonlocal particle hole operators - Fermions |

Link | NOC:Quantum Hall Effects | Lecture 1 - Conductance in Nanostructures |

Link | NOC:Quantum Hall Effects | Lecture 2 - S-Matrix, Reflection and Transmission |

Link | NOC:Quantum Hall Effects | Lecture 3 - Introduction to Classical and Quantum Hall Effect |

Link | NOC:Quantum Hall Effects | Lecture 4 - Quantum Hall Effect |

Link | NOC:Quantum Hall Effects | Lecture 5 - Landau Levels |

Link | NOC:Quantum Hall Effects | Lecture 6 - Degenracy of Landau levels |

Link | NOC:Quantum Hall Effects | Lecture 7 - Shubnikov de Haas Oscillations |

Link | NOC:Quantum Hall Effects | Lecture 8 - Kubo Formula |

Link | NOC:Quantum Hall Effects | Lecture 9 - Symmetric gauge |

Link | NOC:Quantum Hall Effects | Lecture 10 - Tight binding model, Hofstadter Butterfly |

Link | NOC:Quantum Hall Effects | Lecture 11 - Topological Invariant, Chern number |

Link | NOC:Quantum Hall Effects | Lecture 12 - Electronic structure of Graphene |

Link | NOC:Quantum Hall Effects | Lecture 13 - Low energy Dispersion |

Link | NOC:Quantum Hall Effects | Lecture 14 - Dirac Hamiltonian, Hofstadter Butterfly |

Link | NOC:Quantum Hall Effects | Lecture 15 - QHE, Landau Levels |

Link | NOC:Quantum Hall Effects | Lecture 16 - Properties of Spin angular Momentum, Spin Hall Effect |

Link | NOC:Quantum Hall Effects | Lecture 17 - Quantum spin Hall insulator, Kene-Mele Model |

Link | NOC:Quantum Hall Effects | Lecture 18 - Kene-Mele Model |

Link | NOC:Quantum Hall Effects | Lecture 19 - Landau gauge in fractional quantum Hall effect |

Link | NOC:Quantum Hall Effects | Lecture 20 - Laughlin States, Properties |

Link | NOC:Quantum Hall Effects | Lecture 21 - Plasma analogy |

Link | NOC:Quantum Hall Effects | Lecture 22 - Composite Fermions, Hierarchy |

Link | NOC:Quantum Entanglement: Fundamentals, Measures and Applications | Lecture 1 - Introduction |

Link | NOC:Quantum Entanglement: Fundamentals, Measures and Applications | Lecture 2 - Review of Quantum Mechanics |

Link | NOC:Quantum Entanglement: Fundamentals, Measures and Applications | Lecture 3 - Mathematical Tools: Density Matrix - Part 1 |

Link | NOC:Quantum Entanglement: Fundamentals, Measures and Applications | Lecture 4 - Mathematical Tools: Density Matrix - Part 2 |

Link | NOC:Quantum Entanglement: Fundamentals, Measures and Applications | Lecture 5 - Problem solving session - 1 |

Link | NOC:Quantum Entanglement: Fundamentals, Measures and Applications | Lecture 6 - Basic Technical Introduction to Quantum Entanglement |

Link | NOC:Quantum Entanglement: Fundamentals, Measures and Applications | Lecture 7 - Schmidt Decomposition Method |

Link | NOC:Quantum Entanglement: Fundamentals, Measures and Applications | Lecture 8 - The EPR Paradox and Bell Inequalities |

Link | NOC:Quantum Entanglement: Fundamentals, Measures and Applications | Lecture 9 - Problem solving session - 2 |

Link | NOC:Quantum Entanglement: Fundamentals, Measures and Applications | Lecture 10 - Quantum Measurements |

Link | NOC:Quantum Entanglement: Fundamentals, Measures and Applications | Lecture 11 - Properties of Quantum Entanglement |

Link | NOC:Quantum Entanglement: Fundamentals, Measures and Applications | Lecture 12 - Quantum Entanglement Measures - I |

Link | NOC:Quantum Entanglement: Fundamentals, Measures and Applications | Lecture 13 - Problem solving session - 3 |

Link | NOC:Quantum Entanglement: Fundamentals, Measures and Applications | Lecture 14 - Quantum Entanglement Measures - II |

Link | NOC:Quantum Entanglement: Fundamentals, Measures and Applications | Lecture 15 - Applications of Quantum Entanglement - I |

Link | NOC:Quantum Entanglement: Fundamentals, Measures and Applications | Lecture 16 - Applications of Quantum Entanglement - II |

Link | NOC:Quantum Entanglement: Fundamentals, Measures and Applications | Lecture 17 - Problem solving session - 4 |

Link | NOC:Topology and Condensed Matter Physics | Lecture 1 - Introduction to Topology |

Link | NOC:Topology and Condensed Matter Physics | Lecture 2 - Topological invariant, Berry phase |

Link | NOC:Topology and Condensed Matter Physics | Lecture 3 - Second quantization |

Link | NOC:Topology and Condensed Matter Physics | Lecture 4 - Ten Fold Classification |

Link | NOC:Topology and Condensed Matter Physics | Lecture 5 - Symmetries and SSH - model |

Link | NOC:Topology and Condensed Matter Physics | Lecture 6 - SSH - model, Introduction to superconductivity |

Link | NOC:Topology and Condensed Matter Physics | Lecture 7 - Kitaev model |

Link | NOC:Topology and Condensed Matter Physics | Lecture 8 - Introduction to Classical and Quantum Hall effect |

Link | NOC:Topology and Condensed Matter Physics | Lecture 9 - Quantum Hall Effect |

Link | NOC:Topology and Condensed Matter Physics | Lecture 10 - Landau Levels |

Link | NOC:Topology and Condensed Matter Physics | Lecture 11 - Properties of Landau Levels |

Link | NOC:Topology and Condensed Matter Physics | Lecture 12 - Edge modes of Landau levels, Incompressibility of Quantum Hall States |

Link | NOC:Topology and Condensed Matter Physics | Lecture 13 - Kubo formula |

Link | NOC:Topology and Condensed Matter Physics | Lecture 14 - Hall quantization and Topological invariant |

Link | NOC:Topology and Condensed Matter Physics | Lecture 15 - Electronic structure of Graphene |

Link | NOC:Topology and Condensed Matter Physics | Lecture 16 - Symmetries and QHE in Graphene |

Link | NOC:Topology and Condensed Matter Physics | Lecture 17 - Haldane model |

Link | NOC:Topology and Condensed Matter Physics | Lecture 18 - Anomalous quantum Hall effect in Haldane model |

Link | NOC:Topology and Condensed Matter Physics | Lecture 19 - Introduction of spin Hall effect |

Link | NOC:Topology and Condensed Matter Physics | Lecture 20 - Spin current, quantum spin Hall effect |

Link | NOC:Topology and Condensed Matter Physics | Lecture 21 - Quantum spin Hall insulator, Kane Mele model |

Link | NOC:Topology and Condensed Matter Physics | Lecture 22 - Kane Mele model with Rashba spin-orbit coupling, spin Hall conductivity |

Link | NOC:Topology and Condensed Matter Physics | Lecture 23 - Symmetric gauge in FQHE |

Link | NOC:Topology and Condensed Matter Physics | Lecture 24 - Laughlin States |

Link | NOC:Topology and Condensed Matter Physics | Lecture 25 - Plasma analogy |

Link | NOC:Topology and Condensed Matter Physics | Lecture 26 - Composite Fermions, Hierarchy picture |

Link | NOC:Topology and Condensed Matter Physics | Lecture 27 - Topological Consideration of FQHE |

Link | NOC:Topology and Condensed Matter Physics | Lecture 28 - 3D Topological Insulators |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 1 - Brief Overview of the course |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 2 - Nuclear Size |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 3 - Nuclear Size (Continued...) |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 4 - Nuclear Size (Continued...) |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 5 - Semi empirical Mass Formula |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 6 - Semi empirical Mass Formula (Continued...) |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 7 - Semi empirical Mass Formula (Continued...) |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 8 - Semi empirical Mass Formula (Continued...) |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 9 - Semi empirical Mass Formula (Continued...) |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 10 - How are Neutron stars bound |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 11 - Deuteron |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 12 - Deuteron (Continued...) |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 13 - Deuteron (Continued...) |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 14 - Scattering of nucleons |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 15 - Low energy n-p scattering |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 16 - Theories of nuclear forces |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 17 - Shell model |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 18 - Shell model (Continued...) |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 19 - Shell model (Continued...) |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 20 - Shell model (Continued...) |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 21 - Shell model (Continued...) |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 22 - Collective models |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 23 - Vibrational and Rotational levels |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 24 - Radioactivity, Alpha Decay |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 25 - Alpha decay (Continued...) |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 26 - Beta decay |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 27 - Beta decay (Continued...) |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 28 - Beta decay (Continued...) |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 29 - Gamma decay |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 30 - Nuclear Reactions |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 31 - Nuclear reaction (Continued...) |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 32 - Nuclear reaction (Continued...) |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 33 - Nuclear Fission basics |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 34 - Nuclear fission of uranium |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 35 - Nuclear Fission Reactor |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 36 - Nuclear Energy Programme of India |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 37 - Nuclear Fusion |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 38 - Nuclear fusion (Continued...) |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 39 - Thermonuclear fusion reactors |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 40 - Fusion reactions in Stars and stellar neutrinos |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 41 - Nucleosynthesis of elements in Stars |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 42 - Mossbauer Spectroscopy |

Link | Nuclear Physics: Fundamentals and Applications | Lecture 43 - RBS, PIXE, NAA, Summary |

Link | NOC:Introduction to Electromagnetism | Lecture 1 - Coloumb's Law |

Link | NOC:Introduction to Electromagnetism | Lecture 2 - Coloumb's Force due to several Point charges |

Link | NOC:Introduction to Electromagnetism | Lecture 3 - Force due to distribution of Charges |

Link | NOC:Introduction to Electromagnetism | Lecture 4 - What is an Electric Field? |

Link | NOC:Introduction to Electromagnetism | Lecture 5 - Electric Field due to a Charged Distribution |

Link | NOC:Introduction to Electromagnetism | Lecture 6 - Helmholtz's Theorem for Electric Field |

Link | NOC:Introduction to Electromagnetism | Lecture 7 - Divergence of a Field |

Link | NOC:Introduction to Electromagnetism | Lecture 8 - Divergence of Electric Field & Gauss's Law |

Link | NOC:Introduction to Electromagnetism | Lecture 9 - Curl Of a Field - I |

Link | NOC:Introduction to Electromagnetism | Lecture 10 - Curl of a Field - II & Stokes' Theorem |

Link | NOC:Introduction to Electromagnetism | Lecture 11 - Line surface area & volume elements in Cartesian & Cylindrical Coordinates |

Link | NOC:Introduction to Electromagnetism | Lecture 12 - Line surface area & volume elements in Spherical Polar Coordinates |

Link | NOC:Introduction to Electromagnetism | Lecture 13 - Examples of application of the divergence and stokes' theorems |

Link | NOC:Introduction to Electromagnetism | Lecture 14 - Electrostatic Potential |

Link | NOC:Introduction to Electromagnetism | Lecture 15 - Electric field as the gradient of electrostatic potential |

Link | NOC:Introduction to Electromagnetism | Lecture 16 - Laplace's and Poisson's equations for electrostatic potential |

Link | NOC:Introduction to Electromagnetism | Lecture 17 - Elecrostatic potential due to a charge distribution - I; a line charge of finite length |

Link | NOC:Introduction to Electromagnetism | Lecture 18 - Elecrostatic potential due to a charge distribution - II;a ring and a spherical shell of charge |

Link | NOC:Introduction to Electromagnetism | Lecture 19 - Uniqueness of the solution of Laplace's and Poisson's equations |

Link | NOC:Introduction to Electromagnetism | Lecture 20 - Method of images I: point charge in front of a grounded metallic plane - I |

Link | NOC:Introduction to Electromagnetism | Lecture 21 - Method of imagesII: point charge in front of a grounded metallic plane and grounded metal sphere |

Link | NOC:Introduction to Electromagnetism | Lecture 22 - Laplaces equations in some other physical phenomena |

Link | NOC:Introduction to Electromagnetism | Lecture 23 - Energy of a charge distribution - I |

Link | NOC:Introduction to Electromagnetism | Lecture 24 - Energy of a charge distribution - II An example |

Link | NOC:Introduction to Electromagnetism | Lecture 25 - Energy of a charge distribution - III Energy density in terms of electric field |

Link | NOC:Introduction to Electromagnetism | Lecture 26 - Electric field and potential in a conductor |

Link | NOC:Introduction to Electromagnetism | Lecture 27 - Reciprocity theorem for conductors - I |

Link | NOC:Introduction to Electromagnetism | Lecture 28 - Reciprocity theorem for conductors - II |

Link | NOC:Introduction to Electromagnetism | Lecture 29 - Electric polarization and bound charges - I |

Link | NOC:Introduction to Electromagnetism | Lecture 30 - Electric polarization and bound charges - II |

Link | NOC:Introduction to Electromagnetism | Lecture 31 - Electric Displacement |

Link | NOC:Introduction to Electromagnetism | Lecture 32 - Elecrostatics in presence of Dielectric Materials - I |

Link | NOC:Introduction to Electromagnetism | Lecture 33 - Elecrostatics in presence of Dielectric Materials - II |

Link | NOC:Introduction to Electromagnetism | Lecture 34 - Introduction to Magnetostatics; The BiO-Savart law |

Link | NOC:Introduction to Electromagnetism | Lecture 35 - Divergence and curl of Magnetic Field |

Link | NOC:Introduction to Electromagnetism | Lecture 36 - Amperes law for Magnetic Fields |

Link | NOC:Introduction to Electromagnetism | Lecture 37 - Vector Potential for Magnetic Fields |

Link | NOC:Introduction to Electromagnetism | Lecture 38 - Calculation of Vector Potential for a given magnetic field |

Link | NOC:Introduction to Electromagnetism | Lecture 39 - Equation for the Vector Potentialin terms of current density |

Link | NOC:Introduction to Electromagnetism | Lecture 40 - Vector potential from Current Densities - I |

Link | NOC:Introduction to Electromagnetism | Lecture 41 - Vector potential from Current Densities - II |

Link | NOC:Introduction to Electromagnetism | Lecture 42 - Magnetic Materials - I |

Link | NOC:Introduction to Electromagnetism | Lecture 43 - Magnetic Materials - II Bound Current Densities |

Link | NOC:Introduction to Electromagnetism | Lecture 44 - The Auxiliary Field - H |

Link | NOC:Introduction to Electromagnetism | Lecture 45 - Solving for Magnetic Field of a magnet - I |

Link | NOC:Introduction to Electromagnetism | Lecture 46 - Solving for Magnetic Field of a magnet in presence of Magnetic Materials |

Link | NOC:Introduction to Electromagnetism | Lecture 47 - Faradays Law |

Link | NOC:Introduction to Electromagnetism | Lecture 48 - Induced Electric field due to changing Magnetic Field |

Link | NOC:Introduction to Electromagnetism | Lecture 49 - Demonstrations on faradays law, Lenzs law and Nonconservative nature of Induced electric field |

Link | NOC:Introduction to Electromagnetism | Lecture 50 - Energy stord in a magnetic Field-I |

Link | NOC:Introduction to Electromagnetism | Lecture 51 - Energy stord in a magnetic Field-I;solved examples |

Link | NOC:Introduction to Electromagnetism | Lecture 52 - Displacement Current |

Link | NOC:Introduction to Electromagnetism | Lecture 53 - Quasistatic approximation |

Link | NOC:Introduction to Electromagnetism | Lecture 54 - Energy transport by electromagnetic fields; The Poynting Vector |

Link | NOC:Introduction to Electromagnetism | Lecture 55 - The Poynting Vector;solved examples |

Link | NOC:Introduction to Electromagnetism | Lecture 56 - Linear Momentum and Angular Momentum carried by Electromagnetic Fields |

Link | NOC:Introduction to Electromagnetism | Lecture 57 |

Link | NOC:Introduction to Electromagnetism | Lecture 58 |

Link | NOC:Introduction to Electromagnetism | Lecture 59 |

Link | NOC:Introduction to Electromagnetism | Lecture 60 |

Link | NOC:Introduction to Electromagnetism | Lecture 61 |

Link | NOC:Introduction to Electromagnetism | Lecture 62 |

Link | NOC:Introduction to Electromagnetism | Lecture 63 |

Link | NOC:Introduction to Electromagnetism | Lecture 64 |

Link | NOC:Introduction to Electromagnetism | Lecture 65 |

Link | NOC:Introduction to Electromagnetism | Lecture 66 - Solution Assignment 1 - Problems 1 to 3 |

Link | NOC:Introduction to Electromagnetism | Lecture 67 - Solution Assignment 1 - Problems 4 to 9 |

Link | NOC:Introduction to Electromagnetism | Lecture 68 - Solution Assignment 2 - Problems 1 to 4 |

Link | NOC:Introduction to Electromagnetism | Lecture 69 - Solution Assignment 2 - Problems 5 to 11 |

Link | NOC:Introduction to Electromagnetism | Lecture 70 - Solution Assignment 3 - Problems 1 to 5 |

Link | NOC:Introduction to Electromagnetism | Lecture 71 - Solution Assignment 3 - Problems 6 to 10 |

Link | NOC:Introduction to Electromagnetism | Lecture 72 - Solution Assignment 4- Problems 1 to 5 |

Link | NOC:Introduction to Electromagnetism | Lecture 73 - Solution Assignment 4- Problems 6 to 10 |

Link | NOC:Introduction to Electromagnetism | Lecture 74 - Solution Assignment 5- Problems 6 to 11 |

Link | NOC:Introduction to Electromagnetism | Lecture 75 - Solution Assignment 5- Problems 1to 5 |

Link | NOC:Introduction to Electromagnetism | Lecture 76 - Solution Assignment 6- Problems 1 to 4 |

Link | NOC:Introduction to Electromagnetism | Lecture 77 - Solution Assignment 6- Problems 5 to 8 |

Link | NOC:Introduction to Electromagnetism | Lecture 78 - Solution Problem Set 7 |

Link | NOC:Engineering Mechanics | Lecture 1 - Introduction to Vectors |

Link | NOC:Engineering Mechanics | Lecture 2 - Addition and subtraction of vectors |

Link | NOC:Engineering Mechanics | Lecture 3 - Multiplying vectors |

Link | NOC:Engineering Mechanics | Lecture 4 - Introduction to vectors: solved examples - I |

Link | NOC:Engineering Mechanics | Lecture 5 - Transformation of vectors under rotation |

Link | NOC:Engineering Mechanics | Lecture 6 - Vector products and their geometric interpretation |

Link | NOC:Engineering Mechanics | Lecture 7 - Vector Product: Kronecker Delta and Levi-Civita symbols - I |

Link | NOC:Engineering Mechanics | Lecture 8 - Vector Product: Kronecker Delta and Levi-Civita symbols - II |

Link | NOC:Engineering Mechanics | Lecture 9 - Introduction to vectors: solved examples - II |

Link | NOC:Engineering Mechanics | Lecture 10 - Equilibrium of rigid bodies Forces and torques |

Link | NOC:Engineering Mechanics | Lecture 11 - Calculating torques and couple moments - I |

Link | NOC:Engineering Mechanics | Lecture 12 - Calculating torques and couple moments - II |

Link | NOC:Engineering Mechanics | Lecture 13 - Finding a force and a couple equivalent to an applied force |

Link | NOC:Engineering Mechanics | Lecture 14 - Different elements and associated forces and torques - I |

Link | NOC:Engineering Mechanics | Lecture 15 - Different elements and associated forces and torques - II |

Link | NOC:Engineering Mechanics | Lecture 16 - Solved examples; equilibrium of bodies I |

Link | NOC:Engineering Mechanics | Lecture 17 - Solved examples; equilibrium of bodies II |

Link | NOC:Engineering Mechanics | Lecture 18 - Forces in different geometric configuration |

Link | NOC:Engineering Mechanics | Lecture 19 - Plane trusses I - building a truss and condition for it to be statically determinate |

Link | NOC:Engineering Mechanics | Lecture 20 - Plane trusses II - calculating forces in a simple truss and different types of trusses |

Link | NOC:Engineering Mechanics | Lecture 21 - Plane trusses III - calculating forces in a simple truss by method of joints |

Link | NOC:Engineering Mechanics | Lecture 22 - Plane trusses IV- Solved examples for calculating forces in a simple truss by method of joints |

Link | NOC:Engineering Mechanics | Lecture 23 - Plane trusses V - Solved examples for calculating forces in a simple truss by method of joints |

Link | NOC:Engineering Mechanics | Lecture 24 - Plane trusses VI - method of sections for calculating forces in a simple truss |

Link | NOC:Engineering Mechanics | Lecture 25 - Dry friction I - introduction with an example |

Link | NOC:Engineering Mechanics | Lecture 26 - Dry friction II - a solved example |

Link | NOC:Engineering Mechanics | Lecture 27 - Dry friction III - Dry thrust bearing and belt friction with demonstration |

Link | NOC:Engineering Mechanics | Lecture 28 - Dry friction IV - Screw friction and rolling friction |

Link | NOC:Engineering Mechanics | Lecture 29 - Dry friction V - Solved examples |

Link | NOC:Engineering Mechanics | Lecture 30 - Properties of plane surfaces I - First moment and centroid of an area |

Link | NOC:Engineering Mechanics | Lecture 31 - Properties of plane surfaces II - Centroid of an area made by joining several plane surfaces |

Link | NOC:Engineering Mechanics | Lecture 32 - Properties of plane surfaces III - Centroid of a distributed force and its relation with centre of gravity |

Link | NOC:Engineering Mechanics | Lecture 33 - Properties of plane surfaces IV - solved examples of calculation of first moment and centroid of distributed forces |

Link | NOC:Engineering Mechanics | Lecture 34 - Properties of plane surfaces V- Second moment and product of an area and radius of gyration |

Link | NOC:Engineering Mechanics | Lecture 35 - Properties of plane surfaces VI - Parallel axis transfer theorem for second moment and product of an area |

Link | NOC:Engineering Mechanics | Lecture 36 - Properties of plane surfaces VII - transformation of second moment and product of an area under rotation of coordinate axes |

Link | NOC:Engineering Mechanics | Lecture 37 - Properties of plane surfaces VIII - second moment and product of an area, solved examples |

Link | NOC:Engineering Mechanics | Lecture 38 - Method of virtual work I - degrees of freedom, constraints and constraint forces |

Link | NOC:Engineering Mechanics | Lecture 39 - Method of virtual work II - virtual displacement, virtual work and equilibrium condition in terms of virtual work |

Link | NOC:Engineering Mechanics | Lecture 40 - Method of virtual work III - solved examples |

Link | NOC:Engineering Mechanics | Lecture 41 - Motion of a particle in a plane in terms of planar polar coordinates |

Link | NOC:Engineering Mechanics | Lecture 42 - Planar polar coordinates: solved examples |

Link | NOC:Engineering Mechanics | Lecture 43 - Description of motion in cylindrical and spherical coordinate systems |

Link | NOC:Engineering Mechanics | Lecture 44 - Using planar polar, cylindrical and spherical coordinate systems: solved examples |

Link | NOC:Engineering Mechanics | Lecture 45 - Motion with constraints, constraint forces and free body diagram |

Link | NOC:Engineering Mechanics | Lecture 46 - Motion with constraints solved examples |

Link | NOC:Engineering Mechanics | Lecture 47 - Motion with dry friction solved examples |

Link | NOC:Engineering Mechanics | Lecture 48 - Motion with drag solved examples |

Link | NOC:Engineering Mechanics | Lecture 49 - Equation of motion in terms of linear momentum and the principle of conservation of linear momentum |

Link | NOC:Engineering Mechanics | Lecture 50 - Linear momentum and centre of mass |

Link | NOC:Engineering Mechanics | Lecture 51 - Momentum transfer, impulse and force due to a stream of particles hitting an object |

Link | NOC:Engineering Mechanics | Lecture 52 - Momentum and the variable mass problem |

Link | NOC:Engineering Mechanics | Lecture 53 - Linear momentum solved examples |

Link | NOC:Engineering Mechanics | Lecture 54 - Work and energy I - work energy theorem; conservative and non-conservative force fields |

Link | NOC:Engineering Mechanics | Lecture 55 - Work and energy II - Definition of potential energy for conservative forces; total mechanical energy and the principle of conservation of energy |

Link | NOC:Engineering Mechanics | Lecture 56 - Work and energy III - Two solved examples using conservation principles |

Link | NOC:Engineering Mechanics | Lecture 57 - Work and energy IV Further discussion on potential energy |

Link | NOC:Engineering Mechanics | Lecture 58 - Work and energy V - Solved examples |

Link | NOC:Engineering Mechanics | Lecture 59 - Work and energy VI Applying conservation principles to solve a collision problem |

Link | NOC:Engineering Mechanics | Lecture 60 - Work and energy VII - Solved examples |

Link | NOC:Engineering Mechanics | Lecture 61 - Rigid body motion I - degrees of freedom and number of variables required to describe motion of a rigid body |

Link | NOC:Engineering Mechanics | Lecture 62 - Rigid body motion II - Equation of motion for a single particle in terms of angular momentum and torque; motion of a conical pendulum |

Link | NOC:Engineering Mechanics | Lecture 63 - Rigid body motion III - Conservation of angular momentum; angular momentum for a collection of particles |

Link | NOC:Engineering Mechanics | Lecture 64 - Rigid body motion IV - applying angular momentum conservation, a solved example |

Link | NOC:Engineering Mechanics | Lecture 65 - Rigid body motion V (fixed axis rotation) - some demonstrations of conservation of angular momentum about fixed axis |

Link | NOC:Engineering Mechanics | Lecture 66 - Rigid body motion VI (fixed axis rotation) - Some more demonstrations and related problems |

Link | NOC:Engineering Mechanics | Lecture 67 - Rigid body motion VII (fixed axis rotation) - Kinetic energy and moment of inertia for fixed axis rotation and some solved examples |

Link | NOC:Engineering Mechanics | Lecture 68 - Rigid body motion VIII (fixed axis rotation) - solved examples for calculating moment of inertia and conservation of angular momentum |

Link | NOC:Engineering Mechanics | Lecture 69 - Rigid body motion IX (fixed axis rotation) - solved examples |

Link | NOC:Engineering Mechanics | Lecture 70 - Rigid body motion X - rotation and translation with axis moving parallel to itself |

Link | NOC:Engineering Mechanics | Lecture 71 - Rigid body motion XI - solved examples for rotation and translation with axis moving parallel to itself |

Link | NOC:Engineering Mechanics | Lecture 72 - Rigid-body dynamics XII - Some demonstrations on general motion of rigid bodies |

Link | NOC:Engineering Mechanics | Lecture 73 - Rigid-body dynamics XIII - Infinitesimal angles as vector quantities and change of a vector when rotated by an infinitesimal angle |

Link | NOC:Engineering Mechanics | Lecture 74 - Rigid-body dynamics XIV - Angular velocity and the rate of change of a rotating vector; relating change in angular velocity to an applied torque |

Link | NOC:Engineering Mechanics | Lecture 75 - Rigid-body dynamics XV - Relationship between angular momentum and angular velocity the moment of inertia tensor and the principal axes |

Link | NOC:Engineering Mechanics | Lecture 76 - Rigid-body dynamics XVI - Solved examples |

Link | NOC:Engineering Mechanics | Lecture 77 - Rigid body motion XVII A review of the relation between angular momentum and angular velocity, moment of inertia tensor and the principal axes Edit Lesson |

Link | NOC:Engineering Mechanics | Lecture 78 - Rigid body motion XVIII- Solved examples for calculating rate of change of angular momentum and torque when angular velocity and angular momentum are not parallel |

Link | NOC:Engineering Mechanics | Lecture 79 - Rigid body dynamics XIX - understanding demonstrations shown earlier using equation of motion |

Link | NOC:Engineering Mechanics | Lecture 80 - Rigid body dynamics XX - understanding demonstrations shown earlier using equation of motion (Euler equations) |

Link | NOC:Engineering Mechanics | Lecture 81 - Rigid body dynamics XXI - Euler equations, solved examples |

Link | NOC:Engineering Mechanics | Lecture 82 - Simple harmonic motion I - expanding potential energy about the equilibrium point and the corresponding force |

Link | NOC:Engineering Mechanics | Lecture 83 - Simple harmonic motion II - solving the equation of motion with given initial conditions |

Link | NOC:Engineering Mechanics | Lecture 84 - Simple harmonic motion III - solved examples |

Link | NOC:Engineering Mechanics | Lecture 85 - Simple harmonic motion IV - representing simple harmonic motion on a phasor diagram; energy of an oscillator |

Link | NOC:Engineering Mechanics | Lecture 86 - Simple harmonic motion V - solved examples |

Link | NOC:Engineering Mechanics | Lecture 87 - Simple harmonic motion VI - solving the equation of motion with constant friction in the system |

Link | NOC:Engineering Mechanics | Lecture 88 - Simple harmonic motion VII - harmonic oscillator with velocity-dependent damping (heavy damping) |

Link | NOC:Engineering Mechanics | Lecture 89 - Simple harmonic motion VIII - harmonic oscillator with velocity-dependent damping (critical damping) |

Link | NOC:Engineering Mechanics | Lecture 90 - Simple harmonic motion IX - solved examples |

Link | NOC:Engineering Mechanics | Lecture 91 - Simple harmonic motion X - harmonic oscillator with velocity-dependent damping (light damping) |

Link | NOC:Engineering Mechanics | Lecture 92 - Simple harmonic motion XI - solved examples |

Link | NOC:Engineering Mechanics | Lecture 93 - Simple harmonic motion XII - oscillations of an un-damped harmonic oscillator subjected to an oscillatory force |

Link | NOC:Engineering Mechanics | Lecture 94 - Simple harmonic motion XIII - oscillations of a forced damped harmonic oscillator - I |

Link | NOC:Engineering Mechanics | Lecture 95 - Simple harmonic oscillator XIV - oscillations of a forced damped harmonic oscillator - II |

Link | NOC:Engineering Mechanics | Lecture 96 - Simple harmonic oscillator XV - Energy and power in a forced damped harmonic oscillator |

Link | NOC:Engineering Mechanics | Lecture 97 - Simple harmonic oscillator XVI - Solved examples |

Link | NOC:Engineering Mechanics | Lecture 98 - Equation of motion in a uniformly accelerating frame |

Link | NOC:Engineering Mechanics | Lecture 99 - Motion described in a uniformly accelerating frame; solved examples - I |

Link | NOC:Engineering Mechanics | Lecture 100 - Motion described in a uniformly accelerating frame; solved examples - II |

Link | NOC:Computational Science and Engineering Using Python | Lecture 1 - Lecture 1 - About Computers |

Link | NOC:Computational Science and Engineering Using Python | Lecture 2 - Lecture 2 - Python: Variables and Assignments |

Link | NOC:Computational Science and Engineering Using Python | Lecture 3 - Lecture 3 - Python: Numpy arrays |

Link | NOC:Computational Science and Engineering Using Python | Lecture 4 - Lecture 4 - Python: Control structures |

Link | NOC:Computational Science and Engineering Using Python | Lecture 5 - Lecture 5A - Python packages; Programming |

Link | NOC:Computational Science and Engineering Using Python | Lecture 6 - Lecture 5B - Some suggestions on programming |

Link | NOC:Computational Science and Engineering Using Python | Lecture 7 - Lecture 6 - Plotting in Python |

Link | NOC:Computational Science and Engineering Using Python | Lecture 8 - Lecture 7 - Errors and Nondimensionalization |

Link | NOC:Computational Science and Engineering Using Python | Lecture 9 - Lecture 8 - Data I/O and Mayavi |

Link | NOC:Computational Science and Engineering Using Python | Lecture 10 - Lecture 9 - Lagrange interpolation |

Link | NOC:Computational Science and Engineering Using Python | Lecture 11 - Lecture 10 - Interpolation II: 2D, splines |

Link | NOC:Computational Science and Engineering Using Python | Lecture 12 - Lecture 11 - Integration I: Newton-Cotes |

Link | NOC:Computational Science and Engineering Using Python | Lecture 13 - Lecture 12 - Integration II: Gaussian quadrature |

Link | NOC:Computational Science and Engineering Using Python | Lecture 14 - Lecture 13 - Gaussian quadrature continued |

Link | NOC:Computational Science and Engineering Using Python | Lecture 15 - Lecture 14 - Numerical Differentiation |

Link | NOC:Computational Science and Engineering Using Python | Lecture 16 - Lecture 15 - ODE solvers |

Link | NOC:Computational Science and Engineering Using Python | Lecture 17 - Lecture 16 - ODE solvers continued |

Link | NOC:Computational Science and Engineering Using Python | Lecture 18 - Lecture 17 - Fourier transform |

Link | NOC:Computational Science and Engineering Using Python | Lecture 19 - Lecture 18 - PDE solver: Diffusion equation in spectral method |

Link | NOC:Computational Science and Engineering Using Python | Lecture 20 - Lecture 19A - PDE solver: Diffusion equation using finite difference |

Link | NOC:Computational Science and Engineering Using Python | Lecture 21 - Lecture 19B - PDE solver: Wave equation using finite difference |

Link | NOC:Computational Science and Engineering Using Python | Lecture 22 - Lecture 20 - Linear algebra: Ax = b solver |

Link | NOC:Computational Science and Engineering Using Python | Lecture 23 - Lecture 21 - Summary |

Link | NOC:Introductory Quantum Mechanics | Lecture 1 - Black Body Radiation I - Relevant Definitions and Black Body as cavity |

Link | NOC:Introductory Quantum Mechanics | Lecture 2 - Black Body Radiation II - Intensity of radiation in terms of energy density |

Link | NOC:Introductory Quantum Mechanics | Lecture 3 - Black Body Radiation III - Spectral energy density and radiation pressure inside a black body radiation |

Link | NOC:Introductory Quantum Mechanics | Lecture 4 - Black Body Radiation IV - Stephen's Boltzman law |

Link | NOC:Introductory Quantum Mechanics | Lecture 5 - Black Body Radiation V - Wein's Displacement law and analysis for spectral density |

Link | NOC:Introductory Quantum Mechanics | Lecture 6 - Black Body Radiation VI - Wein's distribution law and rayleigh - Jeans distribution law |

Link | NOC:Introductory Quantum Mechanics | Lecture 7 - Black Body Radiation VII - Quantum Hypothesis and plank's distribution Formula |

Link | NOC:Introductory Quantum Mechanics | Lecture 8 - Radiation as a collection of particles called photons |

Link | NOC:Introductory Quantum Mechanics | Lecture 9 - Quantum Hypothesis and specific heat of soilds |

Link | NOC:Introductory Quantum Mechanics | Lecture 10 - Bohr's Model of hydrogen spectrum |

Link | NOC:Introductory Quantum Mechanics | Lecture 11 - Wilson Sommerfeld quantum condition I - Harmonic oscillator and particle in a box |

Link | NOC:Introductory Quantum Mechanics | Lecture 12 - Wilson Sommerfeld quantum condition II - Particle moving in a coulomb potential in a plane and related quantum numbers |

Link | NOC:Introductory Quantum Mechanics | Lecture 13 - Wilson Sommerfeld quantum condition III - Particle moving in a coulomb potential in 3D and related quantum numbers |

Link | NOC:Introductory Quantum Mechanics | Lecture 14 - Quantum conditions and atomic structure, electron spin and Pauli exclusion principle |

Link | NOC:Introductory Quantum Mechanics | Lecture 15 - Interaction of atoms with radiation : Eienstien's A and B coefficients |

Link | NOC:Introductory Quantum Mechanics | Lecture 16 - Stimulated emmision and amplification of light in a LASER |

Link | NOC:Introductory Quantum Mechanics | Lecture 17 - Brief description of a LASER |

Link | NOC:Introductory Quantum Mechanics | Lecture 18 - Introduction to the correspondence principle |

Link | NOC:Introductory Quantum Mechanics | Lecture 19 - General nature of the correspondence principle |

Link | NOC:Introductory Quantum Mechanics | Lecture 20 - Selection rules (for transitions) through the correspondence principle |

Link | NOC:Introductory Quantum Mechanics | Lecture 21 - Applications of the correspondence principle : Einstiens A coefficient for the harmonic oscillator and the selection rules for atomic transitions |

Link | NOC:Introductory Quantum Mechanics | Lecture 22 - Heisenberg's formulations of quantum mechanics : expressing kinetic variables as matrices |

Link | NOC:Introductory Quantum Mechanics | Lecture 23 - Heisenberg's formulation of quantum mechanics : the quantum condition |

Link | NOC:Introductory Quantum Mechanics | Lecture 24 - Heisenberg's formulation of the quantum mechanics : Application to harmonic oscillator |

Link | NOC:Introductory Quantum Mechanics | Lecture 25 - Brief introduction to matrix mechanics and the quantum condition in matrix form |

Link | NOC:Introductory Quantum Mechanics | Lecture 26 - Introduction to waves and wave equation |

Link | NOC:Introductory Quantum Mechanics | Lecture 27 - Sationary waves eigen values and eigen functions |

Link | NOC:Introductory Quantum Mechanics | Lecture 28 - Matter waves and their experimental detection |

Link | NOC:Introductory Quantum Mechanics | Lecture 29 - Represenating a moving paticle by a wave packet |

Link | NOC:Introductory Quantum Mechanics | Lecture 30 - Stationary-state Schrodinger equation and its solution for a particle in a box |

Link | NOC:Introductory Quantum Mechanics | Lecture 31 - Solution of the stationary-state Schrodinger equation for a simple harmonic oscillator |

Link | NOC:Introductory Quantum Mechanics | Lecture 32 - Equivalance of Heisenberg and the Schrodinger formulations : Mathematical preliminaries |

Link | NOC:Introductory Quantum Mechanics | Lecture 33 - Equivalance of Heisenberg and Schrodinger formulations : The x and p operators and the quantum condition |

Link | NOC:Introductory Quantum Mechanics | Lecture 34 - Born interpretation of the wavefunction and expectation values of x and p operators |

Link | NOC:Introductory Quantum Mechanics | Lecture 35 - Uncertainty principle and its simple applications |

Link | NOC:Introductory Quantum Mechanics | Lecture 36 - Time dependent Schrodinger equation the probability current density and the continuity equation for the probability density |

Link | NOC:Introductory Quantum Mechanics | Lecture 37 - Ehrenfest theorem for the expectation values of x and p operators |

Link | NOC:Introductory Quantum Mechanics | Lecture 38 - Solution of Schrodinger equation for a particle in one and two delta function potentials |

Link | NOC:Introductory Quantum Mechanics | Lecture 39 - Solution of Schrodinger equation for a particle in a finite well |

Link | NOC:Introductory Quantum Mechanics | Lecture 40 - Numerical solution of a one dimensional Schrodinger equation for bound states - I |

Link | NOC:Introductory Quantum Mechanics | Lecture 41 - Numerical solution of a one dimensional Schrodinger equation for bound states - II |

Link | NOC:Introductory Quantum Mechanics | Lecture 42 - Reflection and transmission of particles across a potential barrier |

Link | NOC:Introductory Quantum Mechanics | Lecture 43 - Quantum-tunneling and its examples |

Link | NOC:Introductory Quantum Mechanics | Lecture 44 - Solution of the Schrodinger for free paticles and periodic boundary conditions |

Link | NOC:Introductory Quantum Mechanics | Lecture 45 - Electrons in a metal : Density of states and Fermi energy |

Link | NOC:Introductory Quantum Mechanics | Lecture 46 - Schrodinger equation for particles in spherically symmetric potential, angular momentum operator |

Link | NOC:Introductory Quantum Mechanics | Lecture 47 - Angular momentum operator and its eigenfunctions |

Link | NOC:Introductory Quantum Mechanics | Lecture 48 - Equation for radial component of the wavefunction in spherically symmteric potentials and general properties of its solution |

Link | NOC:Introductory Quantum Mechanics | Lecture 49 - Solution for radial component of the wavefunction for the hydrogen atom |

Link | NOC:Introductory Quantum Mechanics | Lecture 50 - Numerical solution for the radial component of wavefunction for spherically symmetric potentials |

Link | NOC:Introductory Quantum Mechanics | Lecture 51 - Solution of the Schrodinger equation for one dimensional periodic potential : Bloch's theorem |

Link | NOC:Introductory Quantum Mechanics | Lecture 52 - Kroning-Penny model and energy bands |

Link | NOC:Introductory Quantum Mechanics | Lecture 53 - Kroning-Penny model with periodic Dirac delta function and energy bands |

Link | NOC:Introductory Quantum Mechanics | Lecture 54 - Discussion on bands |

Link | NOC:Introductory Quantum Mechanics | Lecture 55 - Summary of the course |

Link | NOC:Introduction to Solid State Physics | Lecture 1 - Introduction to Drude's theory of electrons in a metal - Part 1 |

Link | NOC:Introduction to Solid State Physics | Lecture 2 - Introduction to Drude's theory of electrons in a metal - Part 2 |

Link | NOC:Introduction to Solid State Physics | Lecture 3 - Postulates of Drude's theory |

Link | NOC:Introduction to Solid State Physics | Lecture 4 - Calculating electrical conductivity of metal using Drude's theory of electrons in metal - Part 1 |

Link | NOC:Introduction to Solid State Physics | Lecture 5 - Calculating the electrical conductivity of metal using Drude's Model - Part 2 |

Link | NOC:Introduction to Solid State Physics | Lecture 6 - Introduction to Hall effect in Metals - Part 1 |

Link | NOC:Introduction to Solid State Physics | Lecture 7 - Introduction to Hall effect in metals - Part 2 |

Link | NOC:Introduction to Solid State Physics | Lecture 8 - Introduction to Hall effect in metals - Part 3 |

Link | NOC:Introduction to Solid State Physics | Lecture 9 - Understanding thermal conductivity of a metal using Drude's model - Part 1 |

Link | NOC:Introduction to Solid State Physics | Lecture 10 - Understanding thermal conductivity of a metal using Drude's model - Part 2 |

Link | NOC:Introduction to Solid State Physics | Lecture 11 - Introduction to Sommerfeld's Theory of electrons in a metal - Part 1 |

Link | NOC:Introduction to Solid State Physics | Lecture 12 - Introduction to Sommerfeld's Theory of electrons in a metal - Part 2 |

Link | NOC:Introduction to Solid State Physics | Lecture 13 - Introduction to Sommerfeld's Theory of electrons in a metal - Part 3 |

Link | NOC:Introduction to Solid State Physics | Lecture 14 - Fermi Energy and Fermi Sphere - Part 1 |

Link | NOC:Introduction to Solid State Physics | Lecture 15 - Fermi Energy and Fermi Sphere - Part 2 |

Link | NOC:Introduction to Solid State Physics | Lecture 16 - Density of States - Part 1 |

Link | NOC:Introduction to Solid State Physics | Lecture 17 - Density of States - Part 2 |

Link | NOC:Introduction to Solid State Physics | Lecture 18 - Summary and Discussions of Sommerfeld's Model |

Link | NOC:Introduction to Solid State Physics | Lecture 19 - Electronic Contribution to the Specific heat of a Solid - Part 1 |

Link | NOC:Introduction to Solid State Physics | Lecture 20 - Electronic Contribution to the Specific heat of a Solid - Part 2 |

Link | NOC:Introduction to Solid State Physics | Lecture 21 - Electronic Contribution to the Specific heat of a Solid - Part 3 |

Link | NOC:Introduction to Solid State Physics | Lecture 22 - Electronic Contribution to the Specific heat of a Solid - Part 4 |

Link | NOC:Introduction to Solid State Physics | Lecture 23 - Understanding Thermal conductivity of Metals |

Link | NOC:Introduction to Solid State Physics | Lecture 24 - Introduction to Magnetism in Metal - Part 1 |

Link | NOC:Introduction to Solid State Physics | Lecture 25 - Introduction to Magnetism in Metal - Part 2 |

Link | NOC:Introduction to Solid State Physics | Lecture 26 - Introduction to Magnetism in Metal - Part 3 |

Link | NOC:Introduction to Solid State Physics | Lecture 27 - Introduction to crystals and bonding in crystals |

Link | NOC:Introduction to Solid State Physics | Lecture 28 - Understanding crystal structure using Bravais Lattice |

Link | NOC:Introduction to Solid State Physics | Lecture 29 - Bravais Lattice Types - Part 1 |

Link | NOC:Introduction to Solid State Physics | Lecture 30 - Bravais Lattice Types - Part 2 |

Link | NOC:Introduction to Solid State Physics | Lecture 31 - Introduction to different crystal types - Part 1 |

Link | NOC:Introduction to Solid State Physics | Lecture 32 - Introduction to different crystal types - Part 2 |

Link | NOC:Introduction to Solid State Physics | Lecture 33 - Indexing crystal planes |

Link | NOC:Introduction to Solid State Physics | Lecture 34 - Scattering of X rays from crystals - Part 1 |

Link | NOC:Introduction to Solid State Physics | Lecture 35 - Scattering of X rays from crystals - Part 2 |

Link | NOC:Introduction to Solid State Physics | Lecture 36 - Reciprocal lattice vectors - Part 1 |

Link | NOC:Introduction to Solid State Physics | Lecture 37 - Reciprocal lattice vectors - Part 2 |

Link | NOC:Introduction to Solid State Physics | Lecture 38 - Reciprocal lattice vectors and Laue's condition for diffraction of waves in crystals - Part 1 |

Link | NOC:Introduction to Solid State Physics | Lecture 39 - Reciprocal lattice vectors and Laue's condition for diffraction of waves in crystals - Part 2 |

Link | NOC:Introduction to Solid State Physics | Lecture 40 - Reciprocal lattice vectors, Laue's condition and Bragg's law for diffraction of waves by a crystal |

Link | NOC:Introduction to Solid State Physics | Lecture 41 - Wave equation in a continuous medium and generalization to a discrete medium |

Link | NOC:Introduction to Solid State Physics | Lecture 42 - Derivation of wave equation for motion of atoms in a crystal |

Link | NOC:Introduction to Solid State Physics | Lecture 43 - Solution of the wave equation for a crystal and the relation between frequency Ï‰ and wavevector k |

Link | NOC:Introduction to Solid State Physics | Lecture 44 - Group velocity of waves and speed of sound in a crystal |

Link | NOC:Introduction to Solid State Physics | Lecture 45 - Waves in a crystal considering interaction among atoms beyond their nearest neighbours |

Link | NOC:Introduction to Solid State Physics | Lecture 46 - Normal modes in a crystal : Phonons and their momenta and energy |

Link | NOC:Introduction to Solid State Physics | Lecture 47 - Experimental determination of Phonon dispersion curves |

Link | NOC:Introduction to Solid State Physics | Lecture 48 - Lattice with two atom basis: Optical Phonons |

Link | NOC:Introduction to Solid State Physics | Lecture 49 - Displacement of the atoms for the acoustic and optical Phonons |

Link | NOC:Introduction to Solid State Physics | Lecture 50 - Density of states of phonons |

Link | NOC:Introduction to Solid State Physics | Lecture 51 - Calculating the density of states of Phonons: The Einstein's and the Debye's Models |

Link | NOC:Introduction to Solid State Physics | Lecture 52 - Average energy of Phonons at Temperature T |

Link | NOC:Introduction to Solid State Physics | Lecture 53 - Debye's Model of specific heat of crystals |

Link | NOC:Introduction to Solid State Physics | Lecture 54 - Anharmonic effects in crystals: thermal expansion and Umkclapp processes |

Link | NOC:Introduction to Solid State Physics | Lecture 55 - Going beyond free electron model: Periodic crystal potential and Bloch's theorem for the wavefunction |

Link | NOC:Introduction to Solid State Physics | Lecture 56 - Applying perturbation theory to free electron wavefunctions and nearly free electron model |

Link | NOC:Introduction to Solid State Physics | Lecture 57 - Applying perturbation theory to free electron wavefunctions and creation of energy gap at zone boundaries |

Link | NOC:Introduction to Solid State Physics | Lecture 58 - Mixing of plane waves to get Bloch Wavefunction - I |

Link | NOC:Introduction to Solid State Physics | Lecture 59 - Mixing of plane waves to get Bloch Wavefunction - II |

Link | NOC:Introduction to Solid State Physics | Lecture 60 - Equivalence of wave vectors k and k+G and reduced zone scheme |

Link | NOC:Introduction to Solid State Physics | Lecture 61 - Applying periodic boundary condition to Bloch wavefunction and counting the number of states |

Link | NOC:Introduction to Solid State Physics | Lecture 62 - Band theory of metals, insulators and semiconductors |

Link | NOC:Introduction to Solid State Physics | Lecture 63 - Kronig- Penney model |

Link | NOC:Introduction to Solid State Physics | Lecture 64 - Bloch wavefunction as a linear combination of atomic orbitals: Tight Binding Model- I |

Link | NOC:Introduction to Solid State Physics | Lecture 65 - Tight Binding Model - II |

Link | NOC:Introduction to Solid State Physics | Lecture 66 - Semiclassical dynamics of a particle in a band and Bloch oscillations |

Link | NOC:Introduction to Solid State Physics | Lecture 67 - Experimental observations of Bloch oscillations |

Link | NOC:Introduction to Solid State Physics | Lecture 68 - Concept of hole as a current carrier in semiconductors - I |

Link | NOC:Introduction to Solid State Physics | Lecture 69 - Concept of hole as a current carrier in semiconductors - II |

Link | NOC:Introduction to Solid State Physics | Lecture 70 - Calculating carrier density in semiconductors - I |

Link | NOC:Introduction to Solid State Physics | Lecture 71 - Calculating carrier density in semiconductors - II |

Link | NOC:Introduction to Solid State Physics | Lecture 72 - Donor and acceptor energy levels in a semiconductor |

Link | NOC:Introduction to Solid State Physics | Lecture 73 - charge carrier density in n-type and p-type semiconductors |

Link | NOC:Introduction to Solid State Physics | Lecture 74 - Electrical conductivity and hall coefficient in semiconductors |

Link | NOC:Introduction to Solid State Physics | Lecture 75 - Paramagnetism in solids I - Magnetic moment and Lande g factor for atoms |

Link | NOC:Introduction to Solid State Physics | Lecture 76 - Paramagnetism in solids II - temperature dependence of paramagnetic susceptibility and Curie's Law |

Link | NOC:Introduction to Solid State Physics | Lecture 77 - Hund's rule for calculating the total angular momentum J, orbital angular momentum L and spin angular momentum S for an atom |

Link | NOC:Introduction to Solid State Physics | Lecture 78 - Examples of performing paramagnetic susceptibility calculations |

Link | NOC:Introduction to Solid State Physics | Lecture 79 - Diamagnetism in Solids |

Link | NOC:Introduction to Solid State Physics | Lecture 80 - Understanding quenching of orbital angular momentum in transition metal ions |

Link | NOC:Introduction to Solid State Physics | Lecture 81 - Ferromagnetism in solids |

Link | NOC:Introduction to Solid State Physics | Lecture 82 - Introduction to Meissner state of superconductors and levitation |

Link | NOC:Introduction to Solid State Physics | Lecture 83 - Superconducting materials and Type-I and Type-II superconductors |

Link | NOC:Introduction to Solid State Physics | Lecture 84 - London's equation for superconductors |

Link | NOC:Introduction to Solid State Physics | Lecture 85 - Application of London's equation, behavior of specific heat and density of states in superconductors |

Link | NOC:Introduction to Solid State Physics | Lecture 86 - A qualitative introduction to BCS theory of superconductivity |

Link | NOC:Introduction to Solid State Physics | Lecture 87 - Josephson's effect in superconductors and tunneling current across barriers |

Link | NOC:Physics of Turbulence | Lecture 1 - The turbulence problem |

Link | NOC:Physics of Turbulence | Lecture 2 - Basic hydrodynamics - Governing equations |

Link | NOC:Physics of Turbulence | Lecture 3 - Basic hydrodynamics - Vorticity |

Link | NOC:Physics of Turbulence | Lecture 4 - Basic hydrodynamics - Conservation Laws |

Link | NOC:Physics of Turbulence | Lecture 5 - Basic hydrodynamics - Example problems |

Link | NOC:Physics of Turbulence | Lecture 6 - Fourier space representation - Definitions |

Link | NOC:Physics of Turbulence | Lecture 7 - Fourier space representation - Flow equations |

Link | NOC:Physics of Turbulence | Lecture 8 - Fourier space representation - Kinetic energy |

Link | NOC:Physics of Turbulence | Lecture 9 - Fourier space representation - Vorticity, Kinetic Helicity, and Enstrophy |

Link | NOC:Physics of Turbulence | Lecture 10 - Fourier space representation - Examples |

Link | NOC:Physics of Turbulence | Lecture 11 - Fourier space representation - Examples (Continued...) |

Link | NOC:Physics of Turbulence | Lecture 12 - Craya-Herring Basis: Definitions |

Link | NOC:Physics of Turbulence | Lecture 13 - Craya-Herring Basis: Equations of Motion for a Triad |

Link | NOC:Physics of Turbulence | Lecture 14 - Craya-Herring Basis: Equations of Motion for an Anticlockwise Triad |

Link | NOC:Physics of Turbulence | Lecture 15 - Thermal Instability |

Link | NOC:Physics of Turbulence | Lecture 16 - Thermal Instabilities (Continued...) |

Link | NOC:Physics of Turbulence | Lecture 17 - Rotating Convection: Instability and Patterns |

Link | NOC:Physics of Turbulence | Lecture 18 - Magnetoconvection: Instability and Patterns |

Link | NOC:Physics of Turbulence | Lecture 19 - Nonlinear Saturation: Lorenz Equation |

Link | NOC:Physics of Turbulence | Lecture 20 - Patterns, Chaos, and Turbulence |

Link | NOC:Physics of Turbulence | Lecture 21 - Energy Transfers: Mode-to-mode Energy Transfers |

Link | NOC:Physics of Turbulence | Lecture 22 - Energy Transfers: Mode-to-mode Energy Transfers (Continued...) |

Link | NOC:Physics of Turbulence | Lecture 23 - Energy Transfers: Examples |

Link | NOC:Physics of Turbulence | Lecture 24 - Energy Transfers: Spectral Energy Flux and Shell-to-Shell Energy Transfer |

Link | NOC:Physics of Turbulence | Lecture 25 - Energy Transfers: Fluid Simulations using Spectral Method |

Link | NOC:Physics of Turbulence | Lecture 26 - Energy Transfers: Fluid Simulations - Dealiasing |

Link | NOC:Physics of Turbulence | Lecture 27 - Kolmogorov's Theory: Energy Spectrum and Flux |

Link | NOC:Physics of Turbulence | Lecture 28 - Kolmogorov's Theory: Insights and its Verification with Direct Numerical Simulation |

Link | NOC:Physics of Turbulence | Lecture 29 - Kolmogorov's Theory: Spectrum and Flux in inertial-dissipation range |

Link | NOC:Physics of Turbulence | Lecture 30 - Kolmogorov's four-fifth law: Isotropic Tensor and Correlations |

Link | NOC:Physics of Turbulence | Lecture 31 - Kolmogorov's four-fifth law: Derivation |

Link | NOC:Physics of Turbulence | Lecture 32 - Kolmogorov's four-fifth law: Derivation (Final steps) |

Link | NOC:Physics of Turbulence | Lecture 33 - Enstrophy Spectrum and Flux |

Link | NOC:Physics of Turbulence | Lecture 34 - Two-dimensional Turbulence |

Link | NOC:Physics of Turbulence | Lecture 35 - Helical turbulence |

Link | NOC:Physics of Turbulence | Lecture 36 - Flow with a scalar |

Link | NOC:Physics of Turbulence | Lecture 37 - Passive scalar turbulence |

Link | NOC:Physics of Turbulence | Lecture 38 - Stably stratified turbulence |

Link | NOC:Physics of Turbulence | Lecture 39 - Turbulent thermal convection |

Link | NOC:Physics of Turbulence | Lecture 40 - Flow with a vector |

Link | NOC:Physics of Turbulence | Lecture 41 - MHD Turbulence: Formalism |

Link | NOC:Physics of Turbulence | Lecture 42 - MHD Turbulence: Energy Transfers |

Link | NOC:Physics of Turbulence | Lecture 43 - MHD Turbulence: Turbulence Models |

Link | NOC:Physics of Turbulence | Lecture 44 - MHD Turbulence: Dynamo |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 1 - General introduction |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 2 - Phase space and Liouville's theorem |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 3 - Collisionless Boltzmann equation |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 4 - Boltzmann equation for collisional system - I |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 5 - Boltzmann equation for collisional system - II |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 6 - Equilibrium distribution function - I |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 7 - Equilibrium distribution function - II |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 8 - Derivation of moment equations - I |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 9 - Derivation of moment equations - II |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 10 - Application of moment equations in collisionless systems |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 11 - Derivation of ideal fluid equations |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 12 - Macroscopic forces on an ideal fluid |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 13 - Properties of ideal fluid |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 14 - Kevin's vorticity theorem |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 15 - Conservative form and invariants in ideal fluids |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 16 - Steady flow, streamlines and stream function |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 17 - Departure from Maxwellian distribution |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 18 - Derivation of real fluid equations |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 19 - Hydrostatics: Model of solar corona |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 20 - Stellar/solar wind |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 21 - Accretion disks - I |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 22 - A small digression: Newtonian fluids |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 23 - Accretion disk - II |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 24 - Weak perturbation in a compressible fluid: sound wave |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 25 - Effect of nonlinearity: shocks |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 26 - Supernova explosion and spherical blast waves - I |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 27 - Supernova explosion and spherical blast waves - II |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 28 - de Laval nozzle and extragalactic jets |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 29 - Convective instability and Swarzschild stability criterian |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 30 - Rayleigh Benard convection - I |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 31 - Rayleigh Benard convection - II |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 32 - Jeans instability |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 33 - Waves and instabilities in a two-fluid interface - I |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 34 - Waves and instabilities in a two-fluid interface - II |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 35 - Oscillations of stars |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 36 - Oscillation of stars (Continued...) |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 37 - Rotation in astrofluids and Rayleigh criterion |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 38 - Fluid dynamics in a rotating frame of reference |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 39 - Vorticity theorem in rotating frame and Taylor-Proudman theorem |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 40 - Effect of rotation on a self gravitating mass |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 41 - Effect of rotation in stars |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 42 - Introduction to Plasmas |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 43 - Description of Plasma |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 44 - Kinetic to fluid picture of plasmas |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 45 - MHD fluids: magnetic pressure, magnetic tension and plasma beta |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 46 - Inviscid invariants in MHD |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 47 - Inviscid invariants in MHD (Continued...) |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 48 - Elsasser variables in MHD |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 49 - Linear wave modes in MHD |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 50 - MHD in space plasmas |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 51 - Introduction to turbulence in fluids |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 52 - Richardson-Kolmogorov phenomenology of turbulence |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 53 - Turbulent diffusion |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 54 - Turbulent viscosity |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 55 - Turbulence in MHD fluids |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 56 - Introduction to astrophysical dynamos |

Link | NOC:Introduction to Astrophysical Fluids | Lecture 57 - Anti-dynamo theorem and turbulent dynamos |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 1 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 2 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 3 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 4 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 5 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 6 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 7 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 8 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 9 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 10 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 11 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 12 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 13 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 14 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 15 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 16 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 17 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 18 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 19 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 20 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 21 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 22 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 23 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 24 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 25 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 26 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 27 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 28 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 29 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 30 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 31 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 32 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 33 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 34 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 35 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 36 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 37 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 38 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 39 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 40 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 41 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 42 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 43 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 44 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 45 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 46 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 47 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 48 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 49 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 50 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 51 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 52 |

Link | NOC:Introduction to Electromagnetic Theory (Hindi) | Lecture 53 |

Link | NOC:Scientific Computing Using Python | Lecture 1 |

Link | NOC:Scientific Computing Using Python | Lecture 2 |

Link | NOC:Scientific Computing Using Python | Lecture 3 |

Link | NOC:Scientific Computing Using Python | Lecture 4 |

Link | NOC:Scientific Computing Using Python | Lecture 5 |

Link | NOC:Scientific Computing Using Python | Lecture 6 |

Link | NOC:Scientific Computing Using Python | Lecture 7 |

Link | NOC:Scientific Computing Using Python | Lecture 8 |

Link | NOC:Scientific Computing Using Python | Lecture 9 |

Link | NOC:Scientific Computing Using Python | Lecture 10 |

Link | NOC:Scientific Computing Using Python | Lecture 11 |

Link | NOC:Scientific Computing Using Python | Lecture 12 |

Link | NOC:Scientific Computing Using Python | Lecture 13 |

Link | NOC:Scientific Computing Using Python | Lecture 14 |

Link | NOC:Scientific Computing Using Python | Lecture 15 |

Link | NOC:Scientific Computing Using Python | Lecture 16 |

Link | NOC:Scientific Computing Using Python | Lecture 17 |

Link | NOC:Scientific Computing Using Python | Lecture 18 |

Link | NOC:Scientific Computing Using Python | Lecture 19 |

Link | NOC:Scientific Computing Using Python | Lecture 20 |

Link | NOC:Scientific Computing Using Python | Lecture 21 |

Link | NOC:Scientific Computing Using Python | Lecture 22 |

Link | NOC:Scientific Computing Using Python | Lecture 23 |

Link | NOC:Scientific Computing Using Python | Lecture 24 |

Link | NOC:Scientific Computing Using Python | Lecture 25 |

Link | NOC:Scientific Computing Using Python | Lecture 26 |

Link | NOC:Scientific Computing Using Python | Lecture 27 |

Link | NOC:Scientific Computing Using Python | Lecture 28 |

Link | NOC:Scientific Computing Using Python | Lecture 29 |

Link | NOC:Scientific Computing Using Python | Lecture 30 |

Link | NOC:Scientific Computing Using Python | Lecture 31 |

Link | NOC:Scientific Computing Using Python | Lecture 32 |

Link | NOC:Scientific Computing Using Python | Lecture 33 |

Link | NOC:Scientific Computing Using Python | Lecture 34 |

Link | NOC:Scientific Computing Using Python | Lecture 35 |

Link | NOC:Scientific Computing Using Python | Lecture 36 |

Link | NOC:Scientific Computing Using Python | Lecture 37 |

Link | NOC:Scientific Computing Using Python | Lecture 38 |

Link | NOC:Scientific Computing Using Python | Lecture 39 |

Link | NOC:Scientific Computing Using Python | Lecture 40 |

Link | NOC:Scientific Computing Using Python | Lecture 41 |

Link | NOC:Scientific Computing Using Python | Lecture 42 |

Link | NOC:Scientific Computing Using Python | Lecture 43 |

Link | NOC:Scientific Computing Using Python | Lecture 44 |

Link | NOC:Scientific Computing Using Python | Lecture 45 |

Link | NOC:Scientific Computing Using Python | Lecture 46 |

Link | NOC:Scientific Computing Using Python | Lecture 47 |

Link | NOC:Scientific Computing Using Python | Lecture 48 |

Link | NOC:Scientific Computing Using Python | Lecture 49 |

Link | NOC:Scientific Computing Using Python | Lecture 50 |

Link | NOC:Scientific Computing Using Python | Lecture 51 |

Link | NOC:Scientific Computing Using Python | Lecture 52 |

Link | NOC:Scientific Computing Using Python | Lecture 53 |

Link | NOC:Scientific Computing Using Python | Lecture 54 |

Link | NOC:Scientific Computing Using Python | Lecture 55 |

Link | NOC:Scientific Computing Using Python | Lecture 56 |

Link | NOC:Scientific Computing Using Python | Lecture 57 |

Link | NOC:Scientific Computing Using Python | Lecture 58 |

Link | NOC:Scientific Computing Using Python | Lecture 59 |

Link | NOC:Scientific Computing Using Python | Lecture 60 |

Link | NOC:Scientific Computing Using Python | Lecture 61 |

Link | NOC:Scientific Computing Using Python | Lecture 62 |

Link | NOC:Scientific Computing Using Python | Lecture 63 |

Link | NOC:Scientific Computing Using Python | Lecture 64 |

Link | NOC:Scientific Computing Using Python | Lecture 65 |

Link | NOC:Scientific Computing Using Python | Lecture 66 |

Link | NOC:Scientific Computing Using Python | Lecture 67 |

Link | NOC:Scientific Computing Using Python | Lecture 68 |

Link | NOC:Scientific Computing Using Python | Lecture 69 |

Link | NOC:Scientific Computing Using Python | Lecture 70 |

Link | NOC:Scientific Computing Using Python | Lecture 71 |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 1 - Introduction to Field Theory and Course |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 2 - Integration using Complex Analysis |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 3 - Cauchy Principal Value Theorem |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 4 - Fourier Transform |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 5 - Green's Function and Examples |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 6 - Green's Function in Fourier Space |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 7 - Fourier Transform, Time Frequency |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 8 - Green's Function for Helmholtz Equation and Wave Equation |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 9 - Green's Function for Diffusion and Schrodinger Equation |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 10 - Dimensional Analysis |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 11 - Functionals - Part 1 |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 12 - Lagrangian Formalism - Part 2 |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 13 - Relativistic Fields |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 14 - Hamiltonian Formalism |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 15 - Principle of Least Action |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 16 - Relativistic Fields and Hamiltonian Formalism |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 17 - Noether's Theorem and Symmetries |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 18 - Review of Quantum Mechanics |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 19 - Second Quantization |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 20 - Field Operators |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 21 - Fock Space and Vaccum Energy |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 22 - Quantization of Bosons and Fermions |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 23 - Examples |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 24 - Free Fermi Gas |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 25 - Propagators and Perturbations |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 26 - Relativistic Quantum Field Theory |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 27 - Feynman Propagator |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 28 - Review of Statistical Mechanics (Partition Function) |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 29 - Feynman Path Integral |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 30 - Diagrammatic Field Theory (Wick's Theorem) |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 31 - Wick's Theorem (Continued...) |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 32 - Diagrammatic Perturbation Theory |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 33 - Green's Function and Correlation Function |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 34 - Feynman Diagrams |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 35 - Phase Transition and Landau Theory |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 36 - Failure of Landau's Theory |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 37 - Scale Invariance |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 38 - Renormalization Group - Preliminary |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 39 - RG Steps |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 40 - Pertubative Calculations |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 41 - RG Fixed Points |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 42 - Relevent and Irrelevant Variables |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 43 - Behaviour Near Critical Points |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 44 - Computing Critical Exponents |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 45 - Mass and Charge Renormalization, Running Coupling const: Φ4 Theory |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 46 - Charge and Mass Renormalization: QED and QCD |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 47 - Breaking a Continuous Symmetry (Goldstone Mode) |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 48 - Covariant Electrodynamics (Gauge Interactions) |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 49 - Higgs Mechanism |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 50 - Introduction to Non-Equilibrium Field Theory (Langevin Equation) |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 51 - Fluctuation Dissipation Theorem |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 52 - Kolgomorov's Theory of Turbulence |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 53 - Equilibrium and Non Equilibrium Solution of Navier Stokes |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 54 - Energy Flux in Navier Stokes Equation |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 55 - RG Analysis of Field Theory of Turbulence |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 56 - Renormalized Viscosity and Discussion |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 57 - Renormalization of the Coupling Constant for the Shell Model |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 58 - Flux Computation for the Shell Model of Turbulence |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 59 - Renormalization Group Analysis of Navier Stokes Equation |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 60 - Flux Computation for the Navier Stokes Equation |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 61 - Functional Form of a Dynamical Equation |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 62 - Surface Growth Phenomena: Introduction |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 63 - Surface Growth Phenomena: EW Equation |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 64 - Surface Growth Phenomena: KPZ Equation |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 65 - Surface Growth Phenomena: KPZ Equation (Continued...) |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 66 - RG Procedure for KPZ Equation |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 67 - Noise Renormalization |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 68 - Fixed Point Solution |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 69 - Weak Turbulence Theory using Examples |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 70 - Weak Turbulence Applications (Rotating Turbulence, Internal and Surface Gravity Waves) |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 71 - Nonlinear Schodinger Equation |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 72 - Field Theory of Passive Scalar Turbulence |

Link | NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives | Lecture 73 - Course Summary |

Link | NOC:Coherence and Quantum Entanglement | Lecture 1 - Main differences between classical and quantum mechanics |

Link | NOC:Coherence and Quantum Entanglement | Lecture 2 - Introduction to Coherence and Stochastic Processes |

Link | NOC:Coherence and Quantum Entanglement | Lecture 3 - The Joint Probability Function used in Classical Optics: The Correlation Functions |

Link | NOC:Coherence and Quantum Entanglement | Lecture 4 - Second-order Coherence Theory (Temporal) |

Link | NOC:Coherence and Quantum Entanglement | Lecture 5 - Quantifying the Temporal Correlations |

Link | NOC:Coherence and Quantum Entanglement | Lecture 6 - Second-order Coherence Theory (Spatial); Spatial Correlations |

Link | NOC:Coherence and Quantum Entanglement | Lecture 7 - Quantifying the Spatial Correlations |

Link | NOC:Coherence and Quantum Entanglement | Lecture 8 - Second-order Coherence Theory (Angular); Angular Correlations |

Link | NOC:Coherence and Quantum Entanglement | Lecture 9 - Second-order Coherence Theory (Polarization) |

Link | NOC:Coherence and Quantum Entanglement | Lecture 10 - Degree of Polarization |

Link | NOC:Coherence and Quantum Entanglement | Lecture 11 - Coherent Mode Representation of Optical Fields |

Link | NOC:Coherence and Quantum Entanglement | Lecture 12 - Review of Quantum Mechanics |

Link | NOC:Coherence and Quantum Entanglement | Lecture 13 - Quantum Mechanical Correlation Functions |

Link | NOC:Coherence and Quantum Entanglement | Lecture 14 - Basics of Nonlinear Optics |

Link | NOC:Coherence and Quantum Entanglement | Lecture 15 - Two-Photon State Produced by Parametric Down-Conversion |

Link | NOC:Coherence and Quantum Entanglement | Lecture 16 - Coherence and Quantum Entanglement |

Link | NOC:Coherence and Quantum Entanglement | Lecture 17 - Temporal Two-Photon Interference |

Link | NOC:Coherence and Quantum Entanglement | Lecture 18 - Some example of Two-Photon Interference Effects |

Link | NOC:Coherence and Quantum Entanglement | Lecture 19 - Spatial Two-Photon Interference |

Link | NOC:Coherence and Quantum Entanglement | Lecture 20 - Quantum Measurements |

Link | NOC:Coherence and Quantum Entanglement | Lecture 21 - Can the Quantum Mechanical Description of Physical Reality be Considered Complete ? |

Link | NOC:Coherence and Quantum Entanglement | Lecture 22 - Hidden Variable Interpretation of Quantum Mechanics |

Link | NOC:Coherence and Quantum Entanglement | Lecture 23 - Bell Inequalities |

Link | NOC:Coherence and Quantum Entanglement | Lecture 24 - Entanglement Verification |

Link | NOC:Coherence and Quantum Entanglement | Lecture 25 - Entanglement Quantification and Connection Between Coherence and Entanglement |

Link | NOC:Coherence and Quantum Entanglement | Lecture 26 - 84 Quantum Cryptography |

Link | NOC:Coherence and Quantum Entanglement | Lecture 27 - Quantum Teleportation |

Link | Astrophysics and Cosmology | Lecture 1 - Introduction |

Link | Astrophysics and Cosmology | Lecture 2 - Keplers Law |

Link | Astrophysics and Cosmology | Lecture 3 - The Solar System |

Link | Astrophysics and Cosmology | Lecture 4 - The Solar System (Continued...) |

Link | Astrophysics and Cosmology | Lecture 5 - Binary Systems |

Link | Astrophysics and Cosmology | Lecture 6 - Binary Systems (Continued...) |

Link | Astrophysics and Cosmology | Lecture 7 - Tidal Forces and the Earth Moon System |

Link | Astrophysics and Cosmology | Lecture 8 - Fluid Mechanics |

Link | Astrophysics and Cosmology | Lecture 9 - Hydrostatics and the Solar Wind |

Link | Astrophysics and Cosmology | Lecture 10 - Radiative Transfer |

Link | Astrophysics and Cosmology | Lecture 11 - Radiative Transfer (Continued...) |

Link | Astrophysics and Cosmology | Lecture 12 - Thermal Radiation |

Link | Astrophysics and Cosmology | Lecture 13 - Thermal Radiation and the Sun |

Link | Astrophysics and Cosmology | Lecture 14 - Virial Theorem and Its Application to Stars |

Link | Astrophysics and Cosmology | Lecture 15 - Stars: Magnitudes and the H-R Diagram |

Link | Astrophysics and Cosmology | Lecture 16 - Stellar Physics - I |

Link | Astrophysics and Cosmology | Lecture 17 - Stellar Physics - II |

Link | Astrophysics and Cosmology | Lecture 18 - Stellar Physics - III |

Link | Astrophysics and Cosmology | Lecture 19 - Stellar Physics - IV |

Link | Astrophysics and Cosmology | Lecture 20 - Stellar Physics - V |

Link | Astrophysics and Cosmology | Lecture 21 - White Dwarfs |

Link | Astrophysics and Cosmology | Lecture 22 - White Dwarfs and Neutron Stars |

Link | Astrophysics and Cosmology | Lecture 23 - Galaxies |

Link | Astrophysics and Cosmology | Lecture 24 - Galaxies and the Expanding Universe |

Link | Astrophysics and Cosmology | Lecture 25 - The Expanding Universe |

Link | Astrophysics and Cosmology | Lecture 26 - Dynamics of the Expanding Universe |

Link | Astrophysics and Cosmology | Lecture 27 - Dynamics of the Expanding Universe (Continued...) |

Link | Astrophysics and Cosmology | Lecture 28 - The Expanding Universe and the Cosmological Metric |

Link | Astrophysics and Cosmology | Lecture 29 - The Cosmological Space - Time |

Link | Astrophysics and Cosmology | Lecture 30 - Distances |

Link | Astrophysics and Cosmology | Lecture 31 - Distances (Continued...) |

Link | Astrophysics and Cosmology | Lecture 32 - Distances and the Hubble Parameter |

Link | Astrophysics and Cosmology | Lecture 33 - Distances, the Hubble Parameter and Dark Energy (Continued...) |

Link | Astrophysics and Cosmology | Lecture 34 - CMBR and Thermal History |

Link | Astrophysics and Cosmology | Lecture 35 - CMBR and Thermal History (Continued...1) |

Link | Astrophysics and Cosmology | Lecture 36 - CMBR and Thermal History (Continued...2) |

Link | Astrophysics and Cosmology | Lecture 37 - Thermal History, Expansion Rate and Neutrino Mass |

Link | Astrophysics and Cosmology | Lecture 38 - Thermal History: Neutrino Mass, Nucleosynthesis |

Link | Astrophysics and Cosmology | Lecture 39 - Big Bang Nucleosynthesis |

Link | Astrophysics and Cosmology | Lecture 40 - Big Bang Nucleosynthesis (Continued...) |

Link | NOC:Mathematics Methods in Physics - I | Lecture 1 - Set, Group, Field, Ring |

Link | NOC:Mathematics Methods in Physics - I | Lecture 2 - Vector Space |

Link | NOC:Mathematics Methods in Physics - I | Lecture 3 - Span, Linear combination of vectors |

Link | NOC:Mathematics Methods in Physics - I | Lecture 4 - Linearly dependent and independent vector, Basis |

Link | NOC:Mathematics Methods in Physics - I | Lecture 5 - Dual Space |

Link | NOC:Mathematics Methods in Physics - I | Lecture 6 - Inner Product |

Link | NOC:Mathematics Methods in Physics - I | Lecture 7 - Schwarz Inequality |

Link | NOC:Mathematics Methods in Physics - I | Lecture 8 - Inner product space, Gram-Schmidt Ortho-normalization |

Link | NOC:Mathematics Methods in Physics - I | Lecture 9 - Projection operator |

Link | NOC:Mathematics Methods in Physics - I | Lecture 10 - Transformation of Basis |

Link | NOC:Mathematics Methods in Physics - I | Lecture 11 - Transformation of Basis (Continued...) |

Link | NOC:Mathematics Methods in Physics - I | Lecture 12 - Unitary transformation, Similarity Transformation |

Link | NOC:Mathematics Methods in Physics - I | Lecture 13 - Eigen Value, Eigen Vectors |

Link | NOC:Mathematics Methods in Physics - I | Lecture 14 - Normal Matrix |

Link | NOC:Mathematics Methods in Physics - I | Lecture 15 - Diagonalization of a Matrix |

Link | NOC:Mathematics Methods in Physics - I | Lecture 16 - Hermitian Matrix |

Link | NOC:Mathematics Methods in Physics - I | Lecture 17 - Rank of a Matrix |

Link | NOC:Mathematics Methods in Physics - I | Lecture 18 - Cayley - Hamilton Theorem, Function space |

Link | NOC:Mathematics Methods in Physics - I | Lecture 19 - Metric Space, Linearly dependent - independent functions |

Link | NOC:Mathematics Methods in Physics - I | Lecture 20 - Linearly dependent –independent functions (Continued...), Inner Product of functions |

Link | NOC:Mathematics Methods in Physics - I | Lecture 21 - Orthogonal functions |

Link | NOC:Mathematics Methods in Physics - I | Lecture 22 - Delta Function, Completeness |

Link | NOC:Mathematics Methods in Physics - I | Lecture 23 - Fourier |

Link | NOC:Mathematics Methods in Physics - I | Lecture 24 - Fourier Series (Continued...) |

Link | NOC:Mathematics Methods in Physics - I | Lecture 25 - Parseval Theorem, Fourier Transform |

Link | NOC:Mathematics Methods in Physics - I | Lecture 26 - Parseval Relation, Convolution Theorem |

Link | NOC:Mathematics Methods in Physics - I | Lecture 27 - Polynomial space, Legendre Polynomial |

Link | NOC:Mathematics Methods in Physics - I | Lecture 28 - Monomial Basis, Factorial Basis, Legendre Basis |

Link | NOC:Mathematics Methods in Physics - I | Lecture 29 - Complex Numbers |

Link | NOC:Mathematics Methods in Physics - I | Lecture 30 - Geometrical interpretation of complex numbers |

Link | NOC:Mathematics Methods in Physics - I | Lecture 31 - de Moivre’s Theorem |

Link | NOC:Mathematics Methods in Physics - I | Lecture 32 - Roots of a complex number |

Link | NOC:Mathematics Methods in Physics - I | Lecture 33 - Set of complex no, Stereographic projection |

Link | NOC:Mathematics Methods in Physics - I | Lecture 34 - Complex Function, Concept of Limit |

Link | NOC:Mathematics Methods in Physics - I | Lecture 35 - Derivative of Complex Function, Cauchy-Riemann Equation |

Link | NOC:Mathematics Methods in Physics - I | Lecture 36 - Analytic Function |

Link | NOC:Mathematics Methods in Physics - I | Lecture 37 - Harmonic Conjugate |

Link | NOC:Mathematics Methods in Physics - I | Lecture 38 - Polar form of Cauchy-Riemann Equation |

Link | NOC:Mathematics Methods in Physics - I | Lecture 39 - Multi-valued function and Branches |

Link | NOC:Mathematics Methods in Physics - I | Lecture 40 - Complex Line Integration, Contour, Regions |

Link | NOC:Mathematics Methods in Physics - I | Lecture 41 - Complex Line Integration (Continued...) |

Link | NOC:Mathematics Methods in Physics - I | Lecture 42 - Cauchy-Goursat Theorem |

Link | NOC:Mathematics Methods in Physics - I | Lecture 43 - Application of Cauchy-Goursat Theorem |

Link | NOC:Mathematics Methods in Physics - I | Lecture 44 - Cauchy’s Integral Formula |

Link | NOC:Mathematics Methods in Physics - I | Lecture 45 - Cauchy’s Integral Formula (Continued...) |

Link | NOC:Mathematics Methods in Physics - I | Lecture 46 - Series and Sequence |

Link | NOC:Mathematics Methods in Physics - I | Lecture 47 - Series and Sequence (Continued...) |

Link | NOC:Mathematics Methods in Physics - I | Lecture 48 - Circle and radius of convergence |

Link | NOC:Mathematics Methods in Physics - I | Lecture 49 - Taylor Series |

Link | NOC:Mathematics Methods in Physics - I | Lecture 50 - Classification of singularity |

Link | NOC:Mathematics Methods in Physics - I | Lecture 51 - Laurent Series, Singularity |

Link | NOC:Mathematics Methods in Physics - I | Lecture 52 - Laurent series expansion |

Link | NOC:Mathematics Methods in Physics - I | Lecture 53 - Laurent series expansion (Continued...), Concept of Residue |

Link | NOC:Mathematics Methods in Physics - I | Lecture 54 - Classification of Residue |

Link | NOC:Mathematics Methods in Physics - I | Lecture 55 - Calculation of Residue for quotient from |

Link | NOC:Mathematics Methods in Physics - I | Lecture 56 - Cauchy’s Residue Theorem |

Link | NOC:Mathematics Methods in Physics - I | Lecture 57 - Cauchy’s Residue Theorem (Continued...) |

Link | NOC:Mathematics Methods in Physics - I | Lecture 58 - Real Integration using Cauchy’s Residue Theorem |

Link | NOC:Mathematics Methods in Physics - I | Lecture 59 - Real Integration using Cauchy’s Residue Theorem (Continued...) |

Link | NOC:Mathematics Methods in Physics - I | Lecture 60 - Real Integration using Cauchy’s Residue Theorem (Continued...) |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 1 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 2 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 3 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 4 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 5 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 6 - Systems with variable mass - 3 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 7 - Systems with variable mass - 4 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 8 - Central force - 1 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 9 - Central force - 2 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 10 - Central force - 3 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 11 - Central force - 4 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 12 - Central force - 5 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 13 - Central force - 6 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 14 - Central force - 7 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 15 - Central force - 8 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 16 - Central force - 9 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 17 - Central force - 10 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 18 - Central force - 11 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 19 - Central force - 12 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 20 - Central force - 13 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 21 - Central force - 14 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 22 - Central force - 15 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 23 - Mooring Co-ordinate Systems - 1 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 24 - Mooring Co-ordinate Systems - 2 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 25 - Mooring Co-ordinate Systems - 3 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 26 - Mooring Co-ordinate Systems - 4 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 27 - Rigid body dynamics - 1 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 28 - Rigid body dynamics - 2 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 29 - Rigid body dynamics - 3 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 30 - Rigid body dynamics - 4 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 31 - Rigid body dynamics - 5 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 32 - Rigid body dynamics - 6 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 33 - Rigid body dynamics - 7 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 34 - Rigid body dynamics - 8 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 35 - Rigid body dynamics - 9 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 36 - Rigid body dynamics - 10 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 37 - Rigid body dynamics - 11 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 38 - Rigid body dynamics - 12 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 39 - Rigid body dynamics - 13 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 40 - Rigid body dynamics - 14 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 41 - Rigid body dynamics - 15 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 42 - Rigid body dynamics - 16 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 43 - Lagrangian Formulation - 1 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 44 - Lagrangian Formulation - 2 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 45 - Lagrangian Formulation - 3 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 46 - Lagrangian Formulation - 4 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 47 - Lagrangian Formulation - 5 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 48 - Lagrangian Formulation - 6 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 49 - Lagrangian Formulation - 7 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 50 - Lagrangian Formulation - 8 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 51 - Lagrangian Formulation - 9 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 52 - Lagrangian Formulation - 10 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 53 - Small oscillation - 1 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 54 - Small oscillation - 2 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 55 - Small oscillation - 3 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 56 - Small oscillation - 4 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 57 - Small oscillation - 5 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 58 - Small oscillation - 6 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 59 - Small oscillation - 7 |

Link | NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation | Lecture 60 - Small oscillation - 8 |

Link | NOC:Solid State Physics | Lecture 1 - Atom to Solid Structure |

Link | NOC:Solid State Physics | Lecture 2 - Atom to Solid Structure (Continued...) |

Link | NOC:Solid State Physics | Lecture 3 - Structure of Solid |

Link | NOC:Solid State Physics | Lecture 4 - Structure of Solid (Continued...) |

Link | NOC:Solid State Physics | Lecture 5 - Crystal Structure |

Link | NOC:Solid State Physics | Lecture 6 - Crystal Structure (Continued...) |

Link | NOC:Solid State Physics | Lecture 7 - Crystal Structure (Continued...) |

Link | NOC:Solid State Physics | Lecture 8 - Crystal Structure (Continued...) |

Link | NOC:Solid State Physics | Lecture 9 - Crystal Structure (Continued...) |

Link | NOC:Solid State Physics | Lecture 10 - Crystal Structure (Continued...) |

Link | NOC:Solid State Physics | Lecture 11 - Crystal Structure (Continued...) |

Link | NOC:Solid State Physics | Lecture 12 - Crystal Structure (Continued...) |

Link | NOC:Solid State Physics | Lecture 13 - Crystal Structure (Continued...) |

Link | NOC:Solid State Physics | Lecture 14 - Crystal Structure (Continued...) |

Link | NOC:Solid State Physics | Lecture 15 - Crystal Structure (Continued...) |

Link | NOC:Solid State Physics | Lecture 16 - Crystal Structure (Continued...) |

Link | NOC:Solid State Physics | Lecture 17 - Crystal Structure (Continued...) |

Link | NOC:Solid State Physics | Lecture 18 - X-ray Diffraction from Crystal |

Link | NOC:Solid State Physics | Lecture 19 - X-ray Diffraction from Crystal (Continued...) |

Link | NOC:Solid State Physics | Lecture 20 - X-ray Diffraction from Crystal (Continued...) |

Link | NOC:Solid State Physics | Lecture 21 - X-ray Diffraction from Crystal (Continued...) |

Link | NOC:Solid State Physics | Lecture 22 - X-ray Diffraction from Crystal (Continued...) |

Link | NOC:Solid State Physics | Lecture 23 - X-ray Diffraction from Crystal (Continued...) |

Link | NOC:Solid State Physics | Lecture 24 - X-ray Diffraction from Crystal (Continued...) |

Link | NOC:Solid State Physics | Lecture 25 - Reciprocal Lattice |

Link | NOC:Solid State Physics | Lecture 26 - Reciprocal Lattice (Continued...) |

Link | NOC:Solid State Physics | Lecture 27 - Reciprocal Lattice (Continued...) |

Link | NOC:Solid State Physics | Lecture 28 - Reciprocal Lattice (Continued...) |

Link | NOC:Solid State Physics | Lecture 29 - Reciprocal Lattice (Continued...) |

Link | NOC:Solid State Physics | Lecture 30 - Intensity of Bragg Diffraction |

Link | NOC:Solid State Physics | Lecture 31 - Intensity of Bragg Diffraction (Continued...) |

Link | NOC:Solid State Physics | Lecture 32 - Electrical Properties of Metal |

Link | NOC:Solid State Physics | Lecture 33 - Electrical Properties of Metal (Continued...) |

Link | NOC:Solid State Physics | Lecture 34 - Electrical Properties of Metal (Continued...) |

Link | NOC:Solid State Physics | Lecture 35 - Electrical Properties of Metal (Continued...) |

Link | NOC:Solid State Physics | Lecture 36 - Electrical Properties of Metal (Continued...) |

Link | NOC:Solid State Physics | Lecture 37 - Electrical Properties of Metal (Continued...) |

Link | NOC:Solid State Physics | Lecture 38 - Electrical Properties of Metal (Continued...) |

Link | NOC:Solid State Physics | Lecture 39 - Electrical Properties of Metal (Continued...) |

Link | NOC:Solid State Physics | Lecture 40 - Band Theory of Solids |

Link | NOC:Solid State Physics | Lecture 41 - Band Theory of Solids (Continued...) |

Link | NOC:Solid State Physics | Lecture 42 - Band Theory of Solids (Continued...) |

Link | NOC:Solid State Physics | Lecture 43 - Band Theory of Solids (Continued...) |

Link | NOC:Solid State Physics | Lecture 44 - Band Theory of Solids (Continued...) |

Link | NOC:Solid State Physics | Lecture 45 - Band Theory of Solids (Continued...) |

Link | NOC:Solid State Physics | Lecture 46 - Band Theory of Solids (Continued...) |

Link | NOC:Solid State Physics | Lecture 47 - Physics of Semiconductor |

Link | NOC:Solid State Physics | Lecture 48 - Physics of Semiconductor (Continued...) |

Link | NOC:Solid State Physics | Lecture 49 - Physics of Semiconductor |

Link | NOC:Solid State Physics | Lecture 50 - Electrical Conduction |

Link | NOC:Solid State Physics | Lecture 51 - Electrical Conduction |

Link | NOC:Solid State Physics | Lecture 52 |

Link | NOC:Solid State Physics | Lecture 53 |

Link | NOC:Solid State Physics | Lecture 54 - Thermal Properties of Solid (Continued...) |

Link | NOC:Solid State Physics | Lecture 55 - Thermal Properties of Solid (Continued...) |

Link | NOC:Solid State Physics | Lecture 56 - Thermal Properties of Solid (Continued...) |

Link | NOC:Solid State Physics | Lecture 57 - Thermal Properties of Solid (Continued...) |

Link | NOC:Solid State Physics | Lecture 58 - Magnetic Property of Solid |

Link | NOC:Solid State Physics | Lecture 59 - Magnetic Property of Solid (Continued...) |

Link | NOC:Solid State Physics | Lecture 60 - Magnetic Property of Solid (Continued...) |

Link | NOC:Solid State Physics | Lecture 61 - Magnetic Property of Solid (Continued...) |

Link | NOC:Solid State Physics | Lecture 62 - Magnetic Property of Solid (Continued...) |

Link | NOC:Solid State Physics | Lecture 63 - Magnetic Property of Solid (Continued...) |

Link | NOC:Solid State Physics | Lecture 64 - Magnetic Property of Solid (Continued...) |

Link | NOC:Solid State Physics | Lecture 65 - Magnetic Property of Solid (Continued...) |

Link | NOC:Solid State Physics | Lecture 66 - Magnetic Property of Solid (Continued...) |

Link | NOC:Solid State Physics | Lecture 67 - Magnetic Property of Solid (Continued...) |

Link | NOC:Solid State Physics | Lecture 68 - Magnetic Property of Solid (Continued...) |

Link | NOC:Solid State Physics | Lecture 69 - Magnetic Property of Solid (Continued...) |

Link | NOC:Solid State Physics | Lecture 70 - Magnetic Property of Solid (Continued...) |

Link | NOC:Solid State Physics | Lecture 71 - Magnetic Property of Solids (Continued...) |

Link | NOC:Solid State Physics | Lecture 72 - Dielectric Properties of Solid |

Link | NOC:Solid State Physics | Lecture 73 - Dielectric Properties of Solid (Continued...) |

Link | NOC:Solid State Physics | Lecture 74 - Dielectric Properties of Solid (Continued...) |

Link | NOC:Solid State Physics | Lecture 75 - Superconductivity |

Link | NOC:Atomic and Molecular Physics | Lecture 1 - Experimental observations and theoretical development in discovery of constituents of an atom |

Link | NOC:Atomic and Molecular Physics | Lecture 2 - Experimental observations and theoretical development in discovery of constituents of an atom (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 3 - Experimental observations and theoretical development in discovery of constituents of an atom (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 4 - Experimental observations and theoretical development in discovery of constituents of an atom (Continued...: |

Link | NOC:Atomic and Molecular Physics | Lecture 5 - Experimental observations and theoretical development in discovery of constituents of an atom (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 6 - Structure of an atom |

Link | NOC:Atomic and Molecular Physics | Lecture 7 - Structure of an atom |

Link | NOC:Atomic and Molecular Physics | Lecture 8 - Structure of an atom (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 9 - Atomic structure of an atom |

Link | NOC:Atomic and Molecular Physics | Lecture 10 - Atomic structure of an atom |

Link | NOC:Atomic and Molecular Physics | Lecture 11 - Structure of an atom |

Link | NOC:Atomic and Molecular Physics | Lecture 12 - Atomic structure of an atom |

Link | NOC:Atomic and Molecular Physics | Lecture 13 - Atomic structure of an atom |

Link | NOC:Atomic and Molecular Physics | Lecture 14 - Structure of an atom |

Link | NOC:Atomic and Molecular Physics | Lecture 15 - Structure of an atom |

Link | NOC:Atomic and Molecular Physics | Lecture 16 - Structure of an atom |

Link | NOC:Atomic and Molecular Physics | Lecture 17 - Structure of an atom |

Link | NOC:Atomic and Molecular Physics | Lecture 18 - Structure of an atom |

Link | NOC:Atomic and Molecular Physics | Lecture 19 - Structure of an atom |

Link | NOC:Atomic and Molecular Physics | Lecture 20 - Structure of an atom |

Link | NOC:Atomic and Molecular Physics | Lecture 21 - Atomic spectra |

Link | NOC:Atomic and Molecular Physics | Lecture 22 - Atomic spectra |

Link | NOC:Atomic and Molecular Physics | Lecture 23 - Multielectron atoms |

Link | NOC:Atomic and Molecular Physics | Lecture 24 - Multielectron atoms (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 25 - Multielectron atoms (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 26 - Multielectron atoms (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 27 - Quantum mechanical treatment |

Link | NOC:Atomic and Molecular Physics | Lecture 28 - Quantum mechanical treatment (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 29 - Quantum mechanical treatment of H-like atom |

Link | NOC:Atomic and Molecular Physics | Lecture 30 - Quantum mechanical treatment of H-like atom (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 31 - Quantum mechanical treatment of Hydrogen like atom |

Link | NOC:Atomic and Molecular Physics | Lecture 32 - Quantum mechanical treatment of Hydrogen like atom (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 33 - Quantum mechanical treatment of hydrogen like atom (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 34 - Quantum mechanical treatment of hydrogen like atom (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 35 - Quantum mechanical treatment of hydrogen like atom (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 36 - Quantum Mechanical treatment of Hydrogen like atom (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 37 - Quantum Mechanical treatment of Hydrogen like atom (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 38 - Hydrogen like atom in magnetic field |

Link | NOC:Atomic and Molecular Physics | Lecture 39 - Hydrogen like atom in magnetic field (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 40 - Hydrogen like atom in electric field |

Link | NOC:Atomic and Molecular Physics | Lecture 41 - Physics of molecules |

Link | NOC:Atomic and Molecular Physics | Lecture 42 - Rotation of a molecule |

Link | NOC:Atomic and Molecular Physics | Lecture 43 - Rotation of a molecule (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 44 - Rotation of a molecule (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 45 - Rotation of a molecule (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 46 - Vibration of a molecule |

Link | NOC:Atomic and Molecular Physics | Lecture 47 - Vibration of a molecule (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 48 - Vibration of a molecule (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 49 - Vibration of a molecule (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 50 - Vibration of a molecule (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 51 - Electronic spectra of a molecule |

Link | NOC:Atomic and Molecular Physics | Lecture 52 - Electronic spectra of a molecule (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 53 - Electronic structure of molecules |

Link | NOC:Atomic and Molecular Physics | Lecture 54 - Electronic structure of molecules (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 55 - Electronic structure of a molecule |

Link | NOC:Atomic and Molecular Physics | Lecture 56 - Atomic and Molecular Spectroscopy |

Link | NOC:Atomic and Molecular Physics | Lecture 57 - Raman Spectroscopy |

Link | NOC:Atomic and Molecular Physics | Lecture 58 - Raman Spectroscopy (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 59 - Raman Spectroscopy (Continued...) |

Link | NOC:Atomic and Molecular Physics | Lecture 60 - Resonance spectroscopy |

Link | NOC:Modern Optics | Lecture 1 - Maxwells equations and electromagnetic waves |

Link | NOC:Modern Optics | Lecture 2 - Maxwells equations and electromagnetic waves (Continued...) |

Link | NOC:Modern Optics | Lecture 3 - Maxwells equations and electromagnetic waves (Continued...) |

Link | NOC:Modern Optics | Lecture 4 - Maxwells equations and electromagnetic waves (Continued...) |

Link | NOC:Modern Optics | Lecture 5 - Maxwells equations and electromagnetic waves (Continued...) |

Link | NOC:Modern Optics | Lecture 6 - Maxwells equations and electromagnetic waves (Continued...) |

Link | NOC:Modern Optics | Lecture 7 - Maxwells equations and electromagnetic waves (Continued...) |

Link | NOC:Modern Optics | Lecture 8 - Wave propagation in anisotropic media |

Link | NOC:Modern Optics | Lecture 9 - Wave propagation in anisotropic media (Continued...) |

Link | NOC:Modern Optics | Lecture 10 - Wave propagation in anisotropic media (Continued...) |

Link | NOC:Modern Optics | Lecture 11 - Wave propagation in anisotropic media (Continued...) |

Link | NOC:Modern Optics | Lecture 12 - Wave propagation in anisotropic media (Continued...) |

Link | NOC:Modern Optics | Lecture 13 - Wave propagation in layered structures |

Link | NOC:Modern Optics | Lecture 14 - Wave propagation in layered structures (Continued...) |

Link | NOC:Modern Optics | Lecture 15 - Wave propagation in layered structures (Continued...) |

Link | NOC:Modern Optics | Lecture 16 - Wave propagation in layered structures (Continued...) |

Link | NOC:Modern Optics | Lecture 17 - Wave propagation in layered structures (Continued...) |

Link | NOC:Modern Optics | Lecture 18 - Waves in guided structures and modes |

Link | NOC:Modern Optics | Lecture 19 - Waves in guided structures and modes (Continued...) |

Link | NOC:Modern Optics | Lecture 20 - Waves in guided structures and modes (Continued...) |

Link | NOC:Modern Optics | Lecture 21 - Waves in guided structures and modes (Continued...) |

Link | NOC:Modern Optics | Lecture 22 - Waves in guided structures and modes (Continued...) |

Link | NOC:Modern Optics | Lecture 23 - Waves in guided structures and modes (Continued...) |

Link | NOC:Modern Optics | Lecture 24 - Coupling of waves and optical couplers |

Link | NOC:Modern Optics | Lecture 25 - Coupling of waves and optical couplers (Continued...) |

Link | NOC:Modern Optics | Lecture 26 - Coupling of waves and optical couplers (Continued...) |

Link | NOC:Modern Optics | Lecture 27 - Coupling of waves and optical couplers (Continued...) |

Link | NOC:Modern Optics | Lecture 28 - Coupling of waves and optical couplers (Continued...) |

Link | NOC:Modern Optics | Lecture 29 - Electro-optic Effect |

Link | NOC:Modern Optics | Lecture 30 - Electro-optic Effect (Continued...) |

Link | NOC:Modern Optics | Lecture 31 - Electro-optic Effect (Continued...) |

Link | NOC:Modern Optics | Lecture 32 - Electro-optic Effect (Continued...) |

Link | NOC:Modern Optics | Lecture 33 - Electro-optic Effect (Continued...) |

Link | NOC:Modern Optics | Lecture 34 - Electro-optic Modulators and Devices |

Link | NOC:Modern Optics | Lecture 35 - Electro-optic Modulators and Devices (Continued...) |

Link | NOC:Modern Optics | Lecture 36 - Electro-optic Modulators and Devices (Continued...) |

Link | NOC:Modern Optics | Lecture 37 - Electro-optic Modulators and Devices (Continued...) |

Link | NOC:Modern Optics | Lecture 38 - Electro-optic Modulators and Devices (Continued...) |

Link | NOC:Modern Optics | Lecture 39 - Electro-optic Modulators and Devices (Continued...) |

Link | NOC:Modern Optics | Lecture 40 - Electro-optic Modulators and Devices (Continued...) |

Link | NOC:Modern Optics | Lecture 41 - Acousto-optic Effect |

Link | NOC:Modern Optics | Lecture 42 - Acousto-optic Effect (Continued...) |

Link | NOC:Modern Optics | Lecture 43 - Acousto-optic Effect (Continued...) |

Link | NOC:Modern Optics | Lecture 44 - Acousto-optic Effect (Continued...) |

Link | NOC:Modern Optics | Lecture 45 - Acousto-optic Effect (Continued...) |

Link | NOC:Modern Optics | Lecture 46 - Acousto-optic Effect (Continued...) |

Link | NOC:Modern Optics | Lecture 47 - Acousto-optic Effect (Continued...) |

Link | NOC:Modern Optics | Lecture 48 - Acousto-optic Effect (Continued...) |

Link | NOC:Modern Optics | Lecture 49 - Acousto-optic Effect (Continued...) |

Link | NOC:Modern Optics | Lecture 50 - Acousto-optic Effect (Continued...) |

Link | NOC:Modern Optics | Lecture 51 - Acousto-optic Effect (Continued...) |

Link | NOC:Modern Optics | Lecture 52 - Acousto-optic Effect (Continued...) |

Link | NOC:Modern Optics | Lecture 53 - Acousto-optic Effect (Continued...) |

Link | NOC:Modern Optics | Lecture 54 - Acousto-optic Modulators and Devices |

Link | NOC:Modern Optics | Lecture 55 - Acousto-optic Modulators and Devices (Continued...) |

Link | NOC:Modern Optics | Lecture 56 - Acousto-optic Modulators and Devices (Continued...) |

Link | NOC:Modern Optics | Lecture 57 - Acousto-optic Modulators and Devices (Continued...) |

Link | NOC:Modern Optics | Lecture 58 - Magneto-optic Effect |

Link | NOC:Modern Optics | Lecture 59 - Magneto-optic Effect (Continued...) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 1 - Basic Linear Optics |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 2 - Basic Linear Optics (Continued...) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 3 - Basic Linear Optics (Continued...) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 4 - Basic Linear Optics (Continued...) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 5 - Basic Linear Optics (Continued...) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 6 - Basic Linear Optics (Continued...) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 7 - Basic Linear Optics (Continued...) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 8 - Basic Linear Optics (Continued...) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 9 - Basic Linear Optics (Continued...) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 10 - Nonlinear Optics : An Introduction |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 11 - Classical origin of optical nonlinearity |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 12 - Miller’s Rule |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 13 - Second Harmonic Generation (SHG) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 14 - Optical Rectification, Linear electro-optic effect |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 15 - Sum and Difference frequency generation |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 16 - Nonlinear Maxwell’s equation |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 17 - Theory of SHG |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 18 - Phase matching |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 19 - Phase matching of SHG, Gain band width calculation |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 20 - Manley-Rowe Relation, Energy conservation in SHG, |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 21 - Birefringence phase-matching (BPM),Type I and Type II phase matching |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 22 - Type II phase matching, Symmetry in nonlinear susceptibility |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 23 - Kleinman’s Symmetry, Neumann’s Principle |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 24 - Neumann’s Principle (Continued...) Centrosymmetric system |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 25 - Matrix form : SHG, SFG, DFG , SHG in KDP Crystal |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 26 - SHG in KDP crystal, Calculation of deff |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 27 - SHG in LiNbO3 |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 28 - Quasi phase matching (QPM) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 29 - Quasi phase matching (QPM) (Continued...), Periodic d function |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 30 - 1st, 2nd, 3rd order QPM, SHG under depleted pump |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 31 - Realistic calculation of SHG, 3 wave interaction |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 32 - 3 wave interaction, Equation for pump, signal and idler wave, Non-collinear phase matching |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 33 - Manley-Rowe Relation (3 wave mixing), Parametric down conversion |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 34 - Parametric down conversion (Continued...), Optical Parametric Amplification (OPA) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 35 - Optical Parametric Amplification (OPA), Difference frequency generation under OPA |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 36 - Sum frequency generation under OPA |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 37 - OPA under non-phase matching condition, Expression of gain |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 38 - Optical parametric Oscillator (OPO), Singly resonant oscillator |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 39 - Doubly Resonant Oscillator (DRO) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 40 - Doubly Resonant Oscillator (DRO) (Continued...) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 41 - 3rd order nonlinear effect |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 42 - Optical Kerr effect and Self-focusing, Symmetry in 3rd order susceptibility |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 43 - Symmetry in 3rd order susceptibility (Continued...), Self Phase Modulation (SPM) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 44 - Self Phase Modulation (Continued...), Frequency Shift |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 45 - Third Harmonic Generation(3HG), Energy conservation |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 46 - Third Harmonic Generation (Continued...) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 47 - Third Harmonic Generation (Continued...), Cross Phase Modulation (XPM) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 48 - Cross Phase Modulation (Continued...), Nonlinear Absorption |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 49 - Four Wave Mixing |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 50 - Four Wave mixing (Continued...) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 51 - Parametric Amplification under FWM |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 52 - Parametric Amplification under FWM (Continued...) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 53 - Optical Phase Conjugation |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 54 - Raman Scattering |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 55 - Stimulated Raman Scattering |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 56 - Raman Amplification |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 57 - Raman Amplification (Continued...) |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 58 - Linear pulse propagation |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 59 - Nonlinear Pulse propagation |

Link | NOC:Introduction to Non-linear Optics and its Applications | Lecture 60 - Optical Soliton |

Link | NOC:Upstream LNG Technology | Lecture 1 - Introduction |

Link | NOC:Upstream LNG Technology | Lecture 2 - Concentration |

Link | NOC:Upstream LNG Technology | Lecture 3 - Sources and Process Overview of Natural Gas |

Link | NOC:Upstream LNG Technology | Lecture 4 - Pure Component Phase Behavior |

Link | NOC:Upstream LNG Technology | Lecture 5 - Mixture Phase Behavior |

Link | NOC:Upstream LNG Technology | Lecture 6 - Phase Behaviour of Natural Gas |

Link | NOC:Upstream LNG Technology | Lecture 7 - Dew Point and Bubble Point Calculations |

Link | NOC:Upstream LNG Technology | Lecture 8 - Vapor Liquid Equilibrium |

Link | NOC:Upstream LNG Technology | Lecture 9 - Problems on Vapor Pressure, Gibb's Phase Rule, Dew Point Bubble Point Temperatures |

Link | NOC:Upstream LNG Technology | Lecture 10 - Thermophysical Properties of Natural Gas - I |

Link | NOC:Upstream LNG Technology | Lecture 11 - Thermophysical Properties of Natural Gas - II |

Link | NOC:Upstream LNG Technology | Lecture 12 - Thermodynamic and Chemical Properties |

Link | NOC:Upstream LNG Technology | Lecture 13 - Combustion Properties |

Link | NOC:Upstream LNG Technology | Lecture 14 - Flow in Natural Gas Systems |

Link | NOC:Upstream LNG Technology | Lecture 15 - Flow Measurement In Natural Gas - I |

Link | NOC:Upstream LNG Technology | Lecture 16 - Flow Measurement In Natural Gas - II |

Link | NOC:Upstream LNG Technology | Lecture 17 - Temperature and Quality Measurement in Natural Gas Systems |

Link | NOC:Upstream LNG Technology | Lecture 18 - Pressure measurement in natural gas systems |

Link | NOC:Upstream LNG Technology | Lecture 19 - Tutorial on the estimation of thermophysical properties |

Link | NOC:Upstream LNG Technology | Lecture 20 - Tutorial on the combustion and thermodynamic properties of natural gas |

Link | NOC:Upstream LNG Technology | Lecture 21 - Tutorial on fluid mechanics |

Link | NOC:Upstream LNG Technology | Lecture 22 - Tutorial on flow and pressure measurement in natural gas systems |

Link | NOC:Upstream LNG Technology | Lecture 23 - Tutorial on temperature and quality measurement in natural gas |

Link | NOC:Upstream LNG Technology | Lecture 24 - Heat transfer in natural gas systems |

Link | NOC:Upstream LNG Technology | Lecture 25 - Tutorial on heat transfer in natural gas systems |

Link | NOC:Upstream LNG Technology | Lecture 26 - Heat exchangers in natural gas systems |

Link | NOC:Upstream LNG Technology | Lecture 27 - Analysis of heat exchangers in natural gas systems |

Link | NOC:Upstream LNG Technology | Lecture 28 - Tutorial on heat exchanger analysis |

Link | NOC:Upstream LNG Technology | Lecture 29 - Equillibrium vapour-liquid separation |

Link | NOC:Upstream LNG Technology | Lecture 30 - Equillibrium in multicomponent systems |

Link | NOC:Upstream LNG Technology | Lecture 31 - Separation by distillation |

Link | NOC:Upstream LNG Technology | Lecture 32 - Design of distillation column |

Link | NOC:Upstream LNG Technology | Lecture 33 - Equillibrium fluid solid separation |

Link | NOC:Upstream LNG Technology | Lecture 34 - Membrane separation in natural gas systems |

Link | NOC:Upstream LNG Technology | Lecture 35 - Estimation of water content in natural gas |

Link | NOC:Upstream LNG Technology | Lecture 36 - Multistage single component equillibrium separation |

Link | NOC:Upstream LNG Technology | Lecture 37 - Tutorial on vapour liquid separation |

Link | NOC:Upstream LNG Technology | Lecture 38 - Tutorial on ideal binary distillation |

Link | NOC:Upstream LNG Technology | Lecture 39 - Tutorial on equillibrium gas- solid separation |

Link | NOC:Upstream LNG Technology | Lecture 40 - Tutorial on membrane gas separation |

Link | NOC:Upstream LNG Technology | Lecture 41 - Dehydration of natural gas |

Link | NOC:Upstream LNG Technology | Lecture 42 - Natural gas Processing - hydrate removal |

Link | NOC:Upstream LNG Technology | Lecture 43 - Acid gas removal in natural gas system - I |

Link | NOC:Upstream LNG Technology | Lecture 44 - Acid gas removal in natural gas system - II |

Link | NOC:Upstream LNG Technology | Lecture 45 - Nitrogen removal in natural gas system - I |

Link | NOC:Upstream LNG Technology | Lecture 46 - Nitrogen removal in natural gas system - II |

Link | NOC:Upstream LNG Technology | Lecture 47 - Compression in natural gas systems |

Link | NOC:Upstream LNG Technology | Lecture 48 - Compressors used in natural gas systems |

Link | NOC:Upstream LNG Technology | Lecture 49 - Tutorial on hydrate removal |

Link | NOC:Upstream LNG Technology | Lecture 50 - Multicomponent distillation column design: Approximate method |

Link | NOC:Upstream LNG Technology | Lecture 51 - Sulfur recovery in natural gas systems - I |

Link | NOC:Upstream LNG Technology | Lecture 52 - Tutorial on compression |

Link | NOC:Upstream LNG Technology | Lecture 53 - Pigging |

Link | NOC:Upstream LNG Technology | Lecture 54 - Sulfur recovery in natural gas systems - II |

Link | NOC:Upstream LNG Technology | Lecture 55 - Trace components in natural gas |

Link | NOC:Upstream LNG Technology | Lecture 56 - Helium recovery, upgradation and purification |

Link | NOC:Upstream LNG Technology | Lecture 57 - Fundamentals of absorption and stripping for natural gas processing |

Link | NOC:Upstream LNG Technology | Lecture 58 - Tutorial on absorption and stripping |

Link | NOC:Upstream LNG Technology | Lecture 59 - Gas liquid separation in natural gas systems - I |

Link | NOC:Upstream LNG Technology | Lecture 60 - Gas liquid separation in natural gas systems - II |

Link | NOC:Upstream LNG Technology | Lecture 61 - Tutorial on equillibrium in multicomponent systems |

Link | NOC:Upstream LNG Technology | Lecture 62 - Tutorial on multicomponent distillation - I |

Link | NOC:Upstream LNG Technology | Lecture 63 - Tutorial on multicomponent distillation - II |

Link | NOC:Upstream LNG Technology | Lecture 64 - Pumps in natural gas systems - I |

Link | NOC:Upstream LNG Technology | Lecture 65 - Pumps in natural gas systems - II |

Link | NOC:Upstream LNG Technology | Lecture 66 - Pumps in natural gas systems - III |

Link | NOC:Upstream LNG Technology | Lecture 67 - Tutorial on pumps - I |

Link | NOC:Upstream LNG Technology | Lecture 68 - Tutorial on pumps - II |

Link | NOC:Upstream LNG Technology | Lecture 69 - Cryogenic refrigeration and liquefaction in natural gas systems - I |

Link | NOC:Upstream LNG Technology | Lecture 70 - Cryogenic refrigeration and liquefaction in natural gas systems - II |

Link | NOC:Upstream LNG Technology | Lecture 71 - Tutorial on refrigeration - I |

Link | NOC:Upstream LNG Technology | Lecture 72 - Tutorial on refrigeration - II |

Link | NOC:Upstream LNG Technology | Lecture 73 - Cryogenic refrigeration and liquefaction in natural gas systems - III |

Link | NOC:Upstream LNG Technology | Lecture 74 - Cryogenic refrigeration and liquefaction in natural gas systems - IV |

Link | NOC:Upstream LNG Technology | Lecture 75 - Cryogenic refrigeration and liquefaction in natural gas systems - V |

Link | NOC:Upstream LNG Technology | Lecture 76 - Tutorial on refrigeration - III |

Link | NOC:Upstream LNG Technology | Lecture 77 - Tutorial on refrigeration and liquefaction - IV |

Link | NOC:Upstream LNG Technology | Lecture 78 - Tutorial on refrigeration and liquefaction - V |

Link | NOC:Upstream LNG Technology | Lecture 79 - Hydrocarbon recovery in natural gas system - I |

Link | NOC:Upstream LNG Technology | Lecture 80 - Hydrocarbon recovery in natural gas system - II |

Link | NOC:Upstream LNG Technology | Lecture 81 - Hydrocarbon recovery in natural gas system - III |

Link | NOC:Upstream LNG Technology | Lecture 82 - Tutorial on hydrocarbon recovery in natural gas |

Link | NOC:Upstream LNG Technology | Lecture 83 - Piping in natural gas systems - I |

Link | NOC:Upstream LNG Technology | Lecture 84 - Piping in natural gas systems - II |

Link | NOC:Upstream LNG Technology | Lecture 85 - Tutorial on piping in natural gas systems - I |

Link | NOC:Upstream LNG Technology | Lecture 86 - Tutorial on piping in natural gas systems - II |

Link | NOC:Experimental Physics-I | Lecture 1 - Introduction |

Link | NOC:Experimental Physics-I | Lecture 2 - Basic tools and apparatus |

Link | NOC:Experimental Physics-I | Lecture 3 - Basic tools and apparatus (Continued...) |

Link | NOC:Experimental Physics-I | Lecture 4 - Basic tools and apparatus (Continued...) |

Link | NOC:Experimental Physics-I | Lecture 5 - Basic tools and apparatus (Continued...) |

Link | NOC:Experimental Physics-I | Lecture 6 - Basic tools and apparatus (Continued...) |

Link | NOC:Experimental Physics-I | Lecture 7 - Basic components |

Link | NOC:Experimental Physics-I | Lecture 8 - Basic apparatus |

Link | NOC:Experimental Physics-I | Lecture 9 - Basic apparatus (Continued...) |

Link | NOC:Experimental Physics-I | Lecture 10 - Basic analysis |

Link | NOC:Experimental Physics-I | Lecture 11 - Basics analysis (Continued...) |

Link | NOC:Experimental Physics-I | Lecture 12 - Basics analysis (Continued...) |

Link | NOC:Experimental Physics-I | Lecture 13 - Basics analysis (Continued...) |

Link | NOC:Experimental Physics-I | Lecture 14 - Basics analysis (Continued...) |

Link | NOC:Experimental Physics-I | Lecture 15 - Basics analysis (Continued...) |

Link | NOC:Experimental Physics-I | Lecture 16 - Basics analysis (Continued...) |

Link | NOC:Experimental Physics-I | Lecture 17 - Basics analysis (Continued...) |

Link | NOC:Experimental Physics-I | Lecture 18 - Basics analysis (Continued...) |

Link | NOC:Experimental Physics-I | Lecture 19 - Basics analysis (Continued...) |

Link | NOC:Experimental Physics-I | Lecture 20 - Determination of Young's modulus |

Link | NOC:Experimental Physics-I | Lecture 21 - Demonstration on the experiment of Young's modulus of mettalic bar and data collection |

Link | NOC:Experimental Physics-I | Lecture 22 - Calculate the value of young's modulus of given metallic bar form the recorded datas |

Link | NOC:Experimental Physics-I | Lecture 23 - Experimental demonstration to calculate the spring constant of a given spring |

Link | NOC:Experimental Physics-I | Lecture 24 - Calculate the value of calculate the spring constant of a given spring form the recorded datas |

Link | NOC:Experimental Physics-I | Lecture 25 - Theory regarding Moment of inertia of a flywheel |

Link | NOC:Experimental Physics-I | Lecture 26 - Experimental demonstration to calculate the moment of inertia of a given flywheel |

Link | NOC:Experimental Physics-I | Lecture 27 - How to calculate the value of moment of inertia of a flywheelform the recorded data |

Link | NOC:Experimental Physics-I | Lecture 28 - Theory regarding surface tension of the liquid |

Link | NOC:Experimental Physics-I | Lecture 29 - Demonstration on the experiment of surface tension and data collection |

Link | NOC:Experimental Physics-I | Lecture 30 - How to calculate the value of surface tension of water from the recorded data |

Link | NOC:Experimental Physics-I | Lecture 31 - Theory regarding viscosity of liquid |

Link | NOC:Experimental Physics-I | Lecture 32 - Demonstration on the experiment of viscosity |

Link | NOC:Experimental Physics-I | Lecture 33 - Data analysis of recorded data on viscosity |

Link | NOC:Experimental Physics-I | Lecture 34 - Forced Oscillations Pohls pendulum |

Link | NOC:Experimental Physics-I | Lecture 35 - Coupled Pendulum |

Link | NOC:Experimental Physics-I | Lecture 36 - Demonstration on the experiment of compound pendulum |

Link | NOC:Experimental Physics-I | Lecture 37 - Theory regarding compound pendulum has been discussed |

Link | NOC:Experimental Physics-I | Lecture 38 - Experimental demonstration on the standing Waves on a String has been shown clearly how to determine the linear mass density of the string. |

Link | NOC:Experimental Physics-I | Lecture 39 - Linear expansion of metal |

Link | NOC:Experimental Physics-I | Lecture 40 - Expt. to study linear expansion |

Link | NOC:Experimental Physics-I | Lecture 41 - Determine the coefficient of thermal conductivity of a bad conductor |

Link | NOC:Experimental Physics-I | Lecture 42 - Determination of electrical equivalent of heat |

Link | NOC:Experimental Physics-I | Lecture 43 - Determination of specific heat of the given solid metals using Dulong-Petit's law |

Link | NOC:Experimental Physics-I | Lecture 44 - Determination of the calibration curve of a given (Type K chromelâ€“alumel) thermocouple and hence determination of Seebeck coefficient |

Link | NOC:Experimental Physics-I | Lecture 45 - Theorey and Demonstartion Platinum Resistance thermometer |

Link | NOC:Experimental Physics-I | Lecture 46 - Experiment on Platinum Resistance thermometer |

Link | NOC:Experimental Physics-I | Lecture 47 - To study the current-voltage relationship of an L-R circuit |

Link | NOC:Experimental Physics-I | Lecture 48 - To study the variation in current and voltage in a series LCR circuit |

Link | NOC:Experimental Physics-I | Lecture 49 - Sensitivity of Blastic Galvanometer |

Link | NOC:Experimental Physics-I | Lecture 50 - Expt. for Sensitivity of Blastic Galvanometer |

Link | NOC:Experimental Physics-I | Lecture 51 - Theory on RC Circuit |

Link | NOC:Experimental Physics-I | Lecture 52 - Expt. on RC Circuit |

Link | NOC:Experimental Physics-I | Lecture 53 - Theory regarding the magnetic field along the axis of a circular coil |

Link | NOC:Experimental Physics-I | Lecture 54 - Experiment regarding the magnetic field along the axis of a circular coil |

Link | NOC:Experimental Physics-I | Lecture 55 - Study the induced e.m.f of inductance coil |

Link | NOC:Experimental Physics-I | Lecture 56 - Mutual inductance |

Link | NOC:Experimental Physics-I | Lecture 57 - Theory regarding permeability of air |

Link | NOC:Experimental Physics-I | Lecture 58 - Experiment to determination the permeability of air |

Link | NOC:Experimental Physics-I | Lecture 59 - Devices around us |

Link | NOC:Experimental Physics-I | Lecture 60 - Devices around us (Continued...) |

Link | NOC:Experimental Physics-II | Lecture 1 - Introduction |

Link | NOC:Experimental Physics-II | Lecture 2 - Summary of Experimental Physics - I |

Link | NOC:Experimental Physics-II | Lecture 3 - Summary of Experimental Physics - I (Continued...) |

Link | NOC:Experimental Physics-II | Lecture 4 - Summary of Experimental Physics - I (Continued...) |

Link | NOC:Experimental Physics-II | Lecture 5 - Summary of Experimental Physics - I (Continued...) |

Link | NOC:Experimental Physics-II | Lecture 6 - Basic analysis |

Link | NOC:Experimental Physics-II | Lecture 7 - Basic analysis (Continued...) |

Link | NOC:Experimental Physics-II | Lecture 8 - Basic components |

Link | NOC:Experimental Physics-II | Lecture 9 - Basic components (Continued...) |

Link | NOC:Experimental Physics-II | Lecture 10 - Basic components (Continued...) |

Link | NOC:Experimental Physics-II | Lecture 11 - Basic idea on mirros and lenses and their applications |

Link | NOC:Experimental Physics-II | Lecture 12 - Determination of focal length of concave mirror |

Link | NOC:Experimental Physics-II | Lecture 13 - Determination of focal length of concave mirror (Continued...) |

Link | NOC:Experimental Physics-II | Lecture 14 - Determination of focal length of convex mirror |

Link | NOC:Experimental Physics-II | Lecture 15 - Determination of focal length of convex lens |

Link | NOC:Experimental Physics-II | Lecture 16 - Determination of focal length of concave lens |

Link | NOC:Experimental Physics-II | Lecture 17 - Determination of focal length of convex lens by diplacement method |

Link | NOC:Experimental Physics-II | Lecture 18 - Applications of mirrors and lenses |

Link | NOC:Experimental Physics-II | Lecture 19 - Determination of refractive index of liquid using travelling microscope |

Link | NOC:Experimental Physics-II | Lecture 20 - Basic discussion on spectrometer and prism |

Link | NOC:Experimental Physics-II | Lecture 21 - Basic discussion on spectrometer and prism (Continued...) |

Link | NOC:Experimental Physics-II | Lecture 22 - Basic discussion on spectrometer and prism (Continued...) |

Link | NOC:Experimental Physics-II | Lecture 23 - Schuster's method |

Link | NOC:Experimental Physics-II | Lecture 24 - Discussion on angle of the prism, angular dispersion and dispersive power of given prism |

Link | NOC:Experimental Physics-II | Lecture 25 - Determination of the angle of prism |

Link | NOC:Experimental Physics-II | Lecture 26 - Determination of the angle of minimum deviation for a given prism and hence to determine the refractive index of the given prism |

Link | NOC:Experimental Physics-II | Lecture 27 - Discussion on the angle of incidence and corresponding deviation of light through a prism and determination of the angle of minimum deviation for a given prism from the plot of the angle of incidence versus deviation. |

Link | NOC:Experimental Physics-II | Lecture 28 - Determination of the angle of minimum deviation from (i-D) plot for a given prism and hence to determine the refractive index of the given prism. |

Link | NOC:Experimental Physics-II | Lecture 29 - Determination of the calibration plot of deviation versus wavelength for a given prism and hence determination of the wavelength of the unknown light source using the calibration plot |

Link | NOC:Experimental Physics-II | Lecture 30 - Determination of the dispersive power, Cauchy constant and resolving power of a given prism. |

Link | NOC:Experimental Physics-II | Lecture 31 - Interference Phenomena |

Link | NOC:Experimental Physics-II | Lecture 32 - Interference Phenomena (Continued...) |

Link | NOC:Experimental Physics-II | Lecture 33 - Interference Phenomena (Continued...) |

Link | NOC:Experimental Physics-II | Lecture 34 - Bi-prism |

Link | NOC:Experimental Physics-II | Lecture 35 - Bi-prism (Continued...) |

Link | NOC:Experimental Physics-II | Lecture 36 - Interference phenomena by Newton ring (Theory) |

Link | NOC:Experimental Physics-II | Lecture 37 - Interference phenomena by Newton ring (Experiment) |

Link | NOC:Experimental Physics-II | Lecture 38 - Michelson interferometer (Theory) |

Link | NOC:Experimental Physics-II | Lecture 39 - Michelson interferometer (Experiment) |

Link | NOC:Experimental Physics-II | Lecture 40 - Theory of diffraction |

Link | NOC:Experimental Physics-II | Lecture 41 - Theory of diffraction (Continued...) |

Link | NOC:Experimental Physics-II | Lecture 42 - Theory of diffraction (Continued...) |

Link | NOC:Experimental Physics-II | Lecture 43 - Single slit diffraction |

Link | NOC:Experimental Physics-II | Lecture 44 - Double slit diffraction |

Link | NOC:Experimental Physics-II | Lecture 45 - Plane transmission grating |

Link | NOC:Experimental Physics-II | Lecture 46 - Plane transmission grating (Continued...) |

Link | NOC:Experimental Physics-II | Lecture 47 - Theory of polarization |

Link | NOC:Experimental Physics-II | Lecture 48 - Theory of polarization (Continued...) |

Link | NOC:Experimental Physics-II | Lecture 49 - Experiment for Verification of Malus law |

Link | NOC:Experimental Physics-II | Lecture 50 - Experiment for brewester |

Link | NOC:Experimental Physics-II | Lecture 51 - Experiment for Brewester angle |

Link | NOC:Experimental Physics-II | Lecture 52 - Experiment on e-ray and o-ray |

Link | NOC:Experimental Physics-II | Lecture 53 - Polarimeter |

Link | NOC:Experimental Physics-II | Lecture 54 - Zone-plate Theory |

Link | NOC:Experimental Physics-II | Lecture 55 - Zone-plate Experiment |

Link | NOC:Experimental Physics-II | Lecture 56 - Theory of Photoelectric Effect |

Link | NOC:Experimental Physics-II | Lecture 57 - Experiment on Photoelectric Effect |

Link | NOC:Experimental Physics-II | Lecture 58 - Thomson experiment to determine the specific charge of an electron (e/m) |

Link | NOC:Experimental Physics-II | Lecture 59 - Frank-Hertz Experiment |

Link | NOC:Experimental Physics-II | Lecture 60 - Experiment on Rydberg constant |

Link | NOC:Experimental Physics-II | Lecture 61 - Experiment on Rydberg constant (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 1 - Basic Tools and Instruments in the Laboratory |

Link | NOC:Experimental Physics-III | Lecture 2 - Basic Tools and Instruments in the Laboratory (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 3 - Cathode Ray Oscilloscope (CRO) |

Link | NOC:Experimental Physics-III | Lecture 4 - Cathode Ray Oscilloscope (CRO) (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 5 - Electro Magnet and Constant Current Power Supply |

Link | NOC:Experimental Physics-III | Lecture 6 - Electro Magnet and Constant Current Power Supply (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 7 - Electro Magnet and Constant Current Power Supply (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 8 - Gaussmeter/Teslameter |

Link | NOC:Experimental Physics-III | Lecture 9 - Gaussmeter/Teslameter (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 10 - Lock in Amplifier |

Link | NOC:Experimental Physics-III | Lecture 11 - Lock in Amplifier (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 12 - Measurement of magneto resistance |

Link | NOC:Experimental Physics-III | Lecture 13 - Magneto resistance for Semiconductor |

Link | NOC:Experimental Physics-III | Lecture 14 - Hall Effect |

Link | NOC:Experimental Physics-III | Lecture 15 - Hall Effect as a function of magnetic Field |

Link | NOC:Experimental Physics-III | Lecture 16 - Hall Effect as a function of temperature |

Link | NOC:Experimental Physics-III | Lecture 17 - To study the variation of resistivity of metal and semiconductor at low temperature region (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 18 - To study the variation of resistivity of metal and semiconductor at low temperature region (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 19 - Measurement of magnetisation of ferromagnetic material |

Link | NOC:Experimental Physics-III | Lecture 20 - Measurement of magnetisation of ferromagnetic material (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 21 - Susceptibility of paramagnetic substance by Quincke's tube method |

Link | NOC:Experimental Physics-III | Lecture 22 - Experiment of Quincke's Tube Method |

Link | NOC:Experimental Physics-III | Lecture 23 - Susceptibility of paramagnetic substance by Gouy's method |

Link | NOC:Experimental Physics-III | Lecture 24 - Dielectric constant of solid |

Link | NOC:Experimental Physics-III | Lecture 25 - Dielectric constant of non-conducting liquid |

Link | NOC:Experimental Physics-III | Lecture 26 - P-E Loop of Ferroelectric Material |

Link | NOC:Experimental Physics-III | Lecture 27 - Measurement of Ionic Conductivity |

Link | NOC:Experimental Physics-III | Lecture 28 - Measurement of Ionic Conductivity (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 29 - Electron Spin Resonance (ESR) |

Link | NOC:Experimental Physics-III | Lecture 30 - Electron Spin Resonance (ESR) Experiment |

Link | NOC:Experimental Physics-III | Lecture 31 - Superconductivity |

Link | NOC:Experimental Physics-III | Lecture 32 - Superconductivity (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 33 - Superconductivity (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 34 - Nuclear g-factor |

Link | NOC:Experimental Physics-III | Lecture 35 - Nuclear g-factor (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 36 - P-N Junction |

Link | NOC:Experimental Physics-III | Lecture 37 - P-N Junction (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 38 - P-N Junction (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 39 - Zeeman Effect |

Link | NOC:Experimental Physics-III | Lecture 40 - Zeeman Effect (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 41 - Zeeman Effect (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 42 - Sodium Yellow Doublet |

Link | NOC:Experimental Physics-III | Lecture 43 - Sodium Yellow Doublet (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 44 - Study of Absorption Spectrum of Iodine Vapour |

Link | NOC:Experimental Physics-III | Lecture 45 - Study of Absorption Spectrum of Iodine Vapour (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 46 - Study of Absorption Spectrum of Iodine Vapour (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 47 - Determination of Wavelength of Spectral Lines using Constant Deviation Spectrometer |

Link | NOC:Experimental Physics-III | Lecture 48 - Determination of Wavelength of Spectral Lines using Constant Deviation Spectrometer (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 49 - Photoelastic Property of Materials |

Link | NOC:Experimental Physics-III | Lecture 50 - Photoelastic Property of Materials (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 51 - Photoelastic Property of Materials (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 52 - Faraday Effect |

Link | NOC:Experimental Physics-III | Lecture 53 - Faraday Effect (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 54 - Electron Diffraction |

Link | NOC:Experimental Physics-III | Lecture 55 - Electron Diffraction (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 56 - Determination of Velocity of Light in Free Space |

Link | NOC:Experimental Physics-III | Lecture 57 - Determination of Velocity of Light in Free Space (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 58 - X-Ray Diffraction and Crystal Structure |

Link | NOC:Experimental Physics-III | Lecture 59 - X-Ray Diffraction and Crystal Structure (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 60 - X-Ray Diffraction and Crystal Structure (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 61 - X-Ray Diffraction and Crystal Structure (Continued...) |

Link | NOC:Experimental Physics-III | Lecture 62 |

Link | NOC:Electronic Theory of Solids | Lecture 1 - Free electrons: Drude Theory |

Link | NOC:Electronic Theory of Solids | Lecture 2 - Weidemann Franz Law |

Link | NOC:Electronic Theory of Solids | Lecture 3 - Drude Model continued: Hall Effect |

Link | NOC:Electronic Theory of Solids | Lecture 4 - Schrodinger Equation: Boundary Conditions |

Link | NOC:Electronic Theory of Solids | Lecture 5 - Density of States |

Link | NOC:Electronic Theory of Solids | Lecture 6 - Properties of Degenerate Fermi Gas |

Link | NOC:Electronic Theory of Solids | Lecture 7 - Statistics Fermi-Dirac distribution and Maxwell-Boltzmann Distribution: comparison and Specific Heat |

Link | NOC:Electronic Theory of Solids | Lecture 8 - Sommerfeld Expansion and Band Formation: Temperature dependent densities, Chemical Potential, Specific Heat |

Link | NOC:Electronic Theory of Solids | Lecture 9 - Bonding and Band Formation: N=2 solid Molecular Orbitals, Linear combinations of Atomic Orbitals (LCAO) |

Link | NOC:Electronic Theory of Solids | Lecture 10 - Variational Method: Molecular Orbitals, Bonding and anti-bonding Orbitals |

Link | NOC:Electronic Theory of Solids | Lecture 11 - Bonding and Band Formation (LCAO) |

Link | NOC:Electronic Theory of Solids | Lecture 12 - Bonding and Band Formation (LCAO) (Continued...) |

Link | NOC:Electronic Theory of Solids | Lecture 13 - Bloch's Theorem |

Link | NOC:Electronic Theory of Solids | Lecture 14 - Proof of Bloch's Theorem |

Link | NOC:Electronic Theory of Solids | Lecture 15 - N atoms Solid |

Link | NOC:Electronic Theory of Solids | Lecture 16 - Brillouin Zones |

Link | NOC:Electronic Theory of Solids | Lecture 17 - Tight binding: lattice with a basis |

Link | NOC:Electronic Theory of Solids | Lecture 18 - Fermi Surfaces |

Link | NOC:Electronic Theory of Solids | Lecture 19 - Lattice with basis:Energy Spectrum |

Link | NOC:Electronic Theory of Solids | Lecture 20 - Energy spectrum (Continued...) |

Link | NOC:Electronic Theory of Solids | Lecture 21 - Graphene and Fermi Surfaces |

Link | NOC:Electronic Theory of Solids | Lecture 22 - Fermi Surfaces Instabilities |

Link | NOC:Electronic Theory of Solids | Lecture 23 - Low Dimensional Systems |

Link | NOC:Electronic Theory of Solids | Lecture 24 - Integer Quantum Hall Effect (IQHE) |

Link | NOC:Electronic Theory of Solids | Lecture 25 - Integer Quantum Hall Effect (Continued...) |

Link | NOC:Electronic Theory of Solids | Lecture 26 - Electron in a Strong Magnetic Field and IQHE |

Link | NOC:Electronic Theory of Solids | Lecture 27 - Spintronics: Introduction and Applications |

Link | NOC:Electronic Theory of Solids | Lecture 28 - Magnetism |

Link | NOC:Electronic Theory of Solids | Lecture 29 - Magnetism: Quantum Theory |

Link | NOC:Electronic Theory of Solids | Lecture 30 - Hund's Rule |

Link | NOC:Electronic Theory of Solids | Lecture 31 - Curie's Law and Van Vleck Paramagnetism |

Link | NOC:Electronic Theory of Solids | Lecture 32 - Curie's law for any J, Susceptibility |

Link | NOC:Electronic Theory of Solids | Lecture 33 - Susceptibility and Thermal Properties |

Link | NOC:Electronic Theory of Solids | Lecture 34 - Adiabatic Demagnetisation |

Link | NOC:Electronic Theory of Solids | Lecture 35 - Pauli Paramagnetism |

Link | NOC:Electronic Theory of Solids | Lecture 36 - Paramagnetism of metals |

Link | NOC:Electronic Theory of Solids | Lecture 37 - Exchange interaction for 2 electrons |

Link | NOC:Electronic Theory of Solids | Lecture 38 - Exchange interactions of different types |

Link | NOC:Electronic Theory of Solids | Lecture 39 - Magnetic Order |

Link | NOC:Electronic Theory of Solids | Lecture 40 - Magnetic Order of different types and Heisenberg model |

Link | NOC:Electronic Theory of Solids | Lecture 41 - Ising Model |

Link | NOC:Electronic Theory of Solids | Lecture 42 - Mean Field Theory |

Link | NOC:Electronic Theory of Solids | Lecture 43 - Spontaneous magnetisation and 1D Ising Model |

Link | NOC:Electronic Theory of Solids | Lecture 44 - Symmetries of Ising model, Exact Solution |

Link | NOC:Electronic Theory of Solids | Lecture 45 - Ferromagnetic Heisenberg Model |

Link | NOC:Electronic Theory of Solids | Lecture 46 - Ground State and Magnons/Excitations |

Link | NOC:Electronic Theory of Solids | Lecture 47 - Superconductivity |

Link | NOC:Electronic Theory of Solids | Lecture 48 - London Equation |

Link | NOC:Electronic Theory of Solids | Lecture 49 - Meisner Effect from London Equation |

Link | NOC:Electronic Theory of Solids | Lecture 50 - Cooper problem |

Link | NOC:Electronic Theory of Solids | Lecture 51 - Instability of the Fermi Surface |

Link | NOC:Electronic Theory of Solids | Lecture 52 - BCS Theory Introduction |

Link | NOC:Electronic Theory of Solids | Lecture 53 - BCS Theory, Excitation Spectrum |

Link | NOC:Electronic Theory of Solids | Lecture 54 - BCS |

Link | NOC:Electronic Theory of Solids | Lecture 55 - Tunneling and Ginzberg Landau Theory |

Link | NOC:Electronic Theory of Solids | Lecture 56 - Electrodynamics of Superconductivity |

Link | NOC:Electronic Theory of Solids | Lecture 57 - Type II superconductors |

Link | NOC:Electronic Theory of Solids | Lecture 58 - Josephson junction |

Link | NOC:Electronic Theory of Solids | Lecture 59 - Vortices, SQUID, Quantum Supremacy and Qubits |

Link | NOC:Electronic Theory of Solids | Lecture 60 - Topological state of matter, XY Model, Topological Insulators |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 1 - Wave Equation, Maxwell’s equation, Plane wave |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 2 - EM wave in vacuum, Poynting vector, Maxwell’s equation in Dielectric Medium |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 3 - Poynting Vector, Maxwell’s equation in dielectric medium (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 4 - Total Internal reflection, Evanescent wave |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 5 - Step-index fiber (SIF), Light guidance in SIF |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 6 - Light guidance in SIF (Skew Ray), V-Parameter, Discrete Ray |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 7 - Cutoff wavelength, Fiber characteristics |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 8 - Fiber Loss, dB units, Dispersion |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 9 - Dispersion, Ray Path constant |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 10 - Ray path constant, Ray equation |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 11 - Ray equation (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 12 - Ray transit time |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 13 - Ray transit time (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 14 - Material dispersion |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 15 - Material dispersion (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 16 - Material Dispersion (Continued...), Dispersion Coefficient |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 17 - Pulse Broadening |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 18 - Pulse Propagation in Dispersive Medium |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 19 - Pulse Propagation in Dispersive Medium (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 20 - Concept of Modes |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 21 - TE and TM Modes |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 22 - TE and TM Modes (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 23 - Modes in Slab waveguide |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 24 - Modes in Slab waveguide (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 25 - Modes in Slab waveguide (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 26 - Modes in Slab Waveguide (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 27 - Waveguide Dispersion |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 28 - Physical Understanding of Modes |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 29 - Power Associated with a Modes |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 30 - Modes in an Optical Fiber |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 31 - Modes in an optical fiber (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 32 - Modes in an optical fiber (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 33 - LPlm mode structure |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 34 - Optical fiber mode morphology (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 35 - Effective area of mode, Fiber optics components |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 36 - Directional Coupler |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 37 - Coupled Mode Theory |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 38 - Coupled Mode Theory (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 39 - 3 dB power splitter |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 40 - Working principle of WDM coupler |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 41 - Fiber Bragg Grating |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 42 - Fiber Bragg Grating (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 43 - Reflectivity Calculation |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 44 - Reflectivity Calculation (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 45 - Reflectivity calculation of FBG (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 46 - Reflectivity calculation of FBG (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 47 - Reflectivity calculation of FBG (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 48 - Bandwidth of reflectivity |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 49 - Basic nonlinear optics |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 50 - Frequency mixing, Optical Kerr effect |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 51 - Optical Kerr effect (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 52 - Self Phase Modulation |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 53 - Self Phase Modulation (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 54 - Self Phase Modulation (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 55 - Pulse propagation in nonlinear waveguide |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 56 - Pulse propagation in nonlinear waveguide (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 57 - Pulse propagation in nonlinear dispersive waveguide |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 58 - Pulse propagation in nonlinear dispersive waveguide (Continued...) |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 59 - Concept of optical soliton |

Link | NOC:Physics of Linear and Nonlinear Optical Waveguides | Lecture 60 - Concept of optical soliton (Continued...) |

Link | NOC:Physics of Renewable Energy Systems | Lecture 1 - Introduction and relevance of the course |

Link | NOC:Physics of Renewable Energy Systems | Lecture 2 - Energy sources |

Link | NOC:Physics of Renewable Energy Systems | Lecture 3 - Solar Radiation |

Link | NOC:Physics of Renewable Energy Systems | Lecture 4 - Solar Photovoltaic Systems |

Link | NOC:Physics of Renewable Energy Systems | Lecture 5 - Origin of Band Structure and Energy Band Gap |

Link | NOC:Physics of Renewable Energy Systems | Lecture 6 - Basics of Semiconductors |

Link | NOC:Physics of Renewable Energy Systems | Lecture 7 - Construction of Solar Cells |

Link | NOC:Physics of Renewable Energy Systems | Lecture 8 - Characterization of Solar Cells and Future Direction |

Link | NOC:Physics of Renewable Energy Systems | Lecture 9 - Solar Heaters |

Link | NOC:Physics of Renewable Energy Systems | Lecture 10 - Introduction to Wind Energy |

Link | NOC:Physics of Renewable Energy Systems | Lecture 11 - Continuity Equation and its applications |

Link | NOC:Physics of Renewable Energy Systems | Lecture 12 - Betz Criteria for extracting wind power |

Link | NOC:Physics of Renewable Energy Systems | Lecture 13 - Wind turbines and their operation |

Link | NOC:Physics of Renewable Energy Systems | Lecture 14 - Materials Aspects and future direction |

Link | NOC:Physics of Renewable Energy Systems | Lecture 15 - Introduction to Hydroelectric Power |

Link | NOC:Physics of Renewable Energy Systems | Lecture 16 - Hydroelectric Power Station and Turbines |

Link | NOC:Physics of Renewable Energy Systems | Lecture 17 - Wave power and converters |

Link | NOC:Physics of Renewable Energy Systems | Lecture 18 - Introduction to Tidal Power |

Link | NOC:Physics of Renewable Energy Systems | Lecture 19 - Tidal Power and Geothermal Energy |

Link | NOC:Physics of Renewable Energy Systems | Lecture 20 - Introduction to Energy Storage Systems |

Link | NOC:Physics of Renewable Energy Systems | Lecture 21 - Thermal Energy Storage |

Link | NOC:Physics of Renewable Energy Systems | Lecture 22 - Basics of Mechanical Energy Storage |

Link | NOC:Physics of Renewable Energy Systems | Lecture 23 - Pumped Hydroelectric to Flywheels (Mechanical Energy Storage Systems) |

Link | NOC:Physics of Renewable Energy Systems | Lecture 24 - Introduction to Li-ion battery |

Link | NOC:Physics of Renewable Energy Systems | Lecture 25 - Characteristics and Parameters of Li-ion batteries |

Link | NOC:Physics of Renewable Energy Systems | Lecture 26 - Cathode Materials for Li-ion batteries |

Link | NOC:Physics of Renewable Energy Systems | Lecture 27 - Anode Materials for Li-ion batteries |

Link | NOC:Physics of Renewable Energy Systems | Lecture 28 - Electrolytes and Separators for Li-batteries |

Link | NOC:Physics of Renewable Energy Systems | Lecture 29 - From battery to supercapacitors |

Link | NOC:Physics of Renewable Energy Systems | Lecture 30 - Construction, development and classification of Supercapacitors |

Link | NOC:Physics of Renewable Energy Systems | Lecture 31 - Electric double layer capacitors (EDLCs) |

Link | NOC:Physics of Renewable Energy Systems | Lecture 32 - Pseudocapacitors |

Link | NOC:Physics of Renewable Energy Systems | Lecture 33 - Electrochemical Techniques for Supercapacitors and Batteries |

Link | NOC:Physics of Renewable Energy Systems | Lecture 34 - From material to a supercapacitor device |

Link | NOC:Physics of Renewable Energy Systems | Lecture 35 - Effect of temperature on supercapacitor performance |

Link | NOC:Physics of Renewable Energy Systems | Lecture 36 - Effect of external magnetic field and frequency on supercapacitors |

Link | NOC:Physics of Renewable Energy Systems | Lecture 37 - Introduction to Fuel Cells |

Link | NOC:Physics of Renewable Energy Systems | Lecture 38 - Explanation of Fuel cell systems |

Link | NOC:Physics of Renewable Energy Systems | Lecture 39 - Microbial Fuel Cells |

Link | NOC:Physics of Renewable Energy Systems | Lecture 40 - Nanotechnology and Nanomaterials for Energy Applications |

Link | NOC:Physics of Renewable Energy Systems | Lecture 41 - Synthesis of nanomaterials |

Link | NOC:Physics of Renewable Energy Systems | Lecture 42 - Carbon- and metal-oxide based nanomaterials |

Link | NOC:Physics of Renewable Energy Systems | Lecture 43 - Nanocatalysts |

Link | NOC:Physics of Renewable Energy Systems | Lecture 44 - Characterization techniques for solid materials |

Link | NOC:Physics of Renewable Energy Systems | Lecture 45 - X-ray diffraction method |

Link | NOC:Physics of Renewable Energy Systems | Lecture 46 - UV-Visible Spectroscopy |

Link | NOC:Physics of Renewable Energy Systems | Lecture 47 - Fourier Transform Infrared Spectroscopy |

Link | NOC:Physics of Renewable Energy Systems | Lecture 48 - SEM, TEM and XPS |

Link | NOC:Physics of Renewable Energy Systems | Lecture 49 - Particle size and zeta potential analysis |

Link | NOC:Physics of Renewable Energy Systems | Lecture 50 - BET analysis |

Link | NOC:Physics of Renewable Energy Systems | Lecture 51 - Electrochemical Impedance Spectroscopy |

Link | NOC:Thermal Physics | Lecture 1 - Foundation of kinetic theory of gasses |

Link | NOC:Thermal Physics | Lecture 2 - Maxwell's law for speed distribution of gas molecules |

Link | NOC:Thermal Physics | Lecture 3 - Average speeds in an ideal gas assembly |

Link | NOC:Thermal Physics | Lecture 4 - Principle of equipartition of energy |

Link | NOC:Thermal Physics | Lecture 5 - Maxwell's law for energy distribution of gas molecules |

Link | NOC:Thermal Physics | Lecture 6 - The mean free path of a gas assembly |

Link | NOC:Thermal Physics | Lecture 7 - Expression for mean free path |

Link | NOC:Thermal Physics | Lecture 8 - Experimental determination of mean free path |

Link | NOC:Thermal Physics | Lecture 9 - Pressure an molecular flux from mean free path |

Link | NOC:Thermal Physics | Lecture 10 - Problems on mean free path |

Link | NOC:Thermal Physics | Lecture 11 - Transport in fluids: introduction |

Link | NOC:Thermal Physics | Lecture 12 - Viscosity: transport of momentum |

Link | NOC:Thermal Physics | Lecture 13 - Thermal conductivity: trasnport of thermal energy |

Link | NOC:Thermal Physics | Lecture 14 - Diffusion coefficient: transport of mass |

Link | NOC:Thermal Physics | Lecture 15 - Molecular effusion: theory and applications |

Link | NOC:Thermal Physics | Lecture 16 - Brownian motion: concept, features, theory of fluctuation |

Link | NOC:Thermal Physics | Lecture 17 - Brownian motion: mean square displacement and vertical distribution of particles |

Link | NOC:Thermal Physics | Lecture 18 - Perrin's experiment on Brownian motion - Part 1 |

Link | NOC:Thermal Physics | Lecture 19 - Perrin's experiment on Brownian motion - Part 2 |

Link | NOC:Thermal Physics | Lecture 20 - Problems on Brownian motion, Rotational brownian motion |

Link | NOC:Thermal Physics | Lecture 21 - Specific heat of solids: Dulong-Petit law and Einstein theory |

Link | NOC:Thermal Physics | Lecture 22 - Limitaion of Einstein theory of specific heat |

Link | NOC:Thermal Physics | Lecture 23 - Debye theory of specific heat |

Link | NOC:Thermal Physics | Lecture 24 - Behavior of real gasses |

Link | NOC:Thermal Physics | Lecture 25 - Van der Waals equation of state |

Link | NOC:Thermal Physics | Lecture 26 - Critical parameters from Van der Waal's equation |

Link | NOC:Thermal Physics | Lecture 27 - Determination of Van der Waals' constants and Boyle temperature |

Link | NOC:Thermal Physics | Lecture 28 - Other equations of state |

Link | NOC:Thermal Physics | Lecture 29 - Measurement of temperature: Celcius scale, ideal gas scale, absolute zero |

Link | NOC:Thermal Physics | Lecture 30 - The platinum resistance thermometer |

Link | NOC:Thermal Physics | Lecture 31 - Basic concepts of classical thermodynamics |

Link | NOC:Thermal Physics | Lecture 32 - Basic concepts of classical thermodynamics (Continued...) |

Link | NOC:Thermal Physics | Lecture 33 - First law of thermodynamics |

Link | NOC:Thermal Physics | Lecture 34 - General description of work done and specific heat |

Link | NOC:Thermal Physics | Lecture 35 - General discussion on Heat conduction and elastic properties |

Link | NOC:Thermal Physics | Lecture 36 - Cyclic processes |

Link | NOC:Thermal Physics | Lecture 37 - The reversible heat engine: Carnot cycle |

Link | NOC:Thermal Physics | Lecture 38 - Refrigarator and Carnot Theorem |

Link | NOC:Thermal Physics | Lecture 39 - 2nd law and Clausius theorem |

Link | NOC:Thermal Physics | Lecture 40 - Concept of Entropy and mathematical form of 2nd law |

Link | NOC:Thermal Physics | Lecture 41 - The entropy principle |

Link | NOC:Thermal Physics | Lecture 42 - Efficiency of a cycle from T-S diagram |

Link | NOC:Thermal Physics | Lecture 43 - The Otto cycle |

Link | NOC:Thermal Physics | Lecture 44 - The Diesel cycle |

Link | NOC:Thermal Physics | Lecture 45 - Entropy and available energy |

Link | NOC:Thermal Physics | Lecture 46 - Thermodynamic relations |

Link | NOC:Thermal Physics | Lecture 47 - Application of thermodynamic relation |

Link | NOC:Thermal Physics | Lecture 48 - The free energy functions |

Link | NOC:Thermal Physics | Lecture 49 - Condition for thermodynamic equilibri |

Link | NOC:Thermal Physics | Lecture 50 - Thermodynamics of chemical reaction |

Link | NOC:Thermal Physics | Lecture 51 - Equilibruim between phases: The Clapeyron equation |

Link | NOC:Thermal Physics | Lecture 52 - 1st order phase transion along liquid-vapor equilibrium |

Link | NOC:Thermal Physics | Lecture 53 - Phase diagram and triple point |

Link | NOC:Thermal Physics | Lecture 54 - The 2nd latent heat equation |

Link | NOC:Thermal Physics | Lecture 55 - Gibbs phase rule and basics of second order phase transion |

Link | NOC:Thermal Physics | Lecture 56 - Basic concepts of radiation |

Link | NOC:Thermal Physics | Lecture 57 - Diffused radiation and Kirchhoff's law |

Link | NOC:Thermal Physics | Lecture 58 - Cavity radiation as a thermodynamic system: Stefan-Boltzmann law |

Link | NOC:Thermal Physics | Lecture 59 - Thermodynamics of cavity radiation |

Link | NOC:Thermal Physics | Lecture 60 - 3rd law of thermodynamics |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 1 - Introduction: Magnetism and superconductivity as macroscopic quantum phenomena |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 2 - Bohr magneton, BvL theorem |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 3 - An electron in a magnetic field, magnetism of isolated atoms |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 4 - Magnetism of isolated atoms (Continued...), Diamagnetism |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 5 - Magnetism of atoms-dia and paramagnetic susceptibilities. Hund's rules,Van Vleck paramagnetism |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 6 - Van Vleck paramagnetism (Continued...), Paramagnetism |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 7 - Curie's law for arbitrary J, adiabatic demagnetization |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 8 - Paramagnetism of conduction electrons - Pauli paramagnetism |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 9 - Ions in a solid: crystal field, orbital quenching, Jahn-Teller effect |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 10 - Jahn-Teller effect (Continued...), Magnetic resonance techniques NMR, ESR |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 11 - Resonance techniques (Continued...), Recapitulation and overview |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 12 - Recapitulation, interacting moments and long range order, dipolar exchange |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 13 - Interacting moments, 2-electron system, origin of exchange and spin Hamiltonian |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 14 - Spin Hamiltonian, Heisenberg model, Exchange interactions: direct |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 15 - GMR, spin model and mean-field theory, Ising model |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 16 - Ising model and its properties |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 17 - Ising model and its properties (Continued...), absence of LRO in d=1, mean-field theory |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 18 - Ising model recap, applications, exact solutions |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 19 - Exact solution of Ising model in d=1, exact results in d=2. Mermin-Wagner theorem |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 20 - Recap - Exact solution of Ising model. Mermin-Wagner theorem on the absence |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 21 - Ferromagnetic Heisenberg model ground state |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 22 - Ferromagnetic Heisenberg model, spin-waves and magnons |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 23 - Antiferromagnetic Heisenberg model, AF magnetic structures |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 24 - AF magnetic structures, susceptibility and excitations |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 25 - Antiferromagnets and frustration, spin glass |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 26 - Superconductivity: discovery, properties |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 27 - Superconductivity: Meissner effect, London Equation |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 28 - Electron-phonon interaction, Cooper problem |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 29 - Cooper problem, setting up the BCS theory |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 30 - BCS wave function, the Superconducting state and calculations of various properties |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 31 - BCS theory (Continued...), energy gap, transition temperature |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 32 - Consequences of BCS theory, gap vs T, Transition temperature, specific heat, tunnelling |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 33 - Transition temperature, specific heat, tunnelling |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 34 - Andreev reflection, Ginzburg-Landau Theory and electrodynamics of superconductors |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 35 - Ginzburg-Landau theory, coherence length and Type I and II superconductors |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 36 - Flux lattice, Flux quantization, Josephson junctions |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 37 - Josephson effect and Josephson junctions |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 38 - SQUID, Quantum computers and Josephson junction Qubits |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 39 - High-Temperature Superconductivity: an enduring enigma |

Link | NOC:Concepts in Magnetism and Superconductivity | Lecture 40 - Overview and conclusion |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 1 - Vector analysis, Scalar and vector fields, vector identities |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 2 - Vector Analysis (Continued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 3 - Use of Levi-Civita Symbol, Coordinate system |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 4 - Coordinate system, Orthogonal Transformation |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 5 - Spherical Coordinate system, Line, surface and volume element |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 6 - Line, surface and volume element (Continued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 7 - Line, surface and volume integral |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 8 - Differential calculus, Gradient |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 9 - Gradient operator, Concept of divergence |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 10 - Divergence operator, Divergence Theorem |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 11 - Curl operator, Stokes Theorem |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 12 - Gradient, Divergence and Curl (A recap), Vector identities |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 13 - Curvilinear coordinate system |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 14 - Curvilinear coordinate system (Continued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 15 - Curvilinear coordinate system (Continued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 16 - Delta Function |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 17 - Delta Function (Continued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 18 - Helmholtz's Theorem |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 19 - Helmholtz's Theorem(Recap), Tutorial |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 20 - Tutorial (Continued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 21 - Concept of charge, Charge density |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 22 - Coulomb's Law |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 23 - Coulomb's Law (Continued...), Charge distribution |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 24 - Charge distribution problem, Gauss's Law |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 25 - Topics More on Gauss's Law |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 26 - Application of Gauss's Law |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 27 - Electrostatic potential |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 28 - Electrostatic potential (Continued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 29 - Electrostatic energy |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 30 - Electrostatic energy (Continued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 31 - Electrostatic energy calculation |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 32 - Electrostatic dipole |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 33 - Electric dipole (Continued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 34 - Multipole expansion |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 35 - Monopole and Dipole moment |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 36 - Quadrupole moment |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 37 - Dipole and Quadrupole moment (Continued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 38 - Conductor |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 39 - Conductor (Continued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 40 - Boundary condition |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 41 - Electrostatic pressure, Capacitor |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 42 - Energy of the Capacitor, Dielectric |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 43 - Dielectric (Continued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 44 - Displacement Vector |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 45 - Electrostatic boundary value problem |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 46 - Electrostatic boundary value problem (Continued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 47 - Electrostatic boundary value problem (Continued...), Image method |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 48 - Image method (Continued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 49 - Charge particle in magnetic field |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 50 - Biot-Savart Law |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 51 - Application of Biot-Savart Law |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 52 - Ampere's Law |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 53 - Application of Ampere's Law |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 54 - Magnetic vector potential |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 55 - Magnetic vector potential (Continued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 56 - Magnetic dipole moment |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 57 - Magnetic dipole moment (Continued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 58 - Torque and potential energy of magnetic dipole, Magnetization |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 59 - Bound Current |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 60 - Magnetic materials |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 61 - Electromagnetic Induction |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 62 - Self and mutual inductance |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 63 - Wave equation, Maxwell’s Equation |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 64 - Maxwells Equation (Continued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 65 - Maxwells Equation: a complete overview |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 66 - Maxwells Equation: a complete overview (Continued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 67 - Lorentz Gauge, Maxwell's wave equation |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 68 - Maxwell's wave equation (Coninued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 69 - Maxwell's Equation in matter |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 70 - Maxwell's Equation in matter (Continued...) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 71 - Tutorial 2 (Electrostatic) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 72 - Tutorial 3 (Magnetostatic) |

Link | NOC:Foundations of Classical Electrodynamics | Lecture 73 - Tutorial 4 (Magnetostatic and EM Wave) |

Link | NOC:Physics of Functional Materials and Devices | Lecture 1 - Introduction to solid state materials - From conventional to functional |

Link | NOC:Physics of Functional Materials and Devices | Lecture 2 - Ceramics and Composites - I |

Link | NOC:Physics of Functional Materials and Devices | Lecture 3 - Ceramics and Composites - II |

Link | NOC:Physics of Functional Materials and Devices | Lecture 4 - Polymers |

Link | NOC:Physics of Functional Materials and Devices | Lecture 5 - Introduction to Nanomaterials and functionality |

Link | NOC:Physics of Functional Materials and Devices | Lecture 6 - Synthesis protocols - I |

Link | NOC:Physics of Functional Materials and Devices | Lecture 7 - Synthesis protocols - II |

Link | NOC:Physics of Functional Materials and Devices | Lecture 8 - Synthesis protocols - III |

Link | NOC:Physics of Functional Materials and Devices | Lecture 9 - Crystal structure - I |

Link | NOC:Physics of Functional Materials and Devices | Lecture 10 - Crystal structure - II |

Link | NOC:Physics of Functional Materials and Devices | Lecture 11 - Crystal structure - III |

Link | NOC:Physics of Functional Materials and Devices | Lecture 12 - Crystal imperfections |

Link | NOC:Physics of Functional Materials and Devices | Lecture 13 - Alloys and Melts |

Link | NOC:Physics of Functional Materials and Devices | Lecture 14 - Theory of Solids |

Link | NOC:Physics of Functional Materials and Devices | Lecture 15 - Nearlly free electron model |

Link | NOC:Physics of Functional Materials and Devices | Lecture 16 - Bonds in molecules and solids |

Link | NOC:Physics of Functional Materials and Devices | Lecture 17 - Transformations kinetics and reaction rates |

Link | NOC:Physics of Functional Materials and Devices | Lecture 18 - Themodynamics |

Link | NOC:Physics of Functional Materials and Devices | Lecture 19 - Phase and phase transitions |

Link | NOC:Physics of Functional Materials and Devices | Lecture 20 - Diffusion and various properties |

Link | NOC:Physics of Functional Materials and Devices | Lecture 21 - Mechanical properties of solids |

Link | NOC:Physics of Functional Materials and Devices | Lecture 22 - Thermal Properties of Solids |

Link | NOC:Physics of Functional Materials and Devices | Lecture 23 - Negative and Zero Expansion Ceramics |

Link | NOC:Physics of Functional Materials and Devices | Lecture 24 - Heat Capacity |

Link | NOC:Physics of Functional Materials and Devices | Lecture 25 - Thermogravimetric (TGA) analysis |

Link | NOC:Physics of Functional Materials and Devices | Lecture 26 - Introduction to magnetism and Magnetic properties of solids |

Link | NOC:Physics of Functional Materials and Devices | Lecture 27 - From magnetic to multiferroic materials |

Link | NOC:Physics of Functional Materials and Devices | Lecture 28 - Magnetic materials and their applications |

Link | NOC:Physics of Functional Materials and Devices | Lecture 29 - Magnetism at nanoscale |

Link | NOC:Physics of Functional Materials and Devices | Lecture 30 - GMR materials |

Link | NOC:Physics of Functional Materials and Devices | Lecture 31 - CMR materials |

Link | NOC:Physics of Functional Materials and Devices | Lecture 32 - Ferrofluids |

Link | NOC:Physics of Functional Materials and Devices | Lecture 33 - Spintronics and devices |

Link | NOC:Physics of Functional Materials and Devices | Lecture 34 - Introduction to the basic properties of liquids and melts |

Link | NOC:Physics of Functional Materials and Devices | Lecture 35 - Heat capacity and diffusion of liquids and melts |

Link | NOC:Physics of Functional Materials and Devices | Lecture 36 - Viscosity, electric and thermal conduction of liquids and melts |

Link | NOC:Physics of Functional Materials and Devices | Lecture 37 - Sensors |

Link | NOC:Physics of Functional Materials and Devices | Lecture 38 - Electrochemical Sensors |

Link | NOC:Physics of Functional Materials and Devices | Lecture 39 - Introduction to energy storage devices and basics of supercapacitors |

Link | NOC:Physics of Functional Materials and Devices | Lecture 40 - Supercapacitors - II |

Link | NOC:Physics of Functional Materials and Devices | Lecture 41 - Magnetic supercapacitors |

Link | NOC:Physics of Functional Materials and Devices | Lecture 42 - Battery - I |

Link | NOC:Physics of Functional Materials and Devices | Lecture 43 - Battery - II |

Link | NOC:Physics of Functional Materials and Devices | Lecture 44 - Solar Cells - I |

Link | NOC:Physics of Functional Materials and Devices | Lecture 45 - Solar Cells - II |

Link | NOC:Physics of Functional Materials and Devices | Lecture 46 - X-ray Diffraction (XRD) |

Link | NOC:Physics of Functional Materials and Devices | Lecture 47 - Fourier Transform Infrared Spectroscopy |

Link | NOC:Physics of Functional Materials and Devices | Lecture 48 - UV- Vis Spectroscopy |

Link | NOC:Physics of Functional Materials and Devices | Lecture 49 - Scanning and Transmission Electron Microscopy |

Link | NOC:Physics of Functional Materials and Devices | Lecture 50 - Summary |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 1 - Introduction to waves, 1D wave equation and its solutions |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 2 - 1D Light waves |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 3 - Characteristics of light waves - amplitude, absolute phase, wavelenght and frequency |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 4 - Phase, Phase velocity and Phase delay |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 5 - Complex notation for the description light waves and superposition |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 6 - Maxwell's equations to the 3D wave equation and its solutions |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 7 - Recap of Week 1 |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 8 - 3D wave equation and plane waves |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 9 - Complex notation for Electric fields, Superposition and interference |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 10 - Fabry-Perot inteferometer and it transmittance |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 11 - Physical interpretation of FP transmittance |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 12 - Recap of Fabry-Perot modes |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 13 - Free spectral range of a Fabry-Perot etalon |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 14 - Resonator modes and optical pulses - insight |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 15 - Table - Top Coherent and Incoherent Imaging |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 16 - Recap of Etalon free spectral range |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 17 - Line width and finesse of an etalon |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 18 - Actual resonator modes |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 19 - Resonator configurations and stability |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 20 - Recap of optical resonators |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 21 - Introduction of light pulses |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 22 - Complex amplitude, Gaussian pulse |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 23 - Recap of light pulses |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 24 - Introduction of Fourier Transforms |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 25 - Tutorial 1 |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 26 - Motivating Fourier Transforms |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 27 - Fourier Transform Properties |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 28 - Frequency domain electric field |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 29 - Recap of Fourier transform properties |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 30 - Frequency domain description of pulses |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 31 - Spectral Phase |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 32 - Recap of spectral phase |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 33 - Instantaneous Frequency and group delay |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 34 - Phase wrapping, blanking, and Tayor series expansion |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 35 - Recap of instantaneous frequency, phase wrapping, and phase blanking |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 36 - Frequency domain phase expansion, group delay dispersion |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 37 - Absolute Phase |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 38 - Recap of concepts + discussion |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 39 - Absolute Phase (revisited) |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 40 - Carrier envelope phase, frequency comb |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 41 - Discussion |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 42 - Recap of concepts |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 43 - First order phase |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 44 - Second order phase |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 45 - Recap of first order and second order phase |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 46 - Chirped pulse: Instantaneous frequency and Fourier transform |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 47 - Group delay, nonlinearly chirped pulse |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 48 - Recap of chirped pulses |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 49 - Quadratic chirp pulses |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 50 - Higher order spectral phase |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 51 - Recap and discussion on higher order phase |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 52 - Relative importance of intensity and phase |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 53 - Pulse propagation through a medium |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 54 - Recap of pulse propagation and pulse length |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 55 - Discussion of RMS pulse width and uncertainty principle |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 56 - Time-bandwidth product |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 57 - Recap of previous module |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 58 - Introduction of Lorentz Oscillator Model |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 59 - Effect of matter on light |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 60 - Recap of Lorentz oscillator, Polarization tensor |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 61 - Dynamics of electrons in the Lorentz oscillator |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 62 - Solving the inhomogeneous wave equation |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 63 - Inhomogeneous wave equation, absorption coefficient, refractive index |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 64 - Nonlinear response of matter |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 65 - Origin of nonlinear optical effects |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 66 - Wave equation in an inert gas |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 67 - Perturbation theory and second harmonics |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 68 - Numerical simulation strategy |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 69 - Atoms in the presence of fields |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 70 - Ionization models |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 71 - Attosecond pulse generation and metrology |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 72 - Nonlinear optics review |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 73 - Nonlinear response of matter to light |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 74 - Sum and difference frequency generation |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 75 - Recap of sum and difference frequency generation, second harmonic generation |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 76 - Generalized nonlinear effects, conservation laws in SHG |

Link | NOC:Fundamentals of Attosecond Science and Technology (FAST) | Lecture 77 - Phase matching in SHG, polarization dependent refractive index |

Link | Special Topics in Atomic Physics | Lecture 1 - Introductory lecture about this course |

Link | Special Topics in Atomic Physics | Lecture 2 - Quantum Mechanics and Symmetry of the Hydrogen Atom |

Link | Special Topics in Atomic Physics | Lecture 3 - Hydrogen atom: Rotational and Dynamical Symmetry of the 1/r Potential |

Link | Special Topics in Atomic Physics | Lecture 4 - Hydrogen atom: Dynamical Symmetry of the 1/r Potential |

Link | Special Topics in Atomic Physics | Lecture 5 - Degeneracy of the Hydrogen Atom: SO(4) |

Link | Special Topics in Atomic Physics | Lecture 6 - Wavefunctions of the Hydrogen Atom |

Link | Special Topics in Atomic Physics | Lecture 7 - Angular Momentum in Quantum Mechanics |

Link | Special Topics in Atomic Physics | Lecture 8 - Angular Momentum in Quantum Mechanics: half-odd-integer and integer quantum numbers: SU(2) & SO(3) |

Link | Special Topics in Atomic Physics | Lecture 9 - Angular Momentum in Quantum Mechanics: Addition Theorem for Spherical Harmonics - Coupling of Angular Momenta |

Link | Special Topics in Atomic Physics | Lecture 10 - Angular Momentum in Quantum Mechanics Dimensionality of the Direct-Product (Composite) Vector Space CGC recursion relations |

Link | Special Topics in Atomic Physics | Lecture 11 - Angular Momentum in Quantum Mechanics CGC matrix, Wigner D Rotation Matrix, Irreducible Tensor Operators |

Link | Special Topics in Atomic Physics | Lecture 12 - Angular Momentum in Quantum Mechanics - more on ITO, and the Wigner-Eckart Theorem |

Link | Special Topics in Atomic Physics | Lecture 13 - Angular Momentum in Quantum Mechanics Wigner-Eckart Theorem - 2 |

Link | Special Topics in Atomic Physics | Lecture 14 - Relativistic Quantum Mechanics of the Hydrogen Atom - 1 |

Link | Special Topics in Atomic Physics | Lecture 15 - Relativistic Quantum Mechanics of the Hydrogen Atom - 2 |

Link | Special Topics in Atomic Physics | Lecture 16 - Relativistic Quantum Mechanics of the Hydrogen Atom - PAULI Equation - Foldy - Wouthysen Transformations - 1 |

Link | Special Topics in Atomic Physics | Lecture 17 - Relativistic Quantum Mechanics of the Hydrogen Atom - Foldy - Wouthysen Transformations - 2 |

Link | Special Topics in Atomic Physics | Lecture 18 - Relativistic Quantum Mechanics of the Hydrogen Atom - Foldy - Wouthysen Transformations - 3 |

Link | Special Topics in Atomic Physics | Lecture 19 - Relativistic Quantum Mechanics of the Hydrogen Atom - Spherical Symmetry of the Coulomb Potential |

Link | Special Topics in Atomic Physics | Lecture 20 - Hartree-Fock Self-Consistent Field formalism - 1 |

Link | Special Topics in Atomic Physics | Lecture 21 - Hartree-Fock Self-Consistent Field formalism - 2 |

Link | Special Topics in Atomic Physics | Lecture 22 - Hartree-Fock Self-Consistent Field formalism - 3 |

Link | Special Topics in Atomic Physics | Lecture 23 - Hartree-Fock Self-Consistent Field formalism - 4 |

Link | Special Topics in Atomic Physics | Lecture 24 - Hartree-Fock Self-Consistent Field formalism - 5 |

Link | Special Topics in Atomic Physics | Lecture 25 - Perturbative treatment of relativistic effects… Schrodinger's and Dirac QM |

Link | Special Topics in Atomic Physics | Lecture 26 - Perturbative treatment of relativistic effects… Schrodinger's and Dirac QM |

Link | Special Topics in Atomic Physics | Lecture 27 - Probing the atom - Collisions and Spectroscopy - boundary conditions - 1 |

Link | Special Topics in Atomic Physics | Lecture 28 - Atomic Probes - Collisions and Spectroscopy - boundary conditions - 2 |

Link | Special Topics in Atomic Physics | Lecture 29 - Atomic Probes - Collisions and Spectroscopy - Scattering phase shifts and boundary conditions |

Link | Special Topics in Atomic Physics | Lecture 30 - Atomic Probes - Time reversal symmetry - applications in atomic collisions and photoionization processes |

Link | Special Topics in Atomic Physics | Lecture 31 - Atomic Photoionization cross sections, angular distributions of photoelectrons - 1 |

Link | Special Topics in Atomic Physics | Lecture 32 - Atomic Photoionization cross sections, angular distributions of photoelectrons - 2 |

Link | Special Topics in Atomic Physics | Lecture 33 - Atomic Photoionization cross sections, angular distributions of photoelectrons - 3 |

Link | Special Topics in Atomic Physics | Lecture 34 - Atomic Photoionization cross sections, angular distributions of photoelectrons - 4 |

Link | Special Topics in Atomic Physics | Lecture 35 - Atomic Photoionization cross sections, angular distributions of photoelectrons Cooper Zare Formula |

Link | Special Topics in Atomic Physics | Lecture 36 - Stark- Zeeman Spectroscopy - Stark effect |

Link | Special Topics in Atomic Physics | Lecture 37 - Stark- Zeeman Spectroscopy - Stark effect on n=2 excited state of the H atom Zeeman effect |

Link | Special Topics in Atomic Physics | Lecture 38 - Stark- Zeeman Spectroscopy - Normal, Anomalous Zeeman effect; Paschen- Back effect |

Link | Special Topics in Atomic Physics | Lecture 39 - Stark- Zeeman Spectroscopy - Anomalous Zeeman effect |

Link | Special Topics in Atomic Physics | Lecture 40 - Zeeman effect Fine structure, Hyperfine structure - Elemental, rudimentary introduction to Laser Cooling, BEC, Atomic Clock / Attosecond metrology |

Link | Classical Field Theory | Lecture 1 - What is Classical Field Theory? |

Link | Classical Field Theory | Lecture 2 - Symmetries and Invariances - I |

Link | Classical Field Theory | Lecture 3 - Symmetries and Invariances - II |

Link | Classical Field Theory | Lecture 4 - Group Theory in Physics - I |

Link | Classical Field Theory | Lecture 5 - Group Theory in Physics - II |

Link | Classical Field Theory | Lecture 6 - Finite Groups - I |

Link | Classical Field Theory | Lecture 7 - Finite Groups - II |

Link | Classical Field Theory | Lecture 8 - Basics of CFT - I |

Link | Classical Field Theory | Lecture 9 - Basics of CFT - II |

Link | Classical Field Theory | Lecture 10 - Basics of CFT - III |

Link | Classical Field Theory | Lecture 11 - Green Functions - I |

Link | Classical Field Theory | Lecture 12 - Green Functions - II |

Link | Classical Field Theory | Lecture 13 - Noether's Theorem - I |

Link | Classical Field Theory | Lecture 14 - Noether's Theorem - II |

Link | Classical Field Theory | Lecture 15 - Kink Soliton |

Link | Classical Field Theory | Lecture 16 - Hidden Symmetry |

Link | Classical Field Theory | Lecture 17 - Local Symmetries |

Link | Classical Field Theory | Lecture 18 - The Abelian Higgs model |

Link | Classical Field Theory | Lecture 19 - Lie Algebras - I |

Link | Classical Field Theory | Lecture 20 - Lie Algebras - II |

Link | Classical Field Theory | Lecture 21 - Magnetic Vortices - I |

Link | Classical Field Theory | Lecture 22 - Magnetic Vortices - II |

Link | Classical Field Theory | Lecture 23 - Non-abelian gauge theories - I |

Link | Classical Field Theory | Lecture 24 - Non-abelian gauge theories - II |

Link | Classical Field Theory | Lecture 25 - Irreps of Lie algebras - I |

Link | Classical Field Theory | Lecture 26 - Irreps of Lie algebras - II |

Link | Classical Field Theory | Lecture 27 - The Standard Model - I |

Link | Classical Field Theory | Lecture 28 - The Standard Model - II |

Link | Classical Field Theory | Lecture 29 - Irreps of the Lorentz/Poincare algebras |

Link | Classical Field Theory | Lecture 30 - The Dirac mononpole |

Link | Classical Field Theory | Lecture 31 - The 't Hooft-Polaykov monopole |

Link | Classical Field Theory | Lecture 32 - Revisiting Derrick’s Theorem |

Link | Classical Field Theory | Lecture 33 - The Julia-Zee dyon |

Link | Classical Field Theory | Lecture 34 - Instantons - I |

Link | Classical Field Theory | Lecture 35 - Instantons - II |

Link | Classical Field Theory | Lecture 36 - Instantons - III |

Link | Classical Field Theory | Lecture 37 - Instantons - IV |

Link | Classical Field Theory | Lecture 38 - Dualities |

Link | Classical Field Theory | Lecture 39 - Geometrization of Field Theory |

Link | Topics in Nonlinear Dynamics | Lecture 1 - Overview |

Link | Topics in Nonlinear Dynamics | Lecture 2 - Critical points of a dynamical system |

Link | Topics in Nonlinear Dynamics | Lecture 3 - Two-dimensional flows |

Link | Topics in Nonlinear Dynamics | Lecture 4 - Stable and unstable manifolds |

Link | Topics in Nonlinear Dynamics | Lecture 5 - Hamiltonian dynamics - Part I |

Link | Topics in Nonlinear Dynamics | Lecture 6 - Hamiltonian dynamics - Part II |

Link | Topics in Nonlinear Dynamics | Lecture 7 - Hamiltonian dynamics - Part III |

Link | Topics in Nonlinear Dynamics | Lecture 8 - Hamiltonian dynamics - Part IV |

Link | Topics in Nonlinear Dynamics | Lecture 9 - Hamiltonian dynamics - Part V |

Link | Topics in Nonlinear Dynamics | Lecture 10 - Elementary bifurcations |

Link | Topics in Nonlinear Dynamics | Lecture 11 - Limit cycles |

Link | Topics in Nonlinear Dynamics | Lecture 12 - Poincar´e index |

Link | Topics in Nonlinear Dynamics | Lecture 13 - Illustrative examples |

Link | Topics in Nonlinear Dynamics | Lecture 14 - Quiz 1. Questions and answers |

Link | Topics in Nonlinear Dynamics | Lecture 15 - Bead on a rotating hoop |

Link | Topics in Nonlinear Dynamics | Lecture 16 - Types of dynamical behaviour |

Link | Topics in Nonlinear Dynamics | Lecture 17 - Discrete time dynamics - Part I |

Link | Topics in Nonlinear Dynamics | Lecture 18 - Discrete time dynamics - Part II |

Link | Topics in Nonlinear Dynamics | Lecture 19 - Discrete time dynamics - Part III |

Link | Topics in Nonlinear Dynamics | Lecture 20 - Discrete time dynamics - Part IV |

Link | Topics in Nonlinear Dynamics | Lecture 21 - Coarse-grained dynamics in phase space - Part I |

Link | Topics in Nonlinear Dynamics | Lecture 22 - Coarse-grained dynamics in phase space - Part II & Stochastic dynamics - Part I |

Link | Topics in Nonlinear Dynamics | Lecture 23 - Stochastic dynamics - Part II |

Link | Topics in Nonlinear Dynamics | Lecture 24 - Stochastic dynamics - Part III |

Link | Topics in Nonlinear Dynamics | Lecture 25 - Coarse-grained dynamics in phase space - Part IV & Stochastic dynamics - Part IV |

Link | Topics in Nonlinear Dynamics | Lecture 26 - Discrete time dynamics - Part V |

Link | Topics in Nonlinear Dynamics | Lecture 27 - Quiz 2. Questions and answers |

Link | Topics in Nonlinear Dynamics | Lecture 28 - Stochastic dynamics - Part V |

Link | Topics in Nonlinear Dynamics | Lecture 29 - Stochastic dynamics - Part VI |

Link | Condensed Matter Physics | Lecture 1 - Principles of Condensed Matter Physics |

Link | Condensed Matter Physics | Lecture 2 - Symmetry in Perfect Solids |

Link | Condensed Matter Physics | Lecture 3 - Symmetry in Perfect Solids (Continued...) |

Link | Condensed Matter Physics | Lecture 4 - Symmetry in Perfect Solids - Worked Examples |

Link | Condensed Matter Physics | Lecture 5 - Diffraction Methods For Crystal Structures |

Link | Condensed Matter Physics | Lecture 6 - Diffraction Methods For Crystal Structures (Continued...) |

Link | Condensed Matter Physics | Lecture 7 - Diffraction Methods For Crystal Structures - Worked Examples |

Link | Condensed Matter Physics | Lecture 8 - Physical Properties of Crystals |

Link | Condensed Matter Physics | Lecture 9 - Physical Properties of Crystals (Continued...) |

Link | Condensed Matter Physics | Lecture 10 - Physical Properties of Crystals - Worked Examples |

Link | Condensed Matter Physics | Lecture 11 - Cohesion in Solids |

Link | Condensed Matter Physics | Lecture 12 - Cohesion in Solids - Worked Examples |

Link | Condensed Matter Physics | Lecture 13 - The Free Electron Theory of Metals |

Link | Condensed Matter Physics | Lecture 14 - The Free Electron Theory of Metals - Worked Examples |

Link | Condensed Matter Physics | Lecture 15 - The Free Electron Theory of Metals - Electrical Conductivity |

Link | Condensed Matter Physics | Lecture 16 - The Free Electron Theory of Metals - Electrical Conductivity - Worked Examples |

Link | Condensed Matter Physics | Lecture 17 - Thermal Conductivity of Metals |

Link | Condensed Matter Physics | Lecture 18 - Thermal Conductivity of Metals - Worked Examples |

Link | Condensed Matter Physics | Lecture 19 - The Concept of Phonons |

Link | Condensed Matter Physics | Lecture 20 - Debye Theory of Specific Heat, Lattice Vibrations |

Link | Condensed Matter Physics | Lecture 21 - Debye Theory of Specific Heat, Lattice Vibrations - Worked Examples |

Link | Condensed Matter Physics | Lecture 22 - Lattice Vibrations (Continued) Phonon thermal conductivity |

Link | Condensed Matter Physics | Lecture 23 - Lattice Vibrations (Continued) Phonon Thermal Conductivity - Worked Examples |

Link | Condensed Matter Physics | Lecture 24 - Anharmonicity and Thermal Expansion |

Link | Condensed Matter Physics | Lecture 25 - Dielectric (Insulating) Solids |

Link | Condensed Matter Physics | Lecture 26 - Dispersion and Absorption of Electromagnetic Waves in Dielectric Media, Ferro-and Antiferroelectrics |

Link | Condensed Matter Physics | Lecture 27 - Optical Properties of Metals; Ionic Polarization in Alkali Halides; Piezoelectricity |

Link | Condensed Matter Physics | Lecture 28 - Dielectric Solids - Worked Examples |

Link | Condensed Matter Physics | Lecture 29 - Dia - and Paramagnetism |

Link | Condensed Matter Physics | Lecture 30 - Paramagnetism of Transition Metal and Rare Earth Ions |

Link | Condensed Matter Physics | Lecture 31 - Quenching of Orbital Angular Momentum; Ferromagnetism |

Link | Condensed Matter Physics | Lecture 32 - Exchange Interactions, Magnetic Order, Neutron Diffraction |

Link | Condensed Matter Physics | Lecture 33 - Hysteresis and Magnetic Domains; Spin Waves and Magnons |

Link | Condensed Matter Physics | Lecture 34 - Magnetic Resonance |

Link | Condensed Matter Physics | Lecture 35 - Magnetism and Magnetic Resonance - Worked Examples |

Link | Condensed Matter Physics | Lecture 36 - Magnetism - Worked Examples (Continued...) |

Link | Condensed Matter Physics | Lecture 37 - Pauli Paramagnetism and Landau Diamagnetism |

Link | Condensed Matter Physics | Lecture 38 - Band Magnetism; Itinerant Electrons; Stoner Model |

Link | Condensed Matter Physics | Lecture 39 - Superconductivity - Perfect Electrical Conductivity and Perfect Diamagnetism |

Link | Condensed Matter Physics | Lecture 40 - Type I and Type II Superconductors |

Link | Condensed Matter Physics | Lecture 41 - Ginsburg - Landau Theory, Flux Quantization |

Link | Condensed Matter Physics | Lecture 42 - Cooper Pairs |

Link | Condensed Matter Physics | Lecture 43 - Microscopic (BCS) Theory of Superconductivity |

Link | Condensed Matter Physics | Lecture 44 - BCS Theory (Continued...): Josephson Tunneling: Quantum Interference |

Link | Condensed Matter Physics | Lecture 45 - Josephson Effect (Continued...); High Temperature Superconductors |

Link | Condensed Matter Physics | Lecture 46 - Superconductors - Worked Examples |

Link | Condensed Matter Physics | Lecture 47 - Energy Bands in Solids |

Link | Condensed Matter Physics | Lecture 48 - Electron Dynamics in a Periodic Solid |

Link | Condensed Matter Physics | Lecture 49 - Semiconductors |

Link | Condensed Matter Physics | Lecture 50 - Semiconductors (Continued...) |

Link | Condensed Matter Physics | Lecture 51 - Semiconductors - Worked Examples |

Link | Condensed Matter Physics | Lecture 52 - Defects in Solids - Point Defects |

Link | Condensed Matter Physics | Lecture 53 - Point Defects in Solids - Worked Examples |

Link | Condensed Matter Physics | Lecture 54 - Defects in Solids - Line and Surface Defects |

Link | Condensed Matter Physics | Lecture 55 - Dislocations in Solids - Worked Examples |

Link | Condensed Matter Physics | Lecture 56 - Quantum Fluids and Quantum Solids |

Link | Condensed Matter Physics | Lecture 57 - Quantum Liquids and Quantum Solids - Worked Examples |

Link | Condensed Matter Physics | Lecture 58 - Epilogue |

Link | Quantum Field Theory | Lecture 1 - Introduction |

Link | Quantum Field Theory | Lecture 2 - Introduction to Classical Field Theory |

Link | Quantum Field Theory | Lecture 3 - Quantization of Real Scalar Field - I |

Link | Quantum Field Theory | Lecture 4 - Quantization of Real Scalar Field - II |

Link | Quantum Field Theory | Lecture 5 - Quantization of Real Scalar Field - III |

Link | Quantum Field Theory | Lecture 6 - Quantization of Real Scalar Field - IV |

Link | Quantum Field Theory | Lecture 7 - Quantization of Complex Scalar Field |

Link | Quantum Field Theory | Lecture 8 - Interacting Field Theory - I |

Link | Quantum Field Theory | Lecture 9 - Interacting Field Theory - II |

Link | Quantum Field Theory | Lecture 10 - Interacting Field Theory - III |

Link | Quantum Field Theory | Lecture 11 - Interacting Field Theory - IV |

Link | Quantum Field Theory | Lecture 12 - Interacting Field Theory - V |

Link | Quantum Field Theory | Lecture 13 - Interacting Field Theory - VI |

Link | Quantum Field Theory | Lecture 14 - Interacting Field Theory - VII |

Link | Quantum Field Theory | Lecture 15 - Quantuzation of Electromagnetic Field - I |

Link | Quantum Field Theory | Lecture 16 - Quantuzation of Electromagnetic Field - II |

Link | Quantum Field Theory | Lecture 17 - Fermion Quantization - I |

Link | Quantum Field Theory | Lecture 18 - Fermion Quantization - II |

Link | Quantum Field Theory | Lecture 19 - Fermion Quantization - III |

Link | Quantum Field Theory | Lecture 20 - Fermion Quantization - IV |

Link | Quantum Field Theory | Lecture 21 - Fermion Quantization - V |

Link | Quantum Field Theory | Lecture 22 - Fermion Quantization - VI |

Link | Quantum Field Theory | Lecture 23 - The S-Matrix Expansion in QED - I |

Link | Quantum Field Theory | Lecture 24 - The S-Matrix Expansion in QED - II |

Link | Quantum Field Theory | Lecture 25 - Feynman Rules in QED - I |

Link | Quantum Field Theory | Lecture 26 - Feynman Rules in QED - II |

Link | Quantum Field Theory | Lecture 27 - Compton Scattering - I |

Link | Quantum Field Theory | Lecture 28 - Compton Scattering - II |

Link | Quantum Field Theory | Lecture 29 - Compton Scattering - III |

Link | Quantum Field Theory | Lecture 30 - Moller Scattering - I |

Link | Quantum Field Theory | Lecture 31 - Moller Scattering - II |

Link | Quantum Field Theory | Lecture 32 - Vertex Correction - I |

Link | Quantum Field Theory | Lecture 33 - Vertex Correction - II |

Link | Quantum Field Theory | Lecture 34 - Vertex Correction - III |

Link | Quantum Field Theory | Lecture 35 - Vertex Correction - IV |

Link | Quantum Field Theory | Lecture 36 - Electron Selfenergy |

Link | Quantum Field Theory | Lecture 37 - Photon Selfenergy - I |

Link | Quantum Field Theory | Lecture 38 - Photon Selfenergy - II |

Link | Quantum Mechanics I | Lecture 1 - Quantum Mechanics – An Introduction |

Link | Quantum Mechanics I | Lecture 2 - Linear Vector Spaces - I |

Link | Quantum Mechanics I | Lecture 3 - Linear Vector Spaces - II: The two-level atom |

Link | Quantum Mechanics I | Lecture 4 - Linear Vector Spaces - III: The three-level atom |

Link | Quantum Mechanics I | Lecture 5 - Postulates of Quantum Mechanics - I |

Link | Quantum Mechanics I | Lecture 6 - Postulates of Quantum Mechanics - II |

Link | Quantum Mechanics I | Lecture 7 - The Uncertainty Principle |

Link | Quantum Mechanics I | Lecture 8 - The Linear Harmonic Oscillator |

Link | Quantum Mechanics I | Lecture 9 - Introducing Quantum Optics |

Link | Quantum Mechanics I | Lecture 10 - An Interesting Quantum Superposition: The Coherent State |

Link | Quantum Mechanics I | Lecture 11 - The Displacement and Squeezing Operators |

Link | Quantum Mechanics I | Lecture 12 - Exercises in Finite Dimensional Linear Vector Spaces |

Link | Quantum Mechanics I | Lecture 13 - Exercises on Angular Momentum Operators and their algebra |

Link | Quantum Mechanics I | Lecture 14 - Exercises on Quantum Expectation Values |

Link | Quantum Mechanics I | Lecture 15 - Composite Systems |

Link | Quantum Mechanics I | Lecture 16 - The Quantum Beam Splitter |

Link | Quantum Mechanics I | Lecture 17 - Addition of Angular Momenta - I |

Link | Quantum Mechanics I | Lecture 18 - Addition of Angular Momenta - II |

Link | Quantum Mechanics I | Lecture 19 - Addition of Angular Momenta - III |

Link | Quantum Mechanics I | Lecture 20 - Infinite Dimensional Linear Vector Spaces |

Link | Quantum Mechanics I | Lecture 21 - Square-Integrable Functions |

Link | Quantum Mechanics I | Lecture 22 - Ingredients of Wave Mechanics |

Link | Quantum Mechanics I | Lecture 23 - The Schrodinger equation |

Link | Quantum Mechanics I | Lecture 24 - Wave Mechanics of the Simple Harmonic Oscillator |

Link | Quantum Mechanics I | Lecture 25 - One-Dimensional Square Well Potential: The Bound State Problem |

Link | Quantum Mechanics I | Lecture 26 - The Square Well and the Square Potential Barrier |

Link | Quantum Mechanics I | Lecture 27 - The Particle in a one-dimensional Box |

Link | Quantum Mechanics I | Lecture 28 - A Charged Particle in a Uniform Magnetic Field |

Link | Quantum Mechanics I | Lecture 29 - The Wavefunction: Its Single-valuedness and its Phase |

Link | Quantum Mechanics I | Lecture 30 - The Central Potential |

Link | Quantum Mechanics I | Lecture 31 - The Spherical Harmonics |

Link | Quantum Mechanics I | Lecture 32 - Central Potential: The Radial Equation |

Link | Quantum Mechanics I | Lecture 33 - Illustrative Exercises - I |

Link | Quantum Mechanics I | Lecture 34 - Illustrative Exercises - II |

Link | Quantum Mechanics I | Lecture 35 - Ehrenfest's Theorem |

Link | Quantum Mechanics I | Lecture 36 - Perturbation Theory - I |

Link | Quantum Mechanics I | Lecture 37 - Perturbation Theory - II |

Link | Quantum Mechanics I | Lecture 38 - Perturbation Theory - III |

Link | Quantum Mechanics I | Lecture 39 - Perturbation Theory - IV |

Link | Quantum Mechanics I | Lecture 40 - Time-dependent Hamiltonians |

Link | Quantum Mechanics I | Lecture 41 - The Jaynes-Cummings model |

Link | Special Topics in Classical Mechanics | Lecture 1 - Course Overview |

Link | Special Topics in Classical Mechanics | Lecture 2 - Equations of Motion (i) |

Link | Special Topics in Classical Mechanics | Lecture 3 - Equations of Motion (ii) |

Link | Special Topics in Classical Mechanics | Lecture 4 - Equations of Motion (iii) |

Link | Special Topics in Classical Mechanics | Lecture 5 - Equations of Motion (iv) |

Link | Special Topics in Classical Mechanics | Lecture 6 - Equations of Motion (v) |

Link | Special Topics in Classical Mechanics | Lecture 7 - Oscillators, Resonances, Waves (i) |

Link | Special Topics in Classical Mechanics | Lecture 8 - Oscillators, Resonances, Waves (ii) |

Link | Special Topics in Classical Mechanics | Lecture 9 - Oscillators, Resonances, Waves (iii) |

Link | Special Topics in Classical Mechanics | Lecture 10 - Oscillators, Resonances, Waves (iv) |

Link | Special Topics in Classical Mechanics | Lecture 11 - Polar Coordinates (i) |

Link | Special Topics in Classical Mechanics | Lecture 12 - Polar Coordinates (ii) |

Link | Special Topics in Classical Mechanics | Lecture 13 - Dynamical Symmetry in the Kepler Problem (i) |

Link | Special Topics in Classical Mechanics | Lecture 14 - Dynamical Symmetry in the Kepler Problem (ii) |

Link | Special Topics in Classical Mechanics | Lecture 15 - Real Effects of Pseudo-Forces (i) |

Link | Special Topics in Classical Mechanics | Lecture 16 - Real Effects of Pseudo-Forces (ii) |

Link | Special Topics in Classical Mechanics | Lecture 17 - Real Effects of Pseudo-Forces (iii) |

Link | Special Topics in Classical Mechanics | Lecture 18 - Real Effects of Pseudo-Forces (iv) |

Link | Special Topics in Classical Mechanics | Lecture 19 - Special Theory of Relativity (i) |

Link | Special Topics in Classical Mechanics | Lecture 20 - Special Theory of Relativity (ii) |

Link | Special Topics in Classical Mechanics | Lecture 21 - Special Theory of Relativity (iii) |

Link | Special Topics in Classical Mechanics | Lecture 22 - Special Theory of Relativity (iv) |

Link | Special Topics in Classical Mechanics | Lecture 23 - Potentials Gradients Fields (i) |

Link | Special Topics in Classical Mechanics | Lecture 24 - Potentials Gradients Fields (ii) |

Link | Special Topics in Classical Mechanics | Lecture 25 - Potentials Gradients Fields (iii) |

Link | Special Topics in Classical Mechanics | Lecture 26 - Gauss Law Eq of continuity (i) |

Link | Special Topics in Classical Mechanics | Lecture 27 - Gauss Law Eq of continuity (ii) |

Link | Special Topics in Classical Mechanics | Lecture 28 - Gauss Law Eq of continuity (iii) |

Link | Special Topics in Classical Mechanics | Lecture 29 - Fluid Flow Bernoulli Principle (i) |

Link | Special Topics in Classical Mechanics | Lecture 30 - Fluid Flow Bernoulli Principle (ii) |

Link | Special Topics in Classical Mechanics | Lecture 31 - Classical Electrodynamics (i) |

Link | Special Topics in Classical Mechanics | Lecture 32 - Classical Electrodynamics (ii) |

Link | Special Topics in Classical Mechanics | Lecture 33 - Classical Electrodynamics (iii) |

Link | Special Topics in Classical Mechanics | Lecture 34 - Classical Electrodynamics (iv) |

Link | Special Topics in Classical Mechanics | Lecture 35 - Chaotic Dynamical Systems (i) |

Link | Special Topics in Classical Mechanics | Lecture 36 - Chaotic Dynamical Systems (ii) |

Link | Special Topics in Classical Mechanics | Lecture 37 - Chaotic Dynamical Systems (iii) |

Link | Special Topics in Classical Mechanics | Lecture 38 - Chaotic Dynamical Systems (iv) |

Link | Special Topics in Classical Mechanics | Lecture 39 - Chaotic Dynamical Systems (v) |

Link | Special Topics in Classical Mechanics | Lecture 40 - The Scope and Limitations of Classical Mechanics |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 1 - Introduction to the STiTACS course |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 2 - Quantum Theory of collisions |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 3 - Quantum Theory of collisions: optical Theorem |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 4 - Quantum Theory of collisions: Optical Theorem (Continued...) |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 5 - Quantum Theory of collisions: Differential scattering cross section |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 6 - Quantum Theory of collisions: Differential scattering cross section, Partial wave analysis |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 7 - Quantum Theory of collisions: Optical Theorem Unitarity of the Scattering Operator |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 8 - Quantum Theory of collisions: Reciprocity Theorem, Phase shift analysis |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 9 - Quantum Theory of collisions: More on Phase shift analysis |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 10 - Quantum Theory of collisions: resonant condition in the l th partial wave. |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 11 - Quantum Theory of collisions: Levinsons theorem |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 12 - Quantum Theory of collisions: Levinsons theorem (Continued...) |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 13 - Many body theory, electron correlations |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 14 - Second Quantization Creation, Destruction and Number operators |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 15 - Many-particle Hamiltonian & Schrodinger Equation in 2nd Quantization |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 16 - Many-electron problem in quantum mechanics |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 17 - Hartree-Fock Self-Consistent-Field |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 18 - Exchange, Statistical, Fermi-Dirac correlations |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 19 - Limitations of the Hartree-Fock Self-Consistent-Field formalism |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 20 - Many-Body formalism, II Quantization |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 21 - Density fluctuations in an electron gas |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 22 - Bohm-Pines approach to Random Phase Approximation |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 23 - Bohm-Pines approach to Random Phase Approximation (Continued...) |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 24 - Bohm-Pines approach to Random Phase Approximation (Continued...) |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 25 - Schrodinger, Heisenberg and Dirac pictures of QM |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 26 - Dysons chronological operator |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 27 - Gell-Mann-Low Theorem |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 28 - Reyleigh-Schrodinger perturbation methods and adiabatic switching |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 29 - Feynman Diagrams |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 30 - I Order Feynman Diagrams |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 31 - II and higher order Feynman Diagrams |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 32 - Linear response of electron correlations |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 33 - Lippman Schwinger equation of potential scattering |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 34 - Born Approximation |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 35 - Coulomb scattering |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 36 - Scattering of partial waves |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 37 - Scattering at high energy |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 38 - Resonances in Quantum Collisions |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 39 - Breit-Wigner Resonances |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 40 - Fano parameterization of Breit-Wigner formula |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 41 - Discrete state embedded in the continuum |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 42 - Resonance life times |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 43 - Wigner-Eisenbud formalism of time-delay in scattering |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 44 - Photoionization and Photoelectron Angular Distributions |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 45 - Ionization and Excitation of Atoms by Fast Charged Particles |

Link | Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy | Lecture 46 - Photo-absorption by Free and Confined Atoms and Ions: Recent Developments |

Link | Selected Topics in Mathematical Physics | Lecture 1 - Analytic functions of a complex variable - Part I |

Link | Selected Topics in Mathematical Physics | Lecture 2 - Analytic functions of a complex variable - Part II |

Link | Selected Topics in Mathematical Physics | Lecture 3 - Calculus of residues - Part I |

Link | Selected Topics in Mathematical Physics | Lecture 4 - Calculus of residues - Part II |

Link | Selected Topics in Mathematical Physics | Lecture 5 - Calculus of residues - Part III |

Link | Selected Topics in Mathematical Physics | Lecture 6 - Calculus of residues - Part IV |

Link | Selected Topics in Mathematical Physics | Lecture 7 - Linear response; dispersion relations - Part I |

Link | Selected Topics in Mathematical Physics | Lecture 8 - Linear response; dispersion relations - Part II |

Link | Selected Topics in Mathematical Physics | Lecture 9 - Analytic continuation and the gamma function - Part I |

Link | Selected Topics in Mathematical Physics | Lecture 10 - Analytic continuation and the gamma function - Part II |

Link | Selected Topics in Mathematical Physics | Lecture 11 - Möbius transformations - Part I |

Link | Selected Topics in Mathematical Physics | Lecture 12 - Möbius transformations - Part II |

Link | Selected Topics in Mathematical Physics | Lecture 13 - Möbius transformations - Part III |

Link | Selected Topics in Mathematical Physics | Lecture 14 - Multivalued functions; integral representations - Part I |

Link | Selected Topics in Mathematical Physics | Lecture 15 - Multivalued functions; integral representations - Part II |

Link | Selected Topics in Mathematical Physics | Lecture 16 - Multivalued functions; integral representations - Part III |

Link | Selected Topics in Mathematical Physics | Lecture 17 - Multivalued functions; integral representations - Part IV |

Link | Selected Topics in Mathematical Physics | Lecture 18 - Laplace transforms - Part I |

Link | Selected Topics in Mathematical Physics | Lecture 19 - Laplace transforms - Part II |

Link | Selected Topics in Mathematical Physics | Lecture 20 - Fourier transforms - Part I |

Link | Selected Topics in Mathematical Physics | Lecture 21 - Fourier transforms - Part II |

Link | Selected Topics in Mathematical Physics | Lecture 22 - Fourier transforms - Part III |

Link | Selected Topics in Mathematical Physics | Lecture 23 - Fundamental Green function forΔ2 - Part I |

Link | Selected Topics in Mathematical Physics | Lecture 24 - Fundamental Green function forΔ2 - Part II |

Link | Selected Topics in Mathematical Physics | Lecture 25 - The diffusion equation - Part I |

Link | Selected Topics in Mathematical Physics | Lecture 26 - The diffusion equation - Part II |

Link | Selected Topics in Mathematical Physics | Lecture 27 - The diffusion equation - Part III |

Link | Selected Topics in Mathematical Physics | Lecture 28 - The diffusion equation - Part IV |

Link | Selected Topics in Mathematical Physics | Lecture 29 - Green function for (Δ2 + k2); nonrelativistic scattering - Part I |

Link | Selected Topics in Mathematical Physics | Lecture 30 - Green function for (Δ2 + k2); nonrelativistic scattering - Part II |

Link | Selected Topics in Mathematical Physics | Lecture 31 - Green function for (Δ2 + k2); nonrelativistic scattering - Part III |

Link | Selected Topics in Mathematical Physics | Lecture 32 - The wave equation - Part I |

Link | Selected Topics in Mathematical Physics | Lecture 33 - The wave equation - Part II |

Link | Selected Topics in Mathematical Physics | Lecture 34 - The rotation group and all that - Part I |

Link | Selected Topics in Mathematical Physics | Lecture 35 - The rotation group and all that - Part II |

Link | Selected Topics in Mathematical Physics | Lecture 36 - The rotation group and all that - Part III |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 1 - Energy Sources |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 2 - Nuclear Power Production Cycle |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 3 - Basic Physics of Nuclear Fission |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 4 - Basic Physics of Nuclear Fission (Continued...) |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 5 - Nuclear Reactors |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 6 - Reactors Generation |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 7 - Radiation Sources and Protection |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 8 - Biological Effects of Radiation |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 9 - Safety Principles |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 10 - Safety Principles (Continued...) |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 11 - Safety Approach |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 12 - Risk and Probabilistic safety analysis (PSA) |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 13 - History of Events in Nuclear Power Plants and Radiation facilities |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 14 - Other Events |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 15 - Validation and Dynamic Analysis |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 16 - Validation and Dynamic Analysis (Continued...) |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 17 - Quality Assurance |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 18 - Siting of Nuclear Plants |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 19 - Siting of Nuclear Plants (Continued...) |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 20 - Engineered Safety Systems |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 21 - Engineered Safety Systems (Continued...) |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 22 - Assessment of Radiological Consequences of Incidents |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 23 - Safety Regulation in India |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 24 - Safety Regulation in India (Continued...) |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 25 - Safety Regulation in India (Continued...) |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 26 - Safety Practices in Indian NPPs |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 27 - Safety Practices in Indian NPPs (Continued...) |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 28 - Safety Practices in Indian NPPs (Continued...) |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 29 - Passive Safety |

Link | Nuclear Reactors and Safety - An Introduction | Lecture 30 - Passive Safety (Continued...) |

Link | Physical Applications of Stochastic Processes | Lecture 1 - Discrete probability distributions - Part 1 |

Link | Physical Applications of Stochastic Processes | Lecture 2 - Discrete probability distributions - Part 2 |

Link | Physical Applications of Stochastic Processes | Lecture 3 - Continuous random variables |

Link | Physical Applications of Stochastic Processes | Lecture 4 - Central Limit Theorem |

Link | Physical Applications of Stochastic Processes | Lecture 5 - Stable distributions |

Link | Physical Applications of Stochastic Processes | Lecture 6 - Stochastic processes |

Link | Physical Applications of Stochastic Processes | Lecture 7 - Markov processes - Part 1 |

Link | Physical Applications of Stochastic Processes | Lecture 8 - Markov processes - Part 2 |

Link | Physical Applications of Stochastic Processes | Lecture 9 - Markov processes - Part 3 |

Link | Physical Applications of Stochastic Processes | Lecture 10 - Birth-and-death processes |

Link | Physical Applications of Stochastic Processes | Lecture 11 - Continuous Markov processes |

Link | Physical Applications of Stochastic Processes | Lecture 12 - Langevin dynamics - Part 1 |

Link | Physical Applications of Stochastic Processes | Lecture 13 - Langevin dynamics - Part 2 |

Link | Physical Applications of Stochastic Processes | Lecture 14 - Langevin dynamics - Part 3 |

Link | Physical Applications of Stochastic Processes | Lecture 15 - Langevin dynamics - Part 4 |

Link | Physical Applications of Stochastic Processes | Lecture 16 - Ito and Fokker-Planck equations for di?usion processes |

Link | Physical Applications of Stochastic Processes | Lecture 17 - Level-crossing statistics of a continuous random process |

Link | Physical Applications of Stochastic Processes | Lecture 18 - Diffusion of a charged particle in a magnetic field |

Link | Physical Applications of Stochastic Processes | Lecture 19 - Power spectrum of noise |

Link | Physical Applications of Stochastic Processes | Lecture 20 - Elements of linear response theory |

Link | Physical Applications of Stochastic Processes | Lecture 21 - Random pulse sequences |

Link | Physical Applications of Stochastic Processes | Lecture 22 - Dichotomous di?usion |

Link | Physical Applications of Stochastic Processes | Lecture 23 - First passage time (Part 1) |

Link | Physical Applications of Stochastic Processes | Lecture 24 - First passage time (Part 2) |

Link | Physical Applications of Stochastic Processes | Lecture 25 - First passage and recurrence in Markov chains |

Link | Physical Applications of Stochastic Processes | Lecture 26 - Recurrent and transient random walks |

Link | Physical Applications of Stochastic Processes | Lecture 27 - Non-Markovian random walks |

Link | Physical Applications of Stochastic Processes | Lecture 28 - Statistical aspects of deterministic dynamics (Part 1) |

Link | Physical Applications of Stochastic Processes | Lecture 29 - Statistical aspects of deterministic dynamics (Part 2) |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 1 - The Nature of Physical Laws |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 2 - Fundamental Constants and Dimensional Analysis |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 3 - Dimensional analysis and scaling |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 4 - sketching Elementary Functions |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 5 - The fundamental forces of nature |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 6 - Scalars, Victors and All That |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 7 - Plane Polar Coordinates |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 8 - Vectors In a Plane, Scalars and Pseudoscalars |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 9 - Kinematics In a Plane |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 10 - Vectors in 3-Dimensional Space |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 11 - Vectors in 3-Dimensional space (Continued...) |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 12 - The Finite Rotation Formula, Polar Coordinates in 3-dimensions |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 13 - Cylindrical and Spherical polar coordinates |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 14 - Motion in a circle - Acceleration |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 15 - Newtons laws of motion |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 16 - Conservation Laws and Newtons Equations |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 17 - Conservation of Angular Momentum |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 18 - Two-Body Scattering |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 19 - Two-Body Collision Kinematics |

Link | NOC:Mechanics, Heat Oscillations and Waves | Lecture 20 - Conservative Forces - The Concept of a Potential |