DIGIMAT LEARNING MANAGEMENT PLATFORM

Physics (5,121 Video Lectures)

Link NPTEL Course Name NPTEL Lecture Title
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 1 - Scalar field and its Gradient
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 2 - Line and Surface Integrals
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 3 - Divergence and Curl of Vector Fields
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 4 - Conservative Field, Stoke's Theorem
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 5 - Laplacian
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 6 - Electric Field Potential
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 7 - Gauss's Law, Potential
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 8 - Electric Field and Potential
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 9 - Potential and Potential Energy - I
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 10 - Potential and Potential Energy - II
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 11 - Potential and Potential Energy - III
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 12 - Coefficients of Potential and Capacitance
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 13 - Poission and Laplace Equation
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 14 - Solutions of Laplace Equation - I
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 15 - Solutions of Laplace Equation - II
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 16 - Solutions of Laplace Equation - III
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 17 - Special Techniques - I
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 18 - Special Techniques - II
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 19 - Special Techniques - III
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 20 - Dielectrics - I
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 21 - Dielectrics - II
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 22 - Dielectrics - III
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 23 - Equation of Continuity
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 24 - a) Force between current loops b) Magnetic Vector Potential
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 25 - Magnetic Vector Potential
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 26 - Boundary Conditions
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 27 - Magnetized Material
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 28 - Magentostatics (Continued...), Time Varying Field (Introduction)
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 29 - Faraday's Law and Inductance
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 30 - Maxwell's Equations
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 31 - Maxwell's Equations and Conservation Laws
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 32 - Conservation Laws
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 33 - a) Angular Momentum Conservation b) Electromagnetic Waves
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 34 - Electromagnetic Waves
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 35 - Propagation of Electromagnetic Waves in a metal
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 36 - Waveguides - I
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 37 - Waveguides - II
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 38 - Resonating Cavity
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 39 - Radiation - I
Link Electromagnetic Theory (Prof. D.K. Ghosh) Lecture 40 - Radiation - II
Link Special Theory of Relativity Lecture 1 - Problem with Classical Physics
Link Special Theory of Relativity Lecture 2 - Michelson-Morley Experiment
Link Special Theory of Relativity Lecture 3 - Postulates of Special Theory of Relativity and Galilean Transformation
Link Special Theory of Relativity Lecture 4 - Look out for a New Transformation
Link Special Theory of Relativity Lecture 5 - Lorentz Transformation
Link Special Theory of Relativity Lecture 6 - Length Contraction and Time Dilation
Link Special Theory of Relativity Lecture 7 - Examples of Length Contraction and Time Dilation
Link Special Theory of Relativity Lecture 8 - Velocity Transformation and Examples
Link Special Theory of Relativity Lecture 9 - A Three Event Problem
Link Special Theory of Relativity Lecture 10 - A Problem involving Light and Concept of Casuality
Link Special Theory of Relativity Lecture 11 - Problems involving Casuality and Need to Redefine Momentum
Link Special Theory of Relativity Lecture 12 - Minikowski Space and Four Vectors
Link Special Theory of Relativity Lecture 13 - Proper Time a Four Scalar
Link Special Theory of Relativity Lecture 14 - Velocity Four Vector
Link Special Theory of Relativity Lecture 15 - Momentum Energy Four Vector
Link Special Theory of Relativity Lecture 16 - Relook at Collision Problems
Link Special Theory of Relativity Lecture 17 - Zero Rest Mass Particle and Photon
Link Special Theory of Relativity Lecture 18 - Doppler Effect in Light
Link Special Theory of Relativity Lecture 19 - Example in C-Frame
Link Special Theory of Relativity Lecture 20 - Force in Relativity
Link Special Theory of Relativity Lecture 21 - Force Four-Vector
Link Special Theory of Relativity Lecture 22 - Electric & Magnetic Field Transformation
Link Special Theory of Relativity Lecture 23 - Example of EM Field Transformation
Link Special Theory of Relativity Lecture 24 - Current Density Four Vector and Maxwell Equation
Link NOC:Quantum Information and Computing Lecture 1 - Why Quantum Computing?
Link NOC:Quantum Information and Computing Lecture 2 - Postulates of Quantum Mechanics - I
Link NOC:Quantum Information and Computing Lecture 3 - Postulates of Quantum Mechanics - II
Link NOC:Quantum Information and Computing Lecture 4 - Qubit - The smallest unit
Link NOC:Quantum Information and Computing Lecture 5 - Qubit - Bloch sphere representation
Link NOC:Quantum Information and Computing Lecture 6 - Multiple Qubit States and Quantum Gates
Link NOC:Quantum Information and Computing Lecture 7 - Quantum Gates
Link NOC:Quantum Information and Computing Lecture 8 - Quantum Circuts
Link NOC:Quantum Information and Computing Lecture 9 - No-Cloning Theorem and Quantum Teleportation
Link NOC:Quantum Information and Computing Lecture 10 - Super Dense Coding
Link NOC:Quantum Information and Computing Lecture 11 - Density Matrix - I
Link NOC:Quantum Information and Computing Lecture 12 - Density Matrix - II
Link NOC:Quantum Information and Computing Lecture 13 - Bloch Sphere and Density Matrix
Link NOC:Quantum Information and Computing Lecture 14 - Measurement Postulates - I
Link NOC:Quantum Information and Computing Lecture 15 - Measurement Postulates - II
Link NOC:Quantum Information and Computing Lecture 16 - Simple Algorithms-Deutsch Algorithm
Link NOC:Quantum Information and Computing Lecture 17 - Deutsch-Josza and Bernstein - Vazirani Algorithms
Link NOC:Quantum Information and Computing Lecture 18 - Simon Problem
Link NOC:Quantum Information and Computing Lecture 19 - Grover's Search Algorithm - I
Link NOC:Quantum Information and Computing Lecture 20 - Grover's Search Algorithm - II
Link NOC:Quantum Information and Computing Lecture 21 - Grover's Search Algorithm - III
Link NOC:Quantum Information and Computing Lecture 22 - Grover's Search Algorithm - IV
Link NOC:Quantum Information and Computing Lecture 23 - Quantum Fourier Transform
Link NOC:Quantum Information and Computing Lecture 24 - Period Finding and QFT
Link NOC:Quantum Information and Computing Lecture 25 - Implementing QFT
Link NOC:Quantum Information and Computing Lecture 26 - Implementing QFT-3 qubits (and more)
Link NOC:Quantum Information and Computing Lecture 27 - Shor's Factorization Algorithm
Link NOC:Quantum Information and Computing Lecture 28 - Shor's Factorization Algorithm-Implementation
Link NOC:Quantum Information and Computing Lecture 29 - Shor's Algorithm-Continued Fraction
Link NOC:Quantum Information and Computing Lecture 30 - Quantum Error Correction - I
Link NOC:Quantum Information and Computing Lecture 31 - Quantum Error Correction - II Three Qubit Code
Link NOC:Quantum Information and Computing Lecture 32 - Quantum Error Correction - III Shor's 9 Qubit Code - I
Link NOC:Quantum Information and Computing Lecture 33 - Quantum Error Correction - IV Shor's 9 Qubit Code - II
Link NOC:Quantum Information and Computing Lecture 34 - Classical Information Theory
Link NOC:Quantum Information and Computing Lecture 35 - Shannon Entropy
Link NOC:Quantum Information and Computing Lecture 36 - Shannon's Noiseless Coding Theorem
Link NOC:Quantum Information and Computing Lecture 37 - Ven Neumann Entropy
Link NOC:Quantum Information and Computing Lecture 38 - EPR and Bell's Inequalities - I
Link NOC:Quantum Information and Computing Lecture 39 - EPR and Bell's Inequalities - II
Link NOC:Quantum Information and Computing Lecture 40 - EPR and Bell's Inequalities - III
Link NOC:Quantum Information and Computing Lecture 41 - Cryptography-RSA Algorithm - I
Link NOC:Quantum Information and Computing Lecture 42 - Cryptography-RSA Algorithm - II
Link NOC:Quantum Information and Computing Lecture 43 - Quantum Cryptography - I
Link NOC:Quantum Information and Computing Lecture 44 - Quantum Cryptography - II
Link NOC:Quantum Information and Computing Lecture 45 - Experimental Aspects of Quantum Computing - I
Link NOC:Quantum Information and Computing Lecture 46 - Experimental Aspects of Quantum Computing - II
Link NOC:Theory of Groups for Physics Applications Lecture 1 - Introduction
Link NOC:Theory of Groups for Physics Applications Lecture 2 - Algebraic Preliminaries
Link NOC:Theory of Groups for Physics Applications Lecture 3 - Basic Group Concepts and Low Order Groups - I
Link NOC:Theory of Groups for Physics Applications Lecture 4 - Basic Group Concepts and Low Order Groups - II
Link NOC:Theory of Groups for Physics Applications Lecture 5 - Lagrange's Theorem and Cayley's Theorem - I
Link NOC:Theory of Groups for Physics Applications Lecture 6 - Lagrange's Theorem and Cayley's Theorem - II
Link NOC:Theory of Groups for Physics Applications Lecture 7 - Factor Group Conjugacy Classes - I
Link NOC:Theory of Groups for Physics Applications Lecture 8 - Factor Group Conjugacy Classes - II
Link NOC:Theory of Groups for Physics Applications Lecture 9 - Cycle Structures and Molecular Notation - I
Link NOC:Theory of Groups for Physics Applications Lecture 10 - Cycle Structures and Molecular Notation - II
Link NOC:Theory of Groups for Physics Applications Lecture 11 - Cycle Structures and Classification - I
Link NOC:Theory of Groups for Physics Applications Lecture 12 - Cycle Structures and Classification - II
Link NOC:Theory of Groups for Physics Applications Lecture 13 - Point Group Notation and Factor Group - I
Link NOC:Theory of Groups for Physics Applications Lecture 14 - Point Group Notation and Factor Group - II
Link NOC:Theory of Groups for Physics Applications Lecture 15 - Representation Theory - I
Link NOC:Theory of Groups for Physics Applications Lecture 16 - Representation Theory - II
Link NOC:Theory of Groups for Physics Applications Lecture 17 - Representation Theory - III
Link NOC:Theory of Groups for Physics Applications Lecture 18 - Representation Theory - IV
Link NOC:Theory of Groups for Physics Applications Lecture 19 - Schur's Lemma and Orthogonality Theorem - I
Link NOC:Theory of Groups for Physics Applications Lecture 20 - Schur's Lemma and Orthogonality Theorem - II
Link NOC:Theory of Groups for Physics Applications Lecture 21 - Orthogonality For Characters - I
Link NOC:Theory of Groups for Physics Applications Lecture 22 - Orthogonality For Characters - II
Link NOC:Theory of Groups for Physics Applications Lecture 23 - Character Tables and Molecular Applications - I
Link NOC:Theory of Groups for Physics Applications Lecture 24 - Character Tables and Molecular Applications - II
Link NOC:Theory of Groups for Physics Applications Lecture 25 - Preliminaries About The Continuum - I
Link NOC:Theory of Groups for Physics Applications Lecture 26 - Preliminaries About The Continuum - II
Link NOC:Theory of Groups for Physics Applications Lecture 27 - Classical Groups - I
Link NOC:Theory of Groups for Physics Applications Lecture 28 - Classical Groups - II
Link NOC:Theory of Groups for Physics Applications Lecture 29 - Classical Groups-Topology - I
Link NOC:Theory of Groups for Physics Applications Lecture 30 - Classical Groups-Topology - II
Link NOC:Theory of Groups for Physics Applications Lecture 31 - SO(3) And Matrix Exponent - I
Link NOC:Theory of Groups for Physics Applications Lecture 32 - SO(3) And Matrix Exponent - II
Link NOC:Theory of Groups for Physics Applications Lecture 33 - Generators, Discussion Of Lie's Theorems - I
Link NOC:Theory of Groups for Physics Applications Lecture 34 - Generators, Discussion Of Lie's Theorems - II
Link NOC:Theory of Groups for Physics Applications Lecture 35 - Group Algebras; SO(3)-SU(2) Correspondence - I
Link NOC:Theory of Groups for Physics Applications Lecture 36 - Group Algebras; SO(3)-SU(2) Correspondence - II
Link NOC:Theory of Groups for Physics Applications Lecture 37 - SO(3), SU(2) Representations - I
Link NOC:Theory of Groups for Physics Applications Lecture 38 - SO(3), SU(2) Representations - II
Link NOC:Theory of Groups for Physics Applications Lecture 39 - Representation On Function Spaces - I
Link NOC:Theory of Groups for Physics Applications Lecture 40 - Representation On Function Spaces - II
Link NOC:Theory of Groups for Physics Applications Lecture 41 - Lorentz Boosts, SO(3,1) Algebra - I
Link NOC:Theory of Groups for Physics Applications Lecture 42 - Lorentz Boosts, SO(3,1) Algebra - II
Link NOC:Theory of Groups for Physics Applications Lecture 43 - Representation Of Lorentz Group And Clifford Algebra - I
Link NOC:Theory of Groups for Physics Applications Lecture 44 - Representation Of Lorentz Group And Clifford Algebra - II
Link NOC:Theory of Groups for Physics Applications Lecture 45 - SU(3) And Lie's Classification - I
Link NOC:Theory of Groups for Physics Applications Lecture 46 - SU(3) And Lie's Classification - II
Link NOC:Theory of Groups for Physics Applications Lecture 47 - Fundamental Symmetries Of Physics - I
Link NOC:Theory of Groups for Physics Applications Lecture 48 - Fundamental Symmetries Of Physics - II
Link NOC:Quantum Mechanics-I Lecture 1 - Introduction to Quantum Mechanics - I
Link NOC:Quantum Mechanics-I Lecture 2 - Introduction to Quantum Mechanics - II
Link NOC:Quantum Mechanics-I Lecture 3 - Review of Particle in Box, Potential Well, Barrier, Harmonic Oscillator - I
Link NOC:Quantum Mechanics-I Lecture 4 - Review of Particle in Box, Potential Well, Barrier, Harmonic Oscillator - II
Link NOC:Quantum Mechanics-I Lecture 5 - Tutorial 1 - Part I
Link NOC:Quantum Mechanics-I Lecture 6 - Tutorial 1 - Part II
Link NOC:Quantum Mechanics-I Lecture 7 - Bound States - I
Link NOC:Quantum Mechanics-I Lecture 8 - Bound States - II
Link NOC:Quantum Mechanics-I Lecture 9 - Conditions and Solutions for one Dimensional Bound States - I
Link NOC:Quantum Mechanics-I Lecture 10 - Conditions and Solutions for one Dimensional Bound States - II
Link NOC:Quantum Mechanics-I Lecture 11 - Tutorial 2
Link NOC:Quantum Mechanics-I Lecture 12 - Linear Vector Space (LVS) - I
Link NOC:Quantum Mechanics-I Lecture 13 - Linear Vector Space (LVS) - II
Link NOC:Quantum Mechanics-I Lecture 14 - Linear Vector Space (LVS) - III
Link NOC:Quantum Mechanics-I Lecture 15 - Basis for Operators and States in LVS - I
Link NOC:Quantum Mechanics-I Lecture 16 - Basis for Operators and States in LVS - II
Link NOC:Quantum Mechanics-I Lecture 17 - Tutorial 3 - Part I
Link NOC:Quantum Mechanics-I Lecture 18 - Tutorial 3 - Part II
Link NOC:Quantum Mechanics-I Lecture 19 - Function Spaces - I
Link NOC:Quantum Mechanics-I Lecture 20 - Function Spaces - II
Link NOC:Quantum Mechanics-I Lecture 21 - Postulates of Quantum Mechanics - I
Link NOC:Quantum Mechanics-I Lecture 22 - Postulates of Quantum Mechanics - II
Link NOC:Quantum Mechanics-I Lecture 23 - Tutorial 4 - Part I
Link NOC:Quantum Mechanics-I Lecture 24 - Tutorial 4 - Part II
Link NOC:Quantum Mechanics-I Lecture 25 - Classical vs Quantum Mechanics - I
Link NOC:Quantum Mechanics-I Lecture 26 - Classical vs Quantum Mechanics - II
Link NOC:Quantum Mechanics-I Lecture 27 - Compatible vs Incompatible Observable - I
Link NOC:Quantum Mechanics-I Lecture 28 - Compatible vs Incompatible Observable - II
Link NOC:Quantum Mechanics-I Lecture 29 - Tutorial 5 - Part I
Link NOC:Quantum Mechanics-I Lecture 30 - Tutorial 5 - Part II
Link NOC:Quantum Mechanics-I Lecture 31 - Tutorial 5 - Part III
Link NOC:Quantum Mechanics-I Lecture 32 - Schrodinger and Heisenberg Pictures - I
Link NOC:Quantum Mechanics-I Lecture 33 - Schrodinger and Heisenberg Pictures - II
Link NOC:Quantum Mechanics-I Lecture 34 - Solutions to other Coupled Potential Energies - I
Link NOC:Quantum Mechanics-I Lecture 35 - Solutions to other Coupled Potential Energies - II
Link NOC:Quantum Mechanics-I Lecture 36 - Tutorial 6 - Part I
Link NOC:Quantum Mechanics-I Lecture 37 - Tutorial 6 - Part II
Link NOC:Quantum Mechanics-I Lecture 38 - Hydrogen Atom and Wave Functions, Angular Momentum Operators, Identical Particles - I
Link NOC:Quantum Mechanics-I Lecture 39 - Hydrogen Atom and Wave Functions, Angular Momentum Operators, Identical Particles - II
Link NOC:Quantum Mechanics-I Lecture 40 - Identical Particles and Quantum Computer - I
Link NOC:Quantum Mechanics-I Lecture 41 - Identical Particles and Quantum Computer - II
Link NOC:Quantum Mechanics-I Lecture 42 - Tutorial 7 - Part I
Link NOC:Quantum Mechanics-I Lecture 43 - Tutorial 7 - Part II
Link NOC:Quantum Mechanics-I Lecture 44 - Harmonic Oscillator - I
Link NOC:Quantum Mechanics-I Lecture 45 - Harmonic Oscillator - II
Link NOC:Quantum Mechanics-I Lecture 46 - Ladder Operators - I
Link NOC:Quantum Mechanics-I Lecture 47 - Ladder Operators - II
Link NOC:Quantum Mechanics-I Lecture 48 - Tutorial 8 - Part I
Link NOC:Quantum Mechanics-I Lecture 49 - Tutorial 8 - Part II
Link NOC:Quantum Mechanics-I Lecture 50 - Stern-Gerlach Experiment - I
Link NOC:Quantum Mechanics-I Lecture 51 - Stern-Gerlach Experiment - II
Link NOC:Quantum Mechanics-I Lecture 52 - Oscillator Algebra
Link NOC:Quantum Mechanics-I Lecture 53 - Tutorial 9 - Part I
Link NOC:Quantum Mechanics-I Lecture 54 - Tutorial 9 - Part II
Link NOC:Quantum Mechanics-I Lecture 55 - Angular Momentum - I
Link NOC:Quantum Mechanics-I Lecture 56 - Angular Momentum - II
Link NOC:Quantum Mechanics-I Lecture 57 - Rotations Groups - I
Link NOC:Quantum Mechanics-I Lecture 58 - Rotations Groups - II
Link NOC:Quantum Mechanics-I Lecture 59 - Tutorial 10 - Part I
Link NOC:Quantum Mechanics-I Lecture 60 - Tutorial 10 - Part II
Link NOC:Quantum Mechanics-I Lecture 61 - Addition of Angular Momentum - I
Link NOC:Quantum Mechanics-I Lecture 62 - Addition of Angular Momentum - II
Link NOC:Quantum Mechanics-I Lecture 63 - Clebsch-Gordan Coe cients - I
Link NOC:Quantum Mechanics-I Lecture 64 - Clebsch-Gordan Coe cients - II
Link NOC:Quantum Mechanics-I Lecture 65 - Tutorial 11 - Part I
Link NOC:Quantum Mechanics-I Lecture 66 - Tutorial 11 - Part II
Link NOC:Quantum Mechanics-I Lecture 67 - Clebsch-Gordan Coe cients - III
Link NOC:Quantum Mechanics-I Lecture 68 - Tensor Operators and Wigner-Eckart Theorem - I
Link NOC:Quantum Mechanics-I Lecture 69 - Tensor Operators and Wigner-Eckart Theorem - II
Link NOC:Quantum Mechanics-I Lecture 70 - Tensor Operators and Wigner-Eckart Theorem - III
Link NOC:Quantum Mechanics-I Lecture 71 - Tutorial 12
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 1 - Quantum Theory Fundamental Quantisation - I
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 2 - Quantum Theory Fundamental Quantisation - II
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 3 - Path Integral Formulation - I
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 4 - Path Integral Formulation - II
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 5 - Path Integral Formulation - III
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 6 - Path Integral Formulation - IV
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 7 - Correlation Functions - I
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 8 - Correlation Functions - II
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 9 - Generating Functional, Forced Harmonic Oscillator - I
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 10 - Generating Functional, Forced Harmonic Oscillator - II
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 11 - Generating Function in Field Theory - I
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 12 - Generating Function in Field Theory - II
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 13 - Effective Potential - I
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 14 - Effective Potential - II
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 15 - Effective Potential - III
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 16 - Effective Potential - IV
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 17 - Asymptotic Theory - I
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 18 - Asymptotic Theory - II
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 19 - Asymptotic Condition Kallen-Lehmann representation - I
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 20 - Asymptotic Condition Kallen-Lehmann representation - II
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 21 - Gauge Invariance - Minimal Coupling
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 22 - Gauge Invariance - Geometric Picture
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 23 - Gauge Invariance - Abelian Case
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 24 - Gauge Invariance - Non-abelian case
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 25 - Yang Mills Theory - Coupling to Matter
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 26 - Yang Mills Theory - Physical Content
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 27 - Yang Mills Theory Constraint Dynamics - I
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 28 - Yang Mills Theory Constraint Dynamics - II
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 29 - Gauge Fixing and Faddeev Popov Ghosts - I
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 30 - Gauge Fixing and Faddeev Popov Ghosts - II
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 31 - Topological Vacuum of Yang Mills Theories - I
Link NOC:Path Integral and Functional Methods in Quantum Field Theory Lecture 32 - Topological Vacuum of Yang Mills Theories - II
Link NOC:Physics of Biological Systems Lecture 1 - Introduction
Link NOC:Physics of Biological Systems Lecture 2 - DNA packing and structure
Link NOC:Physics of Biological Systems Lecture 3 - Shape and function
Link NOC:Physics of Biological Systems Lecture 4 - Numbers and sizes
Link NOC:Physics of Biological Systems Lecture 5 - Spatial scales and System variation
Link NOC:Physics of Biological Systems Lecture 6 - Timescales in Biology
Link NOC:Physics of Biological Systems Lecture 7 - Random walks and Passive diffusion
Link NOC:Physics of Biological Systems Lecture 8 - Random walks to model Biology
Link NOC:Physics of Biological Systems Lecture 9 - Derivation of FRAP equations
Link NOC:Physics of Biological Systems Lecture 10 - Drift-diffusion equations
Link NOC:Physics of Biological Systems Lecture 11 - Solutions of the drift-diffusion equations
Link NOC:Physics of Biological Systems Lecture 12 - The cell signaling problem
Link NOC:Physics of Biological Systems Lecture 13 - Cell Signalling and Capture Probability of absorbing sphere
Link NOC:Physics of Biological Systems Lecture 14 - Capture probability of reflecting sphere
Link NOC:Physics of Biological Systems Lecture 15 - Mean capture time
Link NOC:Physics of Biological Systems Lecture 16 - Introduction to fluids, viscosity and reynolds number
Link NOC:Physics of Biological Systems Lecture 17 - Introduction to the navier stokes equation
Link NOC:Physics of Biological Systems Lecture 18 - Understanding reynolds number
Link NOC:Physics of Biological Systems Lecture 19 - Life at low reynolds number
Link NOC:Physics of Biological Systems Lecture 20 - Various phenomena at low reynolds number
Link NOC:Physics of Biological Systems Lecture 21 - Bacterial flagellar motion
Link NOC:Physics of Biological Systems Lecture 22 - Rotating flagellum
Link NOC:Physics of Biological Systems Lecture 23 - Energy and equilibrium
Link NOC:Physics of Biological Systems Lecture 24 - Binding problems
Link NOC:Physics of Biological Systems Lecture 25 - Transcription and translation
Link NOC:Physics of Biological Systems Lecture 26 - Internal states of macromolecules
Link NOC:Physics of Biological Systems Lecture 27 - Protein modification problem
Link NOC:Physics of Biological Systems Lecture 28 - Haemoglobin-Oxygen binding problem
Link NOC:Physics of Biological Systems Lecture 29 - Freely jointed polymer model
Link NOC:Physics of Biological Systems Lecture 30 - Entropic springs and persistence length
Link NOC:Physics of Biological Systems Lecture 31 - Freely rotating chain model and radius of gyration
Link NOC:Physics of Biological Systems Lecture 32 - The hierarchical chromatin packing model
Link NOC:Physics of Biological Systems Lecture 33 - FISH and DNA looping
Link NOC:Physics of Biological Systems Lecture 34 - Nucleosomes as barriers, Hi-C, and contact probabilities
Link NOC:Physics of Biological Systems Lecture 35 - Deriving the full force extension curve
Link NOC:Physics of Biological Systems Lecture 36 - Random walk models for proteins
Link NOC:Physics of Biological Systems Lecture 37 - Hydrophobic polar protein model
Link NOC:Physics of Biological Systems Lecture 38 - Diffusion in crowded environments
Link NOC:Physics of Biological Systems Lecture 39 - Depletion interactions
Link NOC:Physics of Biological Systems Lecture 40 - Examples and implications of depletion interactions
Link NOC:Physics of Biological Systems Lecture 41 - Introduction to Biological dynamics
Link NOC:Physics of Biological Systems Lecture 42 - Introduction to rate equations
Link NOC:Physics of Biological Systems Lecture 43 - Separation of timescales in enzyme kinetics
Link NOC:Physics of Biological Systems Lecture 44 - Structure and treadmilling of actins and microtubules
Link NOC:Physics of Biological Systems Lecture 45 - Average length of polymers in equilibrium
Link NOC:Physics of Biological Systems Lecture 46 - Growth rate of polymers
Link NOC:Physics of Biological Systems Lecture 47 - Dynamic treadmilling in microtubules
Link NOC:Physics of Biological Systems Lecture 48 - Introduction to molecular motors
Link NOC:Physics of Biological Systems Lecture 49 - Force generation by molecular motors
Link NOC:Physics of Biological Systems Lecture 50 - Models of motor motion
Link NOC:Physics of Biological Systems Lecture 51 - molecular motors
Link NOC:Physics of Biological Systems Lecture 52 - Free energies of motor for stepping
Link NOC:Physics of Biological Systems Lecture 53 - Two state models
Link NOC:Physics of Biological Systems Lecture 54 - cooperative transport of cargo
Link NOC:Physics of Biological Systems Lecture 55 - Cytoskeleton as a motor
Link NOC:Physics of Biological Systems Lecture 56 - translocation ratchet
Link NOC:Physics of Biological Systems Lecture 57 - Spatial pattern in biology
Link NOC:Physics of Biological Systems Lecture 58 - Some common spatial patterns in biology
Link NOC:Physics of Biological Systems Lecture 59 - reaction diffusion and spatial pattern
Link NOC:Physics of Biological Systems Lecture 60 - Pattern formation in reaction diffusion system with stability
Link NOC:Physics of Biological Systems Lecture 61 - Condition for destablization in pattern formation
Link NOC:Physics of Biological Systems Lecture 62 - Schnakenberg kinetics
Link NOC:Group Theory Methods in Physics Lecture 1 - Introduction - I
Link NOC:Group Theory Methods in Physics Lecture 2 - Introduction - II
Link NOC:Group Theory Methods in Physics Lecture 3 - Normal subgroup, Coset, Conjugate group
Link NOC:Group Theory Methods in Physics Lecture 4 - Factor group, Homomorphism, Isomorphism
Link NOC:Group Theory Methods in Physics Lecture 5 - Factor group, Homomorphism, Isomorphism
Link NOC:Group Theory Methods in Physics Lecture 6 - Conjugacy Classes
Link NOC:Group Theory Methods in Physics Lecture 7 - Permutation Groups
Link NOC:Group Theory Methods in Physics Lecture 8 - Cycle Structure
Link NOC:Group Theory Methods in Physics Lecture 9 - Cycle Structure (Continued...)
Link NOC:Group Theory Methods in Physics Lecture 10 - Young Diagram and Molecular Symmetry
Link NOC:Group Theory Methods in Physics Lecture 11 - Point Groups
Link NOC:Group Theory Methods in Physics Lecture 12 - Symmetries of Molecules, Schoenflies Notation
Link NOC:Group Theory Methods in Physics Lecture 13 - Symmetries of Molecules, Stereographic Projection
Link NOC:Group Theory Methods in Physics Lecture 14 - Examples of Molecular Symmetries and Proof of Cayley Theorem
Link NOC:Group Theory Methods in Physics Lecture 15 - Matrix Representation of Groups - I
Link NOC:Group Theory Methods in Physics Lecture 16 - Matrix Representation of Groups - II
Link NOC:Group Theory Methods in Physics Lecture 17 - Reducible and Irreducible Representation - I
Link NOC:Group Theory Methods in Physics Lecture 18 - Reducible and Irreducible Representation - II
Link NOC:Group Theory Methods in Physics Lecture 19 - Great Orthogonality Theorem and Character Table - I
Link NOC:Group Theory Methods in Physics Lecture 20 - Great Orthogonality Theorem and Character Table - II
Link NOC:Group Theory Methods in Physics Lecture 21 - Mulliken Notation, Character Table and Basis
Link NOC:Group Theory Methods in Physics Lecture 22 - Tensor Product of Representation
Link NOC:Group Theory Methods in Physics Lecture 23 - Tensor Product and Projection Operator - I
Link NOC:Group Theory Methods in Physics Lecture 24 - Tensor Product and Projection Operator - II
Link NOC:Group Theory Methods in Physics Lecture 25 - Tensor Product and Projection Operator with an example
Link NOC:Group Theory Methods in Physics Lecture 26 - Binary Basis and Observables
Link NOC:Group Theory Methods in Physics Lecture 27 - Selection Rules
Link NOC:Group Theory Methods in Physics Lecture 28 - Selection Rules and Molecular Vibrations
Link NOC:Group Theory Methods in Physics Lecture 29 - Molecular vibration normal modes: Classical Mechanics approach
Link NOC:Group Theory Methods in Physics Lecture 30 - Molecular vibration normal modes: Group Theory approach
Link NOC:Group Theory Methods in Physics Lecture 31 - Molecular vibration modes using projection operator
Link NOC:Group Theory Methods in Physics Lecture 32 - Vibrational representation of character
Link NOC:Group Theory Methods in Physics Lecture 33 - Infrared Spectra and Raman Spectra
Link NOC:Group Theory Methods in Physics Lecture 34 - Introduction to continuous group
Link NOC:Group Theory Methods in Physics Lecture 35 - Generators of translational and rotational transformation
Link NOC:Group Theory Methods in Physics Lecture 36 - Generators of Lorentz transformation
Link NOC:Group Theory Methods in Physics Lecture 37 - Introduction to O(3) and SO(3) group
Link NOC:Group Theory Methods in Physics Lecture 38 - SO(n) and Lorentz group
Link NOC:Group Theory Methods in Physics Lecture 39 - Generalised orthogonal group and Lie algebra
Link NOC:Group Theory Methods in Physics Lecture 40 - Subalgebra of Lie algebra
Link NOC:Group Theory Methods in Physics Lecture 41 - gl(2,C) and sl(2,C) group
Link NOC:Group Theory Methods in Physics Lecture 42 - U(n) and SU(n) group
Link NOC:Group Theory Methods in Physics Lecture 43 - Symplectic group
Link NOC:Group Theory Methods in Physics Lecture 44 - SU(2) and SU(3) groups
Link NOC:Group Theory Methods in Physics Lecture 45 - Rank, weight and weight vector
Link NOC:Group Theory Methods in Physics Lecture 46 - Weight vector, root vector, comparison between SU(2) and SU(3) algebra
Link NOC:Group Theory Methods in Physics Lecture 47 - Root diagram, simple roots, adjoint representation
Link NOC:Group Theory Methods in Physics Lecture 48 - SU(2) sub-algebra, Dynkin diagrams
Link NOC:Group Theory Methods in Physics Lecture 49 - Fundamental weights, Young diagrams, dimension of irreducible representation
Link NOC:Group Theory Methods in Physics Lecture 50 - Young diagrams and tensor products
Link NOC:Group Theory Methods in Physics Lecture 51 - Tensor product, Wigner - Eckart theorem
Link NOC:Group Theory Methods in Physics Lecture 52 - Tensor product of irreducible representation 1: Composite objects from fundamental particles
Link NOC:Group Theory Methods in Physics Lecture 53 - Tensor product of irreducible representation 2: Decimet and octet diagrams in the Quark Model
Link NOC:Group Theory Methods in Physics Lecture 54 - Clebsch - Gordan coefficients
Link NOC:Group Theory Methods in Physics Lecture 55 - 1) Quadrupole moment tensor (Wigner-Eckart theorem) 2) Decimet Baryon wavefunction
Link NOC:Group Theory Methods in Physics Lecture 56 - Higher dimensional multiplets in the quark model
Link NOC:Group Theory Methods in Physics Lecture 57 - Symmetry breaking in continuous groups
Link NOC:Group Theory Methods in Physics Lecture 58 - Dynamical symmetry in hydrogen atom: SO(4) algebra
Link NOC:Group Theory Methods in Physics Lecture 59 - Hydrogen atom energy spectrum and degeneracy using Runge-Lenz vector
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 1 - Neutrons as Probe of Condensed Matter
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 2 - Sources for thermal neutrons used in neutron scattering
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 3
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 4 - Calculating Neutron Scattering cross-section
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 5
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 6 - Scattering theory and introducing dynamics in the formalism
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 7 - Scattering theory and introducing dynamics in the formalism
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 8 - Scattering theory and introducing dynamics in the formalism
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 9 - Scattering law's correlation with double-Fourier transform of real space correlation function
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 10 - Scattering law's correlation with double-Fourier transform of real space correlation function
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 11 - Correlation function to resolution and accessible(Q,ω). Introducing experimental facilities
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 12 - Correlation function to resolution and accessible(Q,ω). Introducing experimental facilities
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 13 - Correlation function to resolution and accessible(Q,ω). Introducing experimental facilities
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 14 - Correlation function to resolution and accessible(Q,ω). Introducing experimental facilities
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 15 - Introducing resolution and components of neutron scattering facilities.
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 16 - Introducing resolution and components of neutron scattering facilities.
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 17 - Continue with neutron scattering set up and its components like collimators, filters, detectors etc
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 18 - Continue with neutron scattering set up and its components like collimators, filters, detectors etc
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 19 - Describe the operation of various kinds of neutron detectors
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 20 - Describe the operation of various kinds of neutron detectors
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 21 - Introducing neutron choppers, velocity selectors and polarizers, some important components of beam tailoring devices
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 22 - Introducing neutron choppers, velocity selectors and polarizers, some important components of beam tailoring devices
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 23 - Neutron polarizers and spin-flippers
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 24 - Neutron polarizers and spin-flippers
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 25 - Diffraction at various length scales at a reactor and at a spallation neutron source
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 26 - Diffraction at various length scales at a reactor and at a spallation neutron source
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 27 - Application of neutron crystallography
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 28 - Application of neutron crystallography
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 29 - Magnetism in solids
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 30 - Magnetism in solids
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 31 - Magnetic interaction in solids and magnetic neutron diffarction
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 32 - Magnetic interaction in solids and magnetic neutron diffarction
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 33 - Magnetic interaction in solids and magnetic neutron diffarction
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 34 - Magnetic neutron diffraction
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 35 - Magnetic neutron diffraction
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 36 - Neutron diffraction from liquid and amorphous systems
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 37 - Neutron diffraction from liquid and amorphous systems
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 38 - Small Angle Neutron Scattering (SANS) for mesoscopic structure
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 39 - Small Angle Neutron Scattering (SANS) for mesoscopic structure
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 40 - Small Angle Neutron Scattering (SANS) for mesoscopic structure
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 41 - Small Angle Neutron Scattering (SANS) for mesoscopic structure
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 42 - SANS for soft condensed matter
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 43 - SANS for soft condensed matter
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 44 - SANS for polymers, biological systems, nanoparticle aggregates, rocks, Superconducting vortex lattice
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 45 - SANS for polymers, biological systems, nanoparticle aggregates, rocks, Superconducting vortex lattice
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 46 - Neutron reflectometry for thin films
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 47 - Neutron reflectometry for thin films
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 48 - Neutron reflectometry for thin films
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 49 - Details formalism to evaluate specular neutron reflectivity and comparison with x-ray reflectometry
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 50 - Details formalism to evaluate specular neutron reflectivity and comparison with x-ray reflectometry
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 51 - Neutron reflectometry data analysis and reflectometers at various sources
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 52 - Neutron reflectometry data analysis and reflectometers at various sources
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 53 - Neutron reflectometry data analysis and reflectometers at various sources
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 54 - Examples of PNR with and without spin analysis and introduction to off-specular reflectometry
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 55 - Examples of PNR with and without spin analysis and introduction to off-specular reflectometry
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 56 - Examples of PNR with and without spin analysis and introduction to off-specular reflectometry
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 57 - Off-specular neutron reflectometry and introduction to inelastic neutron scattering
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 58 - Off-specular neutron reflectometry and introduction to inelastic neutron scattering
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 59 - Off-specular neutron reflectometry and introduction to inelastic neutron scattering
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 60 - Phonon measurements with neutrons
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 61 - Phonon measurements with neutrons
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 62 - Phonon measurements; single crystals
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 63
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 64 - Phonon: Density of States measurements
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 65 - Stochastic dynamics with neutrons
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 66 - Stochastic motion and various types of diffusion
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 67 - Stochastic motion and various types of diffusion
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 68 - Spin echo spectrometer, Summary of the course
Link NOC:Neutron Scattering for Condensed Matter Studies Lecture 69 - Spin echo spectrometer, Summary of the course
Link NOC:Accelerator Physics Lecture 1 - Why accelerators
Link NOC:Accelerator Physics Lecture 2 - Accelerator as a microscope
Link NOC:Accelerator Physics Lecture 3 - Charging and Discharging of capacitors
Link NOC:Accelerator Physics Lecture 4 - Charging and Discharging of capacitors (Continued...)
Link NOC:Accelerator Physics Lecture 5 - Introduction to DC accelerators
Link NOC:Accelerator Physics Lecture 6 - Cockcroft Walton Accelerator (1929)
Link NOC:Accelerator Physics Lecture 7 - Van-de-Graaff accelerator and Tandem and Pelletron accelerators
Link NOC:Accelerator Physics Lecture 8 - Van-de-Graaff accelerator and Tandem and Pelletron accelerators
Link NOC:Accelerator Physics Lecture 9 - Voltage measurement and stabilisation
Link NOC:Accelerator Physics Lecture 10 - Voltage measurement and stabilisation
Link NOC:Accelerator Physics Lecture 11 - Beam energy calibration/measurement
Link NOC:Accelerator Physics Lecture 12 - Beam energy calibration/measurement
Link NOC:Accelerator Physics Lecture 13 - Beam focussing using electrostatic and magnetic lenses and beam optics
Link NOC:Accelerator Physics Lecture 14 - Beam focussing using electrostatic and magnetic lenses and beam optics
Link NOC:Accelerator Physics Lecture 15 - Beam focussing using electrostatic and magnetic lenses and beam optics
Link NOC:Accelerator Physics Lecture 16 - Ion Sources
Link NOC:Accelerator Physics Lecture 17 - Ion Sources
Link NOC:Accelerator Physics Lecture 18 - Introduction and Basic concepts of linear accelerators
Link NOC:Accelerator Physics Lecture 19 - Introduction and Basic concepts of linear accelerators
Link NOC:Accelerator Physics Lecture 20 - RF Acceleration - 1
Link NOC:Accelerator Physics Lecture 21 - RF Acceleration - 1
Link NOC:Accelerator Physics Lecture 22 - RF Acceleration - 2
Link NOC:Accelerator Physics Lecture 23 - RF Acceleration - 2
Link NOC:Accelerator Physics Lecture 24 - RF Acceleration - 3 - Waveguides and cavities
Link NOC:Accelerator Physics Lecture 25 - RF Acceleration - 3 - Waveguides and cavities
Link NOC:Accelerator Physics Lecture 26 - Accelerating structures - Pillbox cavity and DTL
Link NOC:Accelerator Physics Lecture 27 - Accelerating structures - Pillbox cavity and DTL
Link NOC:Accelerator Physics Lecture 28 - Accelerating structures - Travelling wave linacs and periodic accelerating structures
Link NOC:Accelerator Physics Lecture 29 - Accelerating structures - Travelling wave linacs and periodic accelerating structures
Link NOC:Accelerator Physics Lecture 30 - Superconducting cavities
Link NOC:Accelerator Physics Lecture 31 - Superconducting cavities
Link NOC:Accelerator Physics Lecture 32 - Transverse Dynamics - 1
Link NOC:Accelerator Physics Lecture 33 - Transverse Dynamics - 1
Link NOC:Accelerator Physics Lecture 34 - Transverse Dynamics - 2
Link NOC:Accelerator Physics Lecture 35 - Transverse Dynamics - 2
Link NOC:Accelerator Physics Lecture 36 - Transverse Dynamics - 3
Link NOC:Accelerator Physics Lecture 37 - Transverse Dynamics - 3
Link NOC:Accelerator Physics Lecture 38 - Longitudinal Dynamics - 1
Link NOC:Accelerator Physics Lecture 39 - Longitudinal Dynamics - 1
Link NOC:Accelerator Physics Lecture 40 - Longitudinal Dynamics - 2
Link NOC:Accelerator Physics Lecture 41 - Longitudinal Dynamics - 2
Link NOC:Accelerator Physics Lecture 42 - Radio Frequency Quadrupole
Link NOC:Accelerator Physics Lecture 43 - Radio Frequency Quadrupole
Link NOC:Accelerator Physics Lecture 44 - Cyclic accelerators: Some basic principles
Link NOC:Accelerator Physics Lecture 45 - Cyclic accelerators: Some basic principles
Link NOC:Accelerator Physics Lecture 46 - About the cyclotron
Link NOC:Accelerator Physics Lecture 47 - About the cyclotron
Link NOC:Accelerator Physics Lecture 48 - Microtron
Link NOC:Accelerator Physics Lecture 49 - Equation of motion, Focusing
Link NOC:Accelerator Physics Lecture 50 - Equation of motion, Focusing
Link NOC:Accelerator Physics Lecture 51 - Strong focusing, Edge focusing, AG principle
Link NOC:Accelerator Physics Lecture 52 - Strong focusing, Edge focusing, AG principle
Link NOC:Accelerator Physics Lecture 53 - Matrix methods
Link NOC:Accelerator Physics Lecture 54 - Matrix methods
Link NOC:Accelerator Physics Lecture 55 - Hill's equation and parameterization - 1
Link NOC:Accelerator Physics Lecture 56 - Hill's equation and parameterization - 1
Link NOC:Accelerator Physics Lecture 57 - Hill's equation and parameterization - 2
Link NOC:Accelerator Physics Lecture 58 - Hill's equation and parameterization - 2
Link NOC:Accelerator Physics Lecture 59 - Hill's equation and parameterization - 3
Link NOC:Accelerator Physics Lecture 60 - Hill's equation and parameterization - 3
Link NOC:Accelerator Physics Lecture 61
Link NOC:Accelerator Physics Lecture 62
Link NOC:Accelerator Physics Lecture 63
Link NOC:Accelerator Physics Lecture 64
Link NOC:Accelerator Physics Lecture 65
Link NOC:Accelerator Physics Lecture 66
Link NOC:Accelerator Physics Lecture 67 - Proton synchrotron for spallation source
Link NOC:Accelerator Physics Lecture 68 - Proton synchrotron for spallation source
Link NOC:Accelerator Physics Lecture 69 - Colliders
Link NOC:Accelerator Physics Lecture 70 - Colliders
Link NOC:Accelerator Physics Lecture 71 - Laser Plasma accelerators and Accelerator Driven Systems (ADS)
Link NOC:Accelerator Physics Lecture 72 - Laser Plasma accelerators and Accelerator Driven Systems (ADS)
Link Electronics Lecture 1 - p-n diode
Link Electronics Lecture 2 - p-n Junction/Diode (Continued...)
Link Electronics Lecture 3 - p-n diode (Continued...)
Link Electronics Lecture 4 - Diode Application
Link Electronics Lecture 5 - Transistors
Link Electronics Lecture 6 - Reverse - bias (Continued...)
Link Electronics Lecture 7 - Transistors (Continued...)
Link Electronics Lecture 8 - Transistors (Continued...)
Link Electronics Lecture 9 - Biasing a transistor unit 2 (Continued...)
Link Electronics Lecture 10 - Biasing of transistor
Link Electronics Lecture 11 - H and R Parameters and their use in small amplifiers
Link Electronics Lecture 12 - Small signal amplifiers analysis using H - Parameters
Link Electronics Lecture 13 - Small signal amplifiers analysis using R - Parameters
Link Electronics Lecture 14 - R - analysis (Continued...)
Link Electronics Lecture 15 - Common Collector(CC) amplifier (Continued...)
Link Electronics Lecture 16 - Feedback in amplifiers, Feedback Configurations and multi stage amplifiers
Link Electronics Lecture 17 - Reduction in non-linear distortion
Link Electronics Lecture 18 - Input/Output impedances in negative feedback amplifiers (Continued...)
Link Electronics Lecture 19 - RC Coupled Amplifiers
Link Electronics Lecture 20 - RC Coupled Amplifiers (Continued...)
Link Electronics Lecture 21 - RC Coupled Amplifiers (Continued...)
Link Electronics Lecture 22 - FETs ans MOSFET
Link Electronics Lecture 23 - FETs ans MOSFET (Continued...)
Link Electronics Lecture 24 - Depletion - MOSFET
Link Electronics Lecture 25 - Drain and transfer characteristic of E - MOSFET
Link Electronics Lecture 26 - Self Bias (Continued...) Design Procedure
Link Electronics Lecture 27 - FET/MOSFET Amplifiers and their Analysis
Link Electronics Lecture 28 - CMOS Inverter
Link Electronics Lecture 29 - CMOS Inverter (Continued...)
Link Electronics Lecture 30 - Power Amplifier
Link Electronics Lecture 31 - Power Amplifier (Continued...)
Link Electronics Lecture 32 - Power Amplifier (Continued...)
Link Electronics Lecture 33 - Power Amplifier (Continued...)
Link Electronics Lecture 34 - Differential and Operational Amplifier
Link Electronics Lecture 35 - Differential and Operational Amplifier (Continued...) dc and ac analysis
Link Electronics Lecture 36 - Differential and Operational Amplifier dc and ac analysis (Continued...)
Link Electronics Lecture 37 - Operational Amplifiers
Link Electronics Lecture 38 - Operational amplifiers in open loop (Continued...)
Link Electronics Lecture 39 - Summing Amplifiers
Link Electronics Lecture 40 - Frequency response of an intigration
Link Electronics Lecture 41 - Filters
Link Electronics Lecture 42 - Specification of OP Amplifiers
Link Plasma Physics: Fundamentals and Applications Lecture 1 - Introduction to Plasmas
Link Plasma Physics: Fundamentals and Applications Lecture 2 - Plasma Response to fields: Fluid Equations
Link Plasma Physics: Fundamentals and Applications Lecture 3 - DC Conductivity and Negative Differential Conductivity
Link Plasma Physics: Fundamentals and Applications Lecture 4 - RF Conductivity of Plasma
Link Plasma Physics: Fundamentals and Applications Lecture 5 - RF Conductivity of Plasma (Continued...)
Link Plasma Physics: Fundamentals and Applications Lecture 6 - Hall Effect, Cowling Effect and Cyclotron Resonance Heating
Link Plasma Physics: Fundamentals and Applications Lecture 7 - Electromagnetic Wave Propagation in Plasma
Link Plasma Physics: Fundamentals and Applications Lecture 8 - Electromagnetic Wave Propagation in Plasma (Continued...)
Link Plasma Physics: Fundamentals and Applications Lecture 9 - Electromagnetic Wave Propagation Inhomogeneous Plasma
Link Plasma Physics: Fundamentals and Applications Lecture 10 - Electrostatic Waves in Plasmas
Link Plasma Physics: Fundamentals and Applications Lecture 11 - Energy Flow with an Electrostatic Wave
Link Plasma Physics: Fundamentals and Applications Lecture 12 - Two Stream Instability
Link Plasma Physics: Fundamentals and Applications Lecture 13 - Relativistic electron Beam- Plasma Interaction
Link Plasma Physics: Fundamentals and Applications Lecture 14 - Cerenkov Free Electron Laser
Link Plasma Physics: Fundamentals and Applications Lecture 15 - Free Electron Laser
Link Plasma Physics: Fundamentals and Applications Lecture 16 - Free Electron Laser: Energy gain
Link Plasma Physics: Fundamentals and Applications Lecture 17 - Free Electron Laser: Wiggler Tapering and Compton Regime Operation
Link Plasma Physics: Fundamentals and Applications Lecture 18 - Weibel Instability
Link Plasma Physics: Fundamentals and Applications Lecture 19 - Rayleigh Taylor Instability
Link Plasma Physics: Fundamentals and Applications Lecture 20 - Single Particle Motion in Static Magnetic and Electric Fields
Link Plasma Physics: Fundamentals and Applications Lecture 21 - Plasma Physics Grad B and Curvature Drifts
Link Plasma Physics: Fundamentals and Applications Lecture 22 - Adiabatic Invariance of Magnetic Moment and Mirror confinement
Link Plasma Physics: Fundamentals and Applications Lecture 23 - Mirror machine
Link Plasma Physics: Fundamentals and Applications Lecture 24 - Thermonuclear fusion
Link Plasma Physics: Fundamentals and Applications Lecture 25 - Tokamak
Link Plasma Physics: Fundamentals and Applications Lecture 26 - Tokamak operation
Link Plasma Physics: Fundamentals and Applications Lecture 27 - Auxiliary heating and current drive in tokamak
Link Plasma Physics: Fundamentals and Applications Lecture 28 - Electromagnetic waves propagation in magnetise plasma
Link Plasma Physics: Fundamentals and Applications Lecture 29 - Longitudinal electromagnetic wave propagation cutoffs, resonances and faraday rotation
Link Plasma Physics: Fundamentals and Applications Lecture 30 - Electromagnetic propagation at oblique angles to magnetic field in a plasma
Link Plasma Physics: Fundamentals and Applications Lecture 31 - Low frequency EM waves magnetized plasma
Link Plasma Physics: Fundamentals and Applications Lecture 32 - Electrostatic waves in magnetized plasma
Link Plasma Physics: Fundamentals and Applications Lecture 33 - Ion acoustic, ion cyclotron and magneto sonic waves in magnetized plasma
Link Plasma Physics: Fundamentals and Applications Lecture 34 - VIasov theory of plasma waves
Link Plasma Physics: Fundamentals and Applications Lecture 35 - Landau damping and growth of waves
Link Plasma Physics: Fundamentals and Applications Lecture 36 - Landau damping and growth of waves (Continued...)
Link Plasma Physics: Fundamentals and Applications Lecture 37 - Anomalous resistivity in a plasma
Link Plasma Physics: Fundamentals and Applications Lecture 38 - Diffusion in plasma
Link Plasma Physics: Fundamentals and Applications Lecture 39 - Diffusion in magnetized plasma
Link Plasma Physics: Fundamentals and Applications Lecture 40 - Surface plasma wave
Link Plasma Physics: Fundamentals and Applications Lecture 41 - Laser interaction with plasmas embedded with clusters
Link Plasma Physics: Fundamentals and Applications Lecture 42 - Current trends and epilogue
Link Quantum Electronics Lecture 1 - Introduction
Link Quantum Electronics Lecture 2 - Anisotropic Media
Link Quantum Electronics Lecture 3 - Anisotropic Media (Continued...)
Link Quantum Electronics Lecture 4 - Anisotropic Media (Continued...)
Link Quantum Electronics Lecture 5 - Nonlinear optical effects and nonlinear polarization
Link Quantum Electronics Lecture 6 - Non - Linear Optics (Continued...)
Link Quantum Electronics Lecture 7 - Non - Linear Optics (Continued...)
Link Quantum Electronics Lecture 8 - Non - Linear Optics (Continued...)
Link Quantum Electronics Lecture 9 - Non - Linear Optics (Continued...)
Link Quantum Electronics Lecture 10 - Non - Linear Optics - Quasi Phase Matching
Link Quantum Electronics Lecture 11 - Non - Linear Optics
Link Quantum Electronics Lecture 12 - Non Linear Optics (Continued...)
Link Quantum Electronics Lecture 13 - Non Linear Optics (Continued...)
Link Quantum Electronics Lecture 14 - Non Linear Optics (Continued...)
Link Quantum Electronics Lecture 15 - Non Linear Optics (Continued...)
Link Quantum Electronics Lecture 16 - Non Linear Optics (Continued...)
Link Quantum Electronics Lecture 17 - Non Linear Optics (Continued...)
Link Quantum Electronics Lecture 18 - Non Linear Optics (Continued...)
Link Quantum Electronics Lecture 19 - Non Linear Optics (Continued...)
Link Quantum Electronics Lecture 20 - Third Order Non - Linear Effects
Link Quantum Electronics Lecture 21 - Third Order Non - Linear Effects (Continued...)
Link Quantum Electronics Lecture 22 - Third Order Non - Linear Effects (Continued...)
Link Quantum Electronics Lecture 23 - Third Order Non - Linear Effects (Continued...)
Link Quantum Electronics Lecture 24 - Review of Quantum Mechanics
Link Quantum Electronics Lecture 25 - Review of Quantum Mechanics (Continued...)
Link Quantum Electronics Lecture 26 - Review of Quantum Mechanics (Continued...)
Link Quantum Electronics Lecture 27 - Quantization of EM Field
Link Quantum Electronics Lecture 28 - Quantization of EM Field (Continued...)
Link Quantum Electronics Lecture 29 - Quantization of EM Field (Continued...)
Link Quantum Electronics Lecture 30 - Quantum States of EM Field
Link Quantum Electronics Lecture 31 - Quantum States of EM Field (Continued...)
Link Quantum Electronics Lecture 32 - Quantization of EM Field (Continued...)
Link Quantum Electronics Lecture 33 - Quantization of EM Field (Continued...)
Link Quantum Electronics Lecture 34 - Quantization of EM Field (Continued...)
Link Quantum Electronics Lecture 35 - Quantization of EM Field (Continued...)
Link Quantum Electronics Lecture 36 - Quantization of EM Field (Continued...)
Link Quantum Electronics Lecture 37 - Beam Splitter
Link Quantum Electronics Lecture 38 - Beam Splitter (Continued...)
Link Quantum Electronics Lecture 39 - Beam Splitter and Balanced Homodyning
Link Quantum Electronics Lecture 40 - Balanced Homodyning
Link Quantum Electronics Lecture 41 - Quantum Picture of Parametric Down Conversion
Link Quantum Electronics Lecture 42 - Questions
Link Quantum Mechanics and Applications Lecture 1 - Basic Quantum Mechanics I: Wave Particle Duality
Link Quantum Mechanics and Applications Lecture 2 - Basic Quantum Mechanics II: The Schrodinger Equation and The Dirac Delta Function
Link Quantum Mechanics and Applications Lecture 3 - Dirac Delta Function & Fourier Transforms
Link Quantum Mechanics and Applications Lecture 4 - The Free Particle
Link Quantum Mechanics and Applications Lecture 5 - Physical Interpretation of The Wave Function
Link Quantum Mechanics and Applications Lecture 6 - Expectation Values & The Uncertainty Principle
Link Quantum Mechanics and Applications Lecture 7 - The Free Particle (Continued...)
Link Quantum Mechanics and Applications Lecture 8 - Interference Experiment & The Particle in a Box Problem
Link Quantum Mechanics and Applications Lecture 9 - On Eigen Values and Eigen Functions of the 1 Dimensional Schrodinger Equation
Link Quantum Mechanics and Applications Lecture 10 - Linear Harmonic Oscillator
Link Quantum Mechanics and Applications Lecture 11 - Linear Harmonic Oscillator (Continued...1)
Link Quantum Mechanics and Applications Lecture 12 - Linear Harmonic Oscillator (Continued...2)
Link Quantum Mechanics and Applications Lecture 13 - Linear Harmonic Oscillator (Continued...3)
Link Quantum Mechanics and Applications Lecture 14 - Tunneling through a Barrier
Link Quantum Mechanics and Applications Lecture 15 - The 1-Dimensional Potential Wall & Particle in a Box
Link Quantum Mechanics and Applications Lecture 16 - Particle in a Box and Density of States
Link Quantum Mechanics and Applications Lecture 17 - The Angular Momentum Problem
Link Quantum Mechanics and Applications Lecture 18 - The Angular Momentum Problem (Continued...)
Link Quantum Mechanics and Applications Lecture 19 - The Hydrogen Atom Problem
Link Quantum Mechanics and Applications Lecture 20 - The Two Body Problem
Link Quantum Mechanics and Applications Lecture 21 - TheTwo Body Problem: The Hydrogen atom, The Deutron and The Diatomic Molecule
Link Quantum Mechanics and Applications Lecture 22 - Two Body Problem: The Diatomic molecule (Continued...) and the 3 Dimensional Oscillator
Link Quantum Mechanics and Applications Lecture 23 - 3d Oscillator & Dirac's Bra and Ket Algebra
Link Quantum Mechanics and Applications Lecture 24 - Dirac’s Bra and Ket Algebra
Link Quantum Mechanics and Applications Lecture 25 - Dirac’s Bra and Ket Algebra : The Linear Harmonic Oscillator
Link Quantum Mechanics and Applications Lecture 26 - The Linear Harmonic Oscillator using Bra and Ket Algebra (Continued...)
Link Quantum Mechanics and Applications Lecture 27 - The Linear Harmonic Oscillator: Coherent State and Relationship with the Classical Oscillator
Link Quantum Mechanics and Applications Lecture 28 - Coherent State and Relationship with the Classical Oscillator
Link Quantum Mechanics and Applications Lecture 29 - Angular Momentum Problem using Operator Algebra
Link Quantum Mechanics and Applications Lecture 30 - Angular Momentum Problem (Continued...)
Link Quantum Mechanics and Applications Lecture 31 - Pauli Spin Matrices and The Stern Gerlach Experiment
Link Quantum Mechanics and Applications Lecture 32 - The Larmor Precession and NMR Spherical Harmonics using Operator Algebra
Link Quantum Mechanics and Applications Lecture 33 - Addition of Angular Momentum: Clebsch Gordon Coefficient
Link Quantum Mechanics and Applications Lecture 34 - Clebsch Gordon Coefficients
Link Quantum Mechanics and Applications Lecture 35 - The JWKB Approximation
Link Quantum Mechanics and Applications Lecture 36 - The JWKB Approximation: Use of Connection Formulae to solve Eigen value Problems.
Link Quantum Mechanics and Applications Lecture 37 - The JWKB Approximation: Use of Connection Formulae to calculate Tunneling Probability.
Link Quantum Mechanics and Applications Lecture 38 - The JWKB Approximation: Tunneling Probability Calculations and Applications.
Link Quantum Mechanics and Applications Lecture 39 - The JWKB Approximation: Justification of the Connection Formulae
Link Quantum Mechanics and Applications Lecture 40 - Time Independent Perturbation Theory
Link Quantum Mechanics and Applications Lecture 41 - Time Independent Perturbation Theory (Continued...1)
Link Quantum Mechanics and Applications Lecture 42 - Time Independent Perturbation Theory (Continued...2)
Link Semiconductor Optoelectronics Lecture 1 - Context and Scope of the Course
Link Semiconductor Optoelectronics Lecture 2 - Energy Bands in Solids
Link Semiconductor Optoelectronics Lecture 3 - E-K Diagram
Link Semiconductor Optoelectronics Lecture 4 - The Density of States
Link Semiconductor Optoelectronics Lecture 5 - The Density of States (Continued...)
Link Semiconductor Optoelectronics Lecture 6 - The Density of states in a Quantum well Structure
Link Semiconductor Optoelectronics Lecture 7 - Occupation Probability and Carrier Concentration
Link Semiconductor Optoelectronics Lecture 8 - Carrier Concentration and Fermi Level
Link Semiconductor Optoelectronics Lecture 9 - Quasi Fermi Levels
Link Semiconductor Optoelectronics Lecture 10 - Semiconductor Materials
Link Semiconductor Optoelectronics Lecture 11 - Semiconductor Hetrostructures-Lattice-Matched Layers
Link Semiconductor Optoelectronics Lecture 12 - Strained -Layer Epitaxy and Quantum Well Structures
Link Semiconductor Optoelectronics Lecture 13 - Bandgap Engineering
Link Semiconductor Optoelectronics Lecture 14 - Hetrostructure p-n junctions
Link Semiconductor Optoelectronics Lecture 15 - Schottky Junction and Ohmic Contacts
Link Semiconductor Optoelectronics Lecture 16 - Fabrication of Heterostructure Devices
Link Semiconductor Optoelectronics Lecture 17 - Interaction od Photons with Electrons and Holes in a Semiconductor
Link Semiconductor Optoelectronics Lecture 18 - Optical Joint Density of States
Link Semiconductor Optoelectronics Lecture 19 - Rates of Emission and Absorption
Link Semiconductor Optoelectronics Lecture 20 - Amplication by Stimulated Emission
Link Semiconductor Optoelectronics Lecture 21 - The Semiconductor (Laser) Amplifier
Link Semiconductor Optoelectronics Lecture 22 - Absorption Spectrum of Semiconductor
Link Semiconductor Optoelectronics Lecture 23 - Gain and Absorption Spectrum of Quantum Well Structures
Link Semiconductor Optoelectronics Lecture 24 - Electro-absorption Modulator
Link Semiconductor Optoelectronics Lecture 25 - Electro-absorption Modulator - II Device Configuration
Link Semiconductor Optoelectronics Lecture 26 - Mid-Term Revision Question and Discussion
Link Semiconductor Optoelectronics Lecture 27 - Part - III Semiconductor Light Sources
Link Semiconductor Optoelectronics Lecture 28 - Light Emitting Diode-I Device Structure and Parameters
Link Semiconductor Optoelectronics Lecture 29 - Light Emitting Diode-II Device Chracteristics
Link Semiconductor Optoelectronics Lecture 30 - Light Emitting Diode-III Output Characteristics
Link Semiconductor Optoelectronics Lecture 31 - Light Emitting Diode-IV Modulation Bandwidth
Link Semiconductor Optoelectronics Lecture 32 - Light Emitting Diode-V materials and Applications
Link Semiconductor Optoelectronics Lecture 33 - Laser Basics
Link Semiconductor Optoelectronics Lecture 34 - Semiconductor Laser-I Device Structure
Link Semiconductor Optoelectronics Lecture 35 - Semiconductor Laser-II Output Characteristics
Link Semiconductor Optoelectronics Lecture 36 - Semiconductor Laser-III Single Frequency Lasers
Link Semiconductor Optoelectronics Lecture 37 - Vertical Cavity Surface Emitting Laser (VCSEL)
Link Semiconductor Optoelectronics Lecture 38 - Quantum Well Laser
Link Semiconductor Optoelectronics Lecture 39 - Practical Laser Diodes and Handling
Link Semiconductor Optoelectronics Lecture 40 - General Characteristics of Photodetectors
Link Semiconductor Optoelectronics Lecture 41 - Responsivity and Impulse Response
Link Semiconductor Optoelectronics Lecture 42 - Photoconductors
Link Semiconductor Optoelectronics Lecture 43 - Semiconductor Photo-Diodes
Link Semiconductor Optoelectronics Lecture 44 - Semiconductor Photo-Diodes-II : APD
Link Semiconductor Optoelectronics Lecture 45 - Other Photodectors
Link Semiconductor Optoelectronics Lecture 46 - Photonic Integrated Circuits
Link NOC:Semiconductor Optoelectronics Lecture 1 - Context, Scope and Contents of the Course
Link NOC:Semiconductor Optoelectronics Lecture 2 - Energy Bands in Solids
Link NOC:Semiconductor Optoelectronics Lecture 3 - E-k Diagram - The Band Structure
Link NOC:Semiconductor Optoelectronics Lecture 4 - The Density of States
Link NOC:Semiconductor Optoelectronics Lecture 5 - The Density of States ρ(k), ρ(E)
Link NOC:Semiconductor Optoelectronics Lecture 6 - Density of States in a Quantum Well Structure
Link NOC:Semiconductor Optoelectronics Lecture 7 - Occupation Probability and Carrier Concentration
Link NOC:Semiconductor Optoelectronics Lecture 8 - Carrier Concentration and Fermi Level
Link NOC:Semiconductor Optoelectronics Lecture 9 - Quasi Fermi Levels
Link NOC:Semiconductor Optoelectronics Lecture 10 - Semiconductor Materials
Link NOC:Semiconductor Optoelectronics Lecture 11 - Semiconductor Heterostructures-Lattice-Matched Layers
Link NOC:Semiconductor Optoelectronics Lecture 12 - Strained-Layer Epitaxy and Quantum Well Structures
Link NOC:Semiconductor Optoelectronics Lecture 13 - Bandgap Engineering
Link NOC:Semiconductor Optoelectronics Lecture 14 - Heterostructure p-n junctions
Link NOC:Semiconductor Optoelectronics Lecture 15 - Schottky Junctions and Ohmic Contacts
Link NOC:Semiconductor Optoelectronics Lecture 16 - Fabrication of Heterostructure Devices
Link NOC:Semiconductor Optoelectronics Lecture 17 - Interaction of Photons with Electrons and Holes in a Semiconductor
Link NOC:Semiconductor Optoelectronics Lecture 18 - Optical Joint Density of States, and Probabilities of Emission and Absorption
Link NOC:Semiconductor Optoelectronics Lecture 19 - Rates of Emission and Absorption
Link NOC:Semiconductor Optoelectronics Lecture 20 - Amplification by Stimulated Emission
Link NOC:Semiconductor Optoelectronics Lecture 21 - The Semiconductor (Laser) Amplifier
Link NOC:Semiconductor Optoelectronics Lecture 22 - Absorption Spectrum of Semiconductors
Link NOC:Semiconductor Optoelectronics Lecture 23 - Gain and Absorption Spectrum of Quantum Well Structures
Link NOC:Semiconductor Optoelectronics Lecture 24 - Electro-absorption Modulator-I Principle of Operation
Link NOC:Semiconductor Optoelectronics Lecture 25 - Electro-absorption Modulator-II Device Configuration
Link NOC:Semiconductor Optoelectronics Lecture 26 - Injuction Electroluminescence
Link NOC:Semiconductor Optoelectronics Lecture 27 - Light emitting diode-1 Device structure and parameters
Link NOC:Semiconductor Optoelectronics Lecture 28 - Light emitting diode-II Device Characteristics
Link NOC:Semiconductor Optoelectronics Lecture 29 - Light emitting diode-III Output Characteristics
Link NOC:Semiconductor Optoelectronics Lecture 30 - Light emitting diode-IV Modulation Bandwidth
Link NOC:Semiconductor Optoelectronics Lecture 31 - Light emitting diode-V Material and Applications
Link NOC:Semiconductor Optoelectronics Lecture 32 - Laser Basics
Link NOC:Semiconductor Optoelectronics Lecture 33 - Semiconductor Laser-I Device Structure
Link NOC:Semiconductor Optoelectronics Lecture 34 - Semiconductor Laser-II Output Characteristics
Link NOC:Semiconductor Optoelectronics Lecture 35 - Semiconductor Laser-III Single Frequency Lasers
Link NOC:Semiconductor Optoelectronics Lecture 36 - Vertical cavity Surface Emitting Laser (VCSEL)
Link NOC:Semiconductor Optoelectronics Lecture 37 - Quantum Well Laser
Link NOC:Semiconductor Optoelectronics Lecture 38 - Practical Laser Diodes and Handling
Link NOC:Semiconductor Optoelectronics Lecture 39 - General Characteristics of Photodetectors
Link NOC:Semiconductor Optoelectronics Lecture 40 - Responsivity and Impulse Response
Link NOC:Semiconductor Optoelectronics Lecture 41 - Photoconductors
Link NOC:Semiconductor Optoelectronics Lecture 42 - Semiconductor Photo-Diodes-I: PIN Diode
Link NOC:Semiconductor Optoelectronics Lecture 43 - Semiconductor Photo-Diodes-II: APD
Link NOC:Semiconductor Optoelectronics Lecture 44 - Other Photodetectors
Link NOC:Semiconductor Optoelectronics Lecture 45 - Photonic Integrated Circuits
Link NOC:Introduction to LASER Lecture 1 - General Introduction, Scope and Contents
Link NOC:Introduction to LASER Lecture 2 - Interaction of Radiation with Matter
Link NOC:Introduction to LASER Lecture 3 - The Einstein Coefficients
Link NOC:Introduction to LASER Lecture 4 - Atomic Lineshape Function, g(ν)
Link NOC:Introduction to LASER Lecture 5 - Amplification by Stimulated Emission
Link NOC:Introduction to LASER Lecture 6 - Line Broadening Mechanisms - 1
Link NOC:Introduction to LASER Lecture 7 - Line Broadening Mechanisms - 2
Link NOC:Introduction to LASER Lecture 8 - Laser Rate Equations: 2-Level System
Link NOC:Introduction to LASER Lecture 9 - Laser Rate Equations: 3-Level System
Link NOC:Introduction to LASER Lecture 10 - Laser Rate Equations: 4-Level System
Link NOC:Introduction to LASER Lecture 11 - Laser Amplifiers
Link NOC:Introduction to LASER Lecture 12 - Er-Doped Fiber Amplifier
Link NOC:Introduction to LASER Lecture 13 - Resonance Frequencies
Link NOC:Introduction to LASER Lecture 14 - Spectral Response of an Optical Resonator
Link NOC:Introduction to LASER Lecture 15 - Resonator Loss and Cavity Lifetime
Link NOC:Introduction to LASER Lecture 16 - Spherical Mirror Resonators
Link NOC:Introduction to LASER Lecture 17 - Resonator Stability Condition
Link NOC:Introduction to LASER Lecture 18 - Ray Paths in Spherical Mirror Resonators
Link NOC:Introduction to LASER Lecture 19 - Tranverse Modes of a Spherical Mirror Resonator
Link NOC:Introduction to LASER Lecture 20 - Gaussian Mode of the Spherical Mirror Resonator
Link NOC:Introduction to LASER Lecture 21 - Longitudinal Modes of a Spherical Mirror Resonator
Link NOC:Introduction to LASER Lecture 22 - Laser Oscillations and The Threshold Condition
Link NOC:Introduction to LASER Lecture 23 - Spectral Hole Burning
Link NOC:Introduction to LASER Lecture 24 - Variation of Laser Power around Threshold
Link NOC:Introduction to LASER Lecture 25 - Optimum Output Coupling
Link NOC:Introduction to LASER Lecture 26 - Laser Output Characteristics
Link NOC:Introduction to LASER Lecture 27 - Laser Beam Properties
Link NOC:Introduction to LASER Lecture 28 - Ultimate Linewidth of a Laser
Link NOC:Introduction to LASER Lecture 29 - Pulsed Lasers
Link NOC:Introduction to LASER Lecture 30 - Q-Switching
Link NOC:Introduction to LASER Lecture 31 - Mode Locking
Link NOC:Introduction to LASER Lecture 32 - Methods of Mode Locking
Link NOC:Introduction to LASER Lecture 33 - Some Common Lasers
Link NOC:Introduction to LASER Lecture 34 - Fiber Lasers
Link NOC:Introduction to LASER Lecture 35 - Semiconductor Lasers
Link NOC:Introduction to LASER Lecture 36 - Lasers and Laser Amplifiers in Optical Fiber Communication
Link NOC:Introduction to LASER Lecture 37 - Lasers in Nonlinear Optics
Link NOC:Introduction to LASER Lecture 38 - Laser Safety
Link NOC:Nuclear and Particle Physics Lecture 1 - Introduction
Link NOC:Nuclear and Particle Physics Lecture 2 - Nuclear Properties
Link NOC:Nuclear and Particle Physics Lecture 3 - Properties of Nuclear Force
Link NOC:Nuclear and Particle Physics Lecture 4 - Deuteron
Link NOC:Nuclear and Particle Physics Lecture 5 - Nucleons Scattering
Link NOC:Nuclear and Particle Physics Lecture 6 - Nuclear Models - I
Link NOC:Nuclear and Particle Physics Lecture 7 - Nuclear Models - II
Link NOC:Nuclear and Particle Physics Lecture 8 - Radioactive Decay - General Properties
Link NOC:Nuclear and Particle Physics Lecture 9 - Nuclear Alpha Decay
Link NOC:Nuclear and Particle Physics Lecture 10 - Nuclear Beta decay
Link NOC:Nuclear and Particle Physics Lecture 11 - Beta-decay details
Link NOC:Nuclear and Particle Physics Lecture 12 - Gamma decay
Link NOC:Nuclear and Particle Physics Lecture 13 - Nuclear Scattering - Preliminaries
Link NOC:Nuclear and Particle Physics Lecture 14 - Types of Reactions
Link NOC:Nuclear and Particle Physics Lecture 15 - Particle Accelerators - I
Link NOC:Nuclear and Particle Physics Lecture 16 - Particle Accelerators - II
Link NOC:Nuclear and Particle Physics Lecture 17 - Detectors
Link NOC:Nuclear and Particle Physics Lecture 18 - Elementary Particles - Introduction and Overview
Link NOC:Nuclear and Particle Physics Lecture 19 - Quark Model - I
Link NOC:Nuclear and Particle Physics Lecture 20 - Quark Model - II
Link NOC:Nuclear and Particle Physics Lecture 21 - Quark Model - III
Link NOC:Nuclear and Particle Physics Lecture 22 - Structure of the Hadron - Nucleus
Link NOC:Nuclear and Particle Physics Lecture 23 - Structure of the Hadron - Proton
Link NOC:Nuclear and Particle Physics Lecture 24 - Deep Inelastic Scattering
Link NOC:Nuclear and Particle Physics Lecture 25 - Relativistic Kinematics
Link NOC:Nuclear and Particle Physics Lecture 26 - Klein-Gordon Equation
Link NOC:Nuclear and Particle Physics Lecture 27 - Interaction of charged scalar with EM field
Link NOC:Nuclear and Particle Physics Lecture 28 - Relativistic Electrodynamics
Link NOC:Nuclear and Particle Physics Lecture 29 - Quantum Electrodynamics
Link NOC:Nuclear and Particle Physics Lecture 30 - Interaction between charged scalars
Link NOC:Nuclear and Particle Physics Lecture 31 - Dirac Equation - 1
Link NOC:Nuclear and Particle Physics Lecture 32 - Dirac Equation - 2
Link NOC:Nuclear and Particle Physics Lecture 33 - Interacting charged fermions - 1
Link NOC:Nuclear and Particle Physics Lecture 34 - Interacting charged fermions - 2
Link NOC:Nuclear and Particle Physics Lecture 35 - Interacting charged fermions - 3
Link NOC:Nuclear and Particle Physics Lecture 36 - Scattering Cross Section Revisited - 1
Link NOC:Nuclear and Particle Physics Lecture 37 - Scattering Cross Section Revisited - 2
Link NOC:Nuclear and Particle Physics Lecture 38 - Weak Interactions - 1
Link NOC:Nuclear and Particle Physics Lecture 39 - Weak Interactions - 2
Link NOC:Nuclear and Particle Physics Lecture 40 - Lagrangian Framework
Link NOC:Nuclear and Particle Physics Lecture 41 - Gauge Symmetry - U(1)
Link NOC:Nuclear and Particle Physics Lecture 42 - Electroweak Theory - 1
Link NOC:Nuclear and Particle Physics Lecture 43 - Electroweak Theory - 2
Link NOC:Nuclear and Particle Physics Lecture 44 - SSB and the Higgs Mechanism
Link NOC:Advanced Condensed Matter Physics Lecture 1 - Propagators - I
Link NOC:Advanced Condensed Matter Physics Lecture 2 - Propagators - II
Link NOC:Advanced Condensed Matter Physics Lecture 3 - Second quantization - I
Link NOC:Advanced Condensed Matter Physics Lecture 4 - Second quantization - II
Link NOC:Advanced Condensed Matter Physics Lecture 5 - Second quantized Hamiltonian
Link NOC:Advanced Condensed Matter Physics Lecture 6 - Tight Binding Hamiltonian, Hubbard model
Link NOC:Advanced Condensed Matter Physics Lecture 7 - Magnetism
Link NOC:Advanced Condensed Matter Physics Lecture 8 - Singlet and Triplet State: Magnetic Hamiltonian
Link NOC:Advanced Condensed Matter Physics Lecture 9 - Antiferromagnetism in Hubbard model
Link NOC:Advanced Condensed Matter Physics Lecture 10 - Green's function and representations in quantum mechanics
Link NOC:Advanced Condensed Matter Physics Lecture 11 - S matrix and free electron Green's function
Link NOC:Advanced Condensed Matter Physics Lecture 12 - Wick's theorem and normal ordering
Link NOC:Advanced Condensed Matter Physics Lecture 13 - Green's function and Feynman diagrams
Link NOC:Advanced Condensed Matter Physics Lecture 14 - Feynman diagram
Link NOC:Advanced Condensed Matter Physics Lecture 15 - phonon Green' function and Hartree Fock approaximation
Link NOC:Advanced Condensed Matter Physics Lecture 16 - Finite temperature Green's function and Matsubara frequencies
Link NOC:Advanced Condensed Matter Physics Lecture 17 - Dyson's equation and disorder in electronic systems
Link NOC:Advanced Condensed Matter Physics Lecture 18 - Introduction to electrodynamics, Meissner effect
Link NOC:Advanced Condensed Matter Physics Lecture 19 - London penetration depth, Type I and II superconductors
Link NOC:Advanced Condensed Matter Physics Lecture 20 - Cooper's problem, BCS gap equation
Link NOC:Advanced Condensed Matter Physics Lecture 21 - BCS theory, Transition temperature
Link NOC:Advanced Condensed Matter Physics Lecture 22 - Ginzburg Landau Theory, Coherence length and penetration depth
Link NOC:Advanced Condensed Matter Physics Lecture 23 - Quantum Hall Effect
Link NOC:Advanced Condensed Matter Physics Lecture 24 - Spin Hall effect, 2D topological insulator
Link NOC:Advanced Condensed Matter Physics Lecture 25 - Bose-Einstein condensation
Link NOC:Advanced Quantum Mechanics with Applications Lecture 1 - Introduction, Postulates of Quantum Mechanics
Link NOC:Advanced Quantum Mechanics with Applications Lecture 2 - Stern Gerlach Experiment, Spin Quantization, Young's Double Slit Experiment
Link NOC:Advanced Quantum Mechanics with Applications Lecture 3 - The Mathematical Formalism of Quantum Mechanics, Uncertainty Principle
Link NOC:Advanced Quantum Mechanics with Applications Lecture 4 - The Density Matrix Formalism, Expectation values of Operators
Link NOC:Advanced Quantum Mechanics with Applications Lecture 5 - Qunatum Harmonic Oscillator, Creation and annihilation Operators
Link NOC:Advanced Quantum Mechanics with Applications Lecture 6 - Coherent States and their Properties
Link NOC:Advanced Quantum Mechanics with Applications Lecture 7 - Applications of Coherent States, squeezed states
Link NOC:Advanced Quantum Mechanics with Applications Lecture 8 - Symmetries and Conservational Principles in Quantum Mechanics
Link NOC:Advanced Quantum Mechanics with Applications Lecture 9 - Rotation Operator and Invariance of Angular Momentum, Parity
Link NOC:Advanced Quantum Mechanics with Applications Lecture 10 - Spherically Symmetric System and Applications to quantum dots
Link NOC:Advanced Quantum Mechanics with Applications Lecture 11 - Spin Angular Momentum, Addition of Angular Momentum, Clebsch gordan coefficients
Link NOC:Advanced Quantum Mechanics with Applications Lecture 12 - Magnetic Hamiltonian, Heisenberg Model
Link NOC:Advanced Quantum Mechanics with Applications Lecture 13 - Nuclear Magnetic Resonance (NMR)
Link NOC:Advanced Quantum Mechanics with Applications Lecture 14 - Applications of NMR, time evolution of Magnetic Moments
Link NOC:Advanced Quantum Mechanics with Applications Lecture 15 - Introduction to Quantum Computing
Link NOC:Advanced Quantum Mechanics with Applications Lecture 16 - Qubits,EPR Paradox
Link NOC:Advanced Quantum Mechanics with Applications Lecture 17 - Quantum Entanglement (QE)
Link NOC:Advanced Quantum Mechanics with Applications Lecture 18 - Teleportation, Quantum Teleportation for one spin
Link NOC:Advanced Quantum Mechanics with Applications Lecture 19 - Entangled state for two spins
Link NOC:Advanced Quantum Mechanics with Applications Lecture 20 - Quantum Gates, Walsh Hadamard Transportation, No cloning theorem
Link NOC:Advanced Quantum Mechanics with Applications Lecture 21 - Perturbation Theory
Link NOC:Advanced Quantum Mechanics with Applications Lecture 22 - Stark Effect: First order in ground state
Link NOC:Advanced Quantum Mechanics with Applications Lecture 23 - Stark Effect: Second order in ground state
Link NOC:Advanced Quantum Mechanics with Applications Lecture 24 - Variational method, Variation of constants, Upper bound on ground state energy
Link NOC:Advanced Quantum Mechanics with Applications Lecture 25 - Application of Variational method,Hydrogen,Helium atom,Comparison with perturbation theory
Link NOC:Advanced Quantum Mechanics with Applications Lecture 26 - WKB Approximation, Bohr Sommerfeld quantization condition
Link NOC:Advanced Quantum Mechanics with Applications Lecture 27 - Summary of Approximation methods, Time dependent Perturbation Theory
Link NOC:Advanced Quantum Mechanics with Applications Lecture 28 - Time dependent Perturbation Theory, Fermi's Golden rule, Einstein's A and B coefficients
Link NOC:Advanced Quantum Mechanics with Applications Lecture 29 - Scattering Theory
Link NOC:Advanced Quantum Mechanics with Applications Lecture 30 - Linear Response Theory: Derivation of Kubo formula
Link NOC:Advanced Quantum Mechanics with Applications Lecture 31 - Quantum Dynamics: Two level system
Link NOC:Advanced Quantum Mechanics with Applications Lecture 32 - Examples
Link NOC:Advanced Quantum Mechanics with Applications Lecture 33 - Interaction of Radiation with matter, Landau levels
Link NOC:A Brief Course on Superconductivity Lecture 1 - Historical introduction of superconductivity
Link NOC:A Brief Course on Superconductivity Lecture 2 - Meissner effect, Electrodynamics of Superconductors, coherence length and penetration depth
Link NOC:A Brief Course on Superconductivity Lecture 3 - Electron Pairing, Basics of BCS Theory
Link NOC:A Brief Course on Superconductivity Lecture 4 - BCS ground state, variational calculation, expression for Tc
Link NOC:A Brief Course on Superconductivity Lecture 5 - Order parameter, Free energy functional, Ginzburg-Landau (GL) Theory, GL equations
Link NOC:A Brief Course on Superconductivity Lecture 6 - London Equations, Flux quantization
Link NOC:A Brief Course on Superconductivity Lecture 7 - Thermodynamic properties of superconductors, specific heat
Link NOC:A Brief Course on Superconductivity Lecture 8 - Experimental determination of Superconducting properties
Link NOC:A Brief Course on Superconductivity Lecture 9 - Unconventional Superconductivity, Uemura plot, High-Tc superconductivity, d-wave pairing, ARPES
Link NOC:A Brief Course on Superconductivity Lecture 10 - Singlet and triplet states of two s =1/2, magnetic Hamiltonian
Link NOC:A Brief Course on Superconductivity Lecture 11 - t-J model, discrete symmetry groups, example square lattice
Link NOC:A Brief Course on Superconductivity Lecture 12 - Cuprate Superconductors, electron vs hole doped superconductors
Link NOC:A Brief Course on Superconductivity Lecture 13 - Non-Fermi Liquid Theory, Adiabatic continuity
Link NOC:A Brief Course on Superconductivity Lecture 14 - Quasiparticle lifetime, breakdown of Fermi Liquid Theory in cuprate superconductors
Link NOC:A Brief Course on Superconductivity Lecture 15 - Josephson junctions, Josephson equations
Link NOC:A Brief Course on Superconductivity Lecture 16 - AC Josephson effect, Superconducting Quantum Interference devices (SQUID) and its Applications
Link NOC:A Brief Course on Superconductivity Lecture 17 - RF SQUID, DC SQUID, Applications of Magnetoencephalography (MEG)
Link NOC:Introduction to Statistical Mechanics Lecture 1 - Prerequisites and Introduction
Link NOC:Introduction to Statistical Mechanics Lecture 2 - Combinatorics and Entropy
Link NOC:Introduction to Statistical Mechanics Lecture 3 - Method of steepest descent
Link NOC:Introduction to Statistical Mechanics Lecture 4 - Bose and Fermi gases
Link NOC:Introduction to Statistical Mechanics Lecture 5 - Maxwell Boltzmann distribution
Link NOC:Introduction to Statistical Mechanics Lecture 6 - Thermodynamic potentials
Link NOC:Introduction to Statistical Mechanics Lecture 7 - Legendre transformation
Link NOC:Introduction to Statistical Mechanics Lecture 8 - Specific heats of quantum gases
Link NOC:Introduction to Statistical Mechanics Lecture 9 - Low and high temperature equations of state
Link NOC:Introduction to Statistical Mechanics Lecture 10 - Chandrasekhar Limit
Link NOC:Introduction to Statistical Mechanics Lecture 11 - Radiation thermodynamics
Link NOC:Introduction to Statistical Mechanics Lecture 12 - Thermodyamics of black holes
Link NOC:Introduction to Statistical Mechanics Lecture 13 - Van der Waals fluid
Link NOC:Introduction to Statistical Mechanics Lecture 14 - Landau Diamagnetism
Link NOC:Introduction to Statistical Mechanics Lecture 15 - Relations between ensembles and Pauli paramagnetism
Link NOC:Introduction to Statistical Mechanics Lecture 16 - Ferromagnetism
Link NOC:Introduction to Statistical Mechanics Lecture 17 - Correlations and Mean Field
Link NOC:Introduction to Statistical Mechanics Lecture 18 - Theories of Specific Heat of Solids
Link NOC:Introduction to Statistical Mechanics Lecture 19 - Tutorial - I
Link NOC:Introduction to Statistical Mechanics Lecture 20 - Tutorial - II
Link NOC:Introduction to Statistical Mechanics Lecture 21 - Tutorial - III
Link NOC:Introduction to Statistical Mechanics Lecture 22 - Tutorial - IV
Link NOC:Introduction to Statistical Mechanics Lecture 23 - Tutorial - V
Link NOC:Introduction to Statistical Mechanics Lecture 24 - RG method Ising model
Link NOC:Introduction to Statistical Mechanics Lecture 25 - Introduction to Second Quantisation: Harmonic Oscillator
Link NOC:Introduction to Statistical Mechanics Lecture 26 - Quantum Theory of EM Field - I
Link NOC:Introduction to Statistical Mechanics Lecture 27 - Quantum Theory of EM Field - II
Link NOC:Introduction to Statistical Mechanics Lecture 28 - Creation and Annihilation in Fock Space - I
Link NOC:Introduction to Statistical Mechanics Lecture 29 - Creation and Annihilation in Fock Space - II
Link NOC:Introduction to Statistical Mechanics Lecture 30 - Green functions in many particle systems
Link NOC:Introduction to Statistical Mechanics Lecture 31 - Second quantised hamiltonians
Link NOC:Introduction to Statistical Mechanics Lecture 32 - Current algebra
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 1 - Error analysis and estimates, significant digits, convergence
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 2 - Roots of Non-linear equations, Bisection method
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 3 - Newton Raphson method, Secant method
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 4 - Newton Raphson Method
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 5 - Newton Raphson Method (example), Curve fitting and interpolation of data
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 6 - Newton’s interpolation formula, statistical interpolation of data
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 7 - Linear and Polynomial regression
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 8 - Numerical differentiation
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 9 - Numerical differentiation, Error analysis
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 10 - Numerical integration, Trapezoidal rule
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 11 - Simpson’s 1/3rd rule
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 12 - Simpson’s 1/3rd rule, Gaussian integration
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 13 - Ordinary Differential equations
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 14 - Solution of differential equation, Taylor series and Euler method
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 15 - Heun’s method
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 16 - Runge Kutta method
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 17 - Examples of differential equation: Heat conduction equation
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 18 - Introduction to Monte Carlo technique
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 19 - Details of the Monte Carlo method
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 20 - Importance sampling
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 21 - Applications: Ising model
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 22 - Introduction to Molecular Dynamics
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 23 - Verlet algorithm
Link NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers Lecture 24 - Applications of Molecular dynamics
Link NOC:Theoretical Mechanics Lecture 1 - Introduction, Constraints
Link NOC:Theoretical Mechanics Lecture 2 - Generalized Coordinates, Configuration Space
Link NOC:Theoretical Mechanics Lecture 3 - Principle of Virtual Work
Link NOC:Theoretical Mechanics Lecture 4 - D'Alembert's Principle
Link NOC:Theoretical Mechanics Lecture 5 - Lagrange's Equations
Link NOC:Theoretical Mechanics Lecture 6 - Hamilton's Principle
Link NOC:Theoretical Mechanics Lecture 7 - Variational Calculus, Lagrange's Equations
Link NOC:Theoretical Mechanics Lecture 8 - Conservation Laws and Symmetries
Link NOC:Theoretical Mechanics Lecture 9 - Velocity Dependent Potentials, Non-holonomic Constraints
Link NOC:Theoretical Mechanics Lecture 10 - An Example: Hoop on a ramp
Link NOC:Theoretical Mechanics Lecture 11 - Phase Space
Link NOC:Theoretical Mechanics Lecture 12 - Legendre Transforms
Link NOC:Theoretical Mechanics Lecture 13 - Hamilton's Equations
Link NOC:Theoretical Mechanics Lecture 14 - Conservation Laws, Routh's procedure
Link NOC:Theoretical Mechanics Lecture 15 - An Example:Bead on Spinning Ring
Link NOC:Theoretical Mechanics Lecture 16 - Canonical Transformations
Link NOC:Theoretical Mechanics Lecture 17 - Symplectic Condition
Link NOC:Theoretical Mechanics Lecture 18 - Canonical Invariants, Harmonic Oscillator
Link NOC:Theoretical Mechanics Lecture 19 - Poisson Bracket Formulation
Link NOC:Theoretical Mechanics Lecture 20 - Infinitesimal Canonical Transformations
Link NOC:Theoretical Mechanics Lecture 21 - Symmetry Groups of Mechanical Systems
Link NOC:Theoretical Mechanics Lecture 22 - Hamilton Jacobi Theory
Link NOC:Theoretical Mechanics Lecture 23 - Action-Angle Variables
Link NOC:Theoretical Mechanics Lecture 24 - Separation of Variables and Examples
Link NOC:Theoretical Mechanics Lecture 25 - Continuous Systems and Fields
Link NOC:Theoretical Mechanics Lecture 26 - The Stress-Energy Tensor
Link NOC:Theoretical Mechanics Lecture 27 - Hamiltonian Formulation
Link NOC:Solar Energy Engineering and Technology Lecture 1 - Energy Scenarios
Link NOC:Solar Energy Engineering and Technology Lecture 2 - Overview of solar energy conversion devices and applications
Link NOC:Solar Energy Engineering and Technology Lecture 3 - Physics of propagation of solar radiation from the sun to the earth
Link NOC:Solar Energy Engineering and Technology Lecture 4 - Solar radiation and sunshine measuring instruments
Link NOC:Solar Energy Engineering and Technology Lecture 5 - Geometry, angles and measurement - I
Link NOC:Solar Energy Engineering and Technology Lecture 6 - Geometry, angles and measurement - II
Link NOC:Solar Energy Engineering and Technology Lecture 7 - Estimation of radiation under different climatic conditions
Link NOC:Solar Energy Engineering and Technology Lecture 8 - Estimation of radiation in horizontal and inclined surface
Link NOC:Solar Energy Engineering and Technology Lecture 9 - Fundamentals of PV cells
Link NOC:Solar Energy Engineering and Technology Lecture 10 - Semiconductor physics
Link NOC:Solar Energy Engineering and Technology Lecture 11 - Performance characterization of PV cells
Link NOC:Solar Energy Engineering and Technology Lecture 12 - Photovoltaic modules and arrays
Link NOC:Solar Energy Engineering and Technology Lecture 13 - Components of standalone PV system
Link NOC:Solar Energy Engineering and Technology Lecture 14 - Design of standalone PV system
Link NOC:Solar Energy Engineering and Technology Lecture 15 - Functioning and components of PV system
Link NOC:Solar Energy Engineering and Technology Lecture 16 - Design of a grid connected PV system
Link NOC:Solar Energy Engineering and Technology Lecture 17 - Performance analysis of a grid connected PV system
Link NOC:Solar Energy Engineering and Technology Lecture 18 - Basics of thermal collectors
Link NOC:Solar Energy Engineering and Technology Lecture 19 - Basics of heat transfer
Link NOC:Solar Energy Engineering and Technology Lecture 20 - Solar collector losses and loss estimation
Link NOC:Solar Energy Engineering and Technology Lecture 21 - Analysis of flat plate collector
Link NOC:Solar Energy Engineering and Technology Lecture 22 - Influence of various parameters on the performance of LFPC
Link NOC:Solar Energy Engineering and Technology Lecture 23 - Testing and application of LFPC
Link NOC:Solar Energy Engineering and Technology Lecture 24 - Basics and performance analysis of solar air heaters
Link NOC:Solar Energy Engineering and Technology Lecture 25 - Testing and application of solar air heaters
Link NOC:Solar Energy Engineering and Technology Lecture 26 - Fundamentals of concentrating collectors
Link NOC:Solar Energy Engineering and Technology Lecture 27 - Concentrating collector technologies and working principle
Link NOC:Solar Energy Engineering and Technology Lecture 28 - Tutorial: Concentrating Collector
Link NOC:Solar Energy Engineering and Technology Lecture 29 - Sensible heat, latent heat and thermochemical energy storage
Link NOC:Solar Energy Engineering and Technology Lecture 30 - Solar pond
Link NOC:Solar Energy Engineering and Technology Lecture 31 - Tutorial: Solar pond power plant design
Link NOC:Solar Energy Engineering and Technology Lecture 32 - Emerging technologies
Link NOC:Solar Energy Engineering and Technology Lecture 33 - Solar energy applications in cooking, desalination, refrigeration and electricity generation
Link NOC:Solar Energy Engineering and Technology Lecture 34 - Tutorial: COP of VARS and performance analysis of PVT collector
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 1 - Introduction and Basic Quantum Mechanics
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 2 - Problem Solving Session - 1
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 3 - Two-level System - I
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 4 - Bloch Sphere: Supplementary Lecture - I
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 5 - Two-level Systems - II
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 6 - Two-level Systems - III
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 7 - Dressed States;Introduction to Density Matrix
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 8 - Problem Solving Session - 2
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 9 - Density-matrix formalism
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 10 - Quantum Harmonic Oscillators
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 11 - Quantization of Electromagnetic Radiation
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 12 - Quantization of Standing EM Waves;Quantum States of Radiation Fields - I
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 13 - Problem Solving Session - 3
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 14 - Quantum States of Radiation Fields-II: Squeezed States
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 15 - Problem Solving Session - 4
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 16 - Introduction and Basics of Superconductivity
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 17 - Cooper Pair Box as TLS;Introduction to Transmission Line
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 18 - Quantization of Transmission Line - I
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 19 - Quantization of Transmission Line - II
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 20 - The Jaynes Cummings Model - I
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 21 - Problem Solving Session - 5
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 22 - The Jaynes Cummings Model - II
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 23 - Josephson Junctions - I
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 24 - Josephson Junctions - II
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 25 - Problem Solving Session - 6
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 26 - Transmon;Introduction to Dissipation in Quantum Systems
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 27 - Quantum Master Equation
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 28 - Pure dephasing and Dissipative Bloch Equations
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 29 - Derivation of Fermi-Golden Rule
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 30 - Introduction to Cavity Optomechanics;Fabry-Perot Cavity
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 31 - Cavity Optomechanics: Basic Physics - I
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 32 - Problem Solving Session - 7
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 33 - Cavity Optomechanics: Basic Physics - II
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 34 - Classical Regime - I
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 35 - Classical Regime - II; Classical Langevin Equation
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 36 - Problem Solving Session - 8
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 37 - Langevin Equation
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 38 - Quantum Langevin Noise
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 39 - Problem Solving Session - 9
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 40 - Input-Output Relation
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 41 - Cavity Quantum Optomechanics
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 42 - Linearized Cavity Optomechanics; Ground state cooling
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 43 - Normal-Mode Splitting
Link NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems Lecture 44 - Quantum Optomechanics: Squeezed States
Link NOC:Dynamics of Classical and Quantum Fields Lecture 1 - Introduction
Link NOC:Dynamics of Classical and Quantum Fields Lecture 2 - Lagrangian Formalism
Link NOC:Dynamics of Classical and Quantum Fields Lecture 3 - Hamiltonian Mechanics
Link NOC:Dynamics of Classical and Quantum Fields Lecture 4 - Flows and Symmetries
Link NOC:Dynamics of Classical and Quantum Fields Lecture 5 - Examples of Continuum Systems
Link NOC:Dynamics of Classical and Quantum Fields Lecture 6 - Symmetries and Noether's Theorem
Link NOC:Dynamics of Classical and Quantum Fields Lecture 7 - Dynamical Symmetries
Link NOC:Dynamics of Classical and Quantum Fields Lecture 8 - Symmetries in Field Theories
Link NOC:Dynamics of Classical and Quantum Fields Lecture 9 - The Relativistic Electromagnetic Field
Link NOC:Dynamics of Classical and Quantum Fields Lecture 10 - Stress-Energy (Energy-Momentum) Tensor
Link NOC:Dynamics of Classical and Quantum Fields Lecture 11 - Green's Theorem and Green's Functions
Link NOC:Dynamics of Classical and Quantum Fields Lecture 12 - Diffraction Theory
Link NOC:Dynamics of Classical and Quantum Fields Lecture 13 - Introduction to Elasticity Theory
Link NOC:Dynamics of Classical and Quantum Fields Lecture 14 - Solution of the rubber band problem
Link NOC:Dynamics of Classical and Quantum Fields Lecture 15 - The Stress Function Method
Link NOC:Dynamics of Classical and Quantum Fields Lecture 16 - Strain Energy
Link NOC:Dynamics of Classical and Quantum Fields Lecture 17 - The Euler Equation
Link NOC:Dynamics of Classical and Quantum Fields Lecture 18 - Bernoulli's Principle
Link NOC:Dynamics of Classical and Quantum Fields Lecture 19 - Matter, Momentum and Energy Transport
Link NOC:Dynamics of Classical and Quantum Fields Lecture 20 - Stokes' Drag - I
Link NOC:Dynamics of Classical and Quantum Fields Lecture 21 - Stokes' Drag - II
Link NOC:Dynamics of Classical and Quantum Fields Lecture 22 - Towards Quantum Fields
Link NOC:Dynamics of Classical and Quantum Fields Lecture 23 - Right and Left Movers
Link NOC:Dynamics of Classical and Quantum Fields Lecture 24 - Functional Integration - I
Link NOC:Dynamics of Classical and Quantum Fields Lecture 25 - Functional Integration - II
Link NOC:Dynamics of Classical and Quantum Fields Lecture 26 - Perturbation theory
Link NOC:Dynamics of Classical and Quantum Fields Lecture 27 - Quantum Mechanics using Lagrangians
Link NOC:Dynamics of Classical and Quantum Fields Lecture 28 - Path Integrals - Formalism
Link NOC:Dynamics of Classical and Quantum Fields Lecture 29 - Path Integrals - Free particles
Link NOC:Dynamics of Classical and Quantum Fields Lecture 30 - Path Integrals - Harmonic oscillator
Link NOC:Dynamics of Classical and Quantum Fields Lecture 31 - Creation and annihilation operators - Excitations
Link NOC:Dynamics of Classical and Quantum Fields Lecture 32 - Creation and annihilation operators - Photons
Link NOC:Dynamics of Classical and Quantum Fields Lecture 33 - Creation and annihilation operators - Many-body physics
Link NOC:Dynamics of Classical and Quantum Fields Lecture 34 - Particle and Hole Green functions
Link NOC:Dynamics of Classical and Quantum Fields Lecture 35 - Current Algebra
Link NOC:Dynamics of Classical and Quantum Fields Lecture 36 - Tight Binding Models - I
Link NOC:Dynamics of Classical and Quantum Fields Lecture 37 - Tight Binding Models - II
Link NOC:Dynamics of Classical and Quantum Fields Lecture 38 - Order Parameters
Link NOC:Dynamics of Classical and Quantum Fields Lecture 39 - Schrieffer Wolff Transformation
Link NOC:Dynamics of Classical and Quantum Fields Lecture 40 - Matsubara Green functions - I
Link NOC:Dynamics of Classical and Quantum Fields Lecture 41 - Matsubara Green functions - II
Link NOC:Dynamics of Classical and Quantum Fields Lecture 42 - Self Energy and Spectral Functions
Link NOC:Dynamics of Classical and Quantum Fields Lecture 43 - S-Matrix Perturbation Theory
Link NOC:Dynamics of Classical and Quantum Fields Lecture 44 - Keldysh Contour
Link NOC:Dynamics of Classical and Quantum Fields Lecture 45 - Bosonic Coherent States
Link NOC:Dynamics of Classical and Quantum Fields Lecture 46 - Fermionic Coherent States
Link NOC:Dynamics of Classical and Quantum Fields Lecture 47 - Nonlocal particle hole operators - Bosons
Link NOC:Dynamics of Classical and Quantum Fields Lecture 48 - Nonlocal particle hole operators - Fermions
Link NOC:Quantum Hall Effects Lecture 1 - Conductance in Nanostructures
Link NOC:Quantum Hall Effects Lecture 2 - S-Matrix, Reflection and Transmission
Link NOC:Quantum Hall Effects Lecture 3 - Introduction to Classical and Quantum Hall Effect
Link NOC:Quantum Hall Effects Lecture 4 - Quantum Hall Effect
Link NOC:Quantum Hall Effects Lecture 5 - Landau Levels
Link NOC:Quantum Hall Effects Lecture 6 - Degenracy of Landau levels
Link NOC:Quantum Hall Effects Lecture 7 - Shubnikov de Haas Oscillations
Link NOC:Quantum Hall Effects Lecture 8 - Kubo Formula
Link NOC:Quantum Hall Effects Lecture 9 - Symmetric gauge
Link NOC:Quantum Hall Effects Lecture 10 - Tight binding model, Hofstadter Butterfly
Link NOC:Quantum Hall Effects Lecture 11 - Topological Invariant, Chern number
Link NOC:Quantum Hall Effects Lecture 12 - Electronic structure of Graphene
Link NOC:Quantum Hall Effects Lecture 13 - Low energy Dispersion
Link NOC:Quantum Hall Effects Lecture 14 - Dirac Hamiltonian, Hofstadter Butterfly
Link NOC:Quantum Hall Effects Lecture 15 - QHE, Landau Levels
Link NOC:Quantum Hall Effects Lecture 16 - Properties of Spin angular Momentum, Spin Hall Effect
Link NOC:Quantum Hall Effects Lecture 17 - Quantum spin Hall insulator, Kene-Mele Model
Link NOC:Quantum Hall Effects Lecture 18 - Kene-Mele Model
Link NOC:Quantum Hall Effects Lecture 19 - Landau gauge in fractional quantum Hall effect
Link NOC:Quantum Hall Effects Lecture 20 - Laughlin States, Properties
Link NOC:Quantum Hall Effects Lecture 21 - Plasma analogy
Link NOC:Quantum Hall Effects Lecture 22 - Composite Fermions, Hierarchy
Link NOC:Quantum Entanglement: Fundamentals, Measures and Applications Lecture 1 - Introduction
Link NOC:Quantum Entanglement: Fundamentals, Measures and Applications Lecture 2 - Review of Quantum Mechanics
Link NOC:Quantum Entanglement: Fundamentals, Measures and Applications Lecture 3 - Mathematical Tools: Density Matrix - Part 1
Link NOC:Quantum Entanglement: Fundamentals, Measures and Applications Lecture 4 - Mathematical Tools: Density Matrix - Part 2
Link NOC:Quantum Entanglement: Fundamentals, Measures and Applications Lecture 5 - Problem solving session - 1
Link NOC:Quantum Entanglement: Fundamentals, Measures and Applications Lecture 6 - Basic Technical Introduction to Quantum Entanglement
Link NOC:Quantum Entanglement: Fundamentals, Measures and Applications Lecture 7 - Schmidt Decomposition Method
Link NOC:Quantum Entanglement: Fundamentals, Measures and Applications Lecture 8 - The EPR Paradox and Bell Inequalities
Link NOC:Quantum Entanglement: Fundamentals, Measures and Applications Lecture 9 - Problem solving session - 2
Link NOC:Quantum Entanglement: Fundamentals, Measures and Applications Lecture 10 - Quantum Measurements
Link NOC:Quantum Entanglement: Fundamentals, Measures and Applications Lecture 11 - Properties of Quantum Entanglement
Link NOC:Quantum Entanglement: Fundamentals, Measures and Applications Lecture 12 - Quantum Entanglement Measures - I
Link NOC:Quantum Entanglement: Fundamentals, Measures and Applications Lecture 13 - Problem solving session - 3
Link NOC:Quantum Entanglement: Fundamentals, Measures and Applications Lecture 14 - Quantum Entanglement Measures - II
Link NOC:Quantum Entanglement: Fundamentals, Measures and Applications Lecture 15 - Applications of Quantum Entanglement - I
Link NOC:Quantum Entanglement: Fundamentals, Measures and Applications Lecture 16 - Applications of Quantum Entanglement - II
Link NOC:Quantum Entanglement: Fundamentals, Measures and Applications Lecture 17 - Problem solving session - 4
Link NOC:Topology and Condensed Matter Physics Lecture 1 - Introduction to Topology
Link NOC:Topology and Condensed Matter Physics Lecture 2 - Topological invariant, Berry phase
Link NOC:Topology and Condensed Matter Physics Lecture 3 - Second quantization
Link NOC:Topology and Condensed Matter Physics Lecture 4 - Ten Fold Classification
Link NOC:Topology and Condensed Matter Physics Lecture 5 - Symmetries and SSH - model
Link NOC:Topology and Condensed Matter Physics Lecture 6 - SSH - model, Introduction to superconductivity
Link NOC:Topology and Condensed Matter Physics Lecture 7 - Kitaev model
Link NOC:Topology and Condensed Matter Physics Lecture 8 - Introduction to Classical and Quantum Hall effect
Link NOC:Topology and Condensed Matter Physics Lecture 9 - Quantum Hall Effect
Link NOC:Topology and Condensed Matter Physics Lecture 10 - Landau Levels
Link NOC:Topology and Condensed Matter Physics Lecture 11 - Properties of Landau Levels
Link NOC:Topology and Condensed Matter Physics Lecture 12 - Edge modes of Landau levels, Incompressibility of Quantum Hall States
Link NOC:Topology and Condensed Matter Physics Lecture 13 - Kubo formula
Link NOC:Topology and Condensed Matter Physics Lecture 14 - Hall quantization and Topological invariant
Link NOC:Topology and Condensed Matter Physics Lecture 15 - Electronic structure of Graphene
Link NOC:Topology and Condensed Matter Physics Lecture 16 - Symmetries and QHE in Graphene
Link NOC:Topology and Condensed Matter Physics Lecture 17 - Haldane model
Link NOC:Topology and Condensed Matter Physics Lecture 18 - Anomalous quantum Hall effect in Haldane model
Link NOC:Topology and Condensed Matter Physics Lecture 19 - Introduction of spin Hall effect
Link NOC:Topology and Condensed Matter Physics Lecture 20 - Spin current, quantum spin Hall effect
Link NOC:Topology and Condensed Matter Physics Lecture 21 - Quantum spin Hall insulator, Kane Mele model
Link NOC:Topology and Condensed Matter Physics Lecture 22 - Kane Mele model with Rashba spin-orbit coupling, spin Hall conductivity
Link NOC:Topology and Condensed Matter Physics Lecture 23 - Symmetric gauge in FQHE
Link NOC:Topology and Condensed Matter Physics Lecture 24 - Laughlin States
Link NOC:Topology and Condensed Matter Physics Lecture 25 - Plasma analogy
Link NOC:Topology and Condensed Matter Physics Lecture 26 - Composite Fermions, Hierarchy picture
Link NOC:Topology and Condensed Matter Physics Lecture 27 - Topological Consideration of FQHE
Link NOC:Topology and Condensed Matter Physics Lecture 28 - 3D Topological Insulators
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 1 - Review of Thermodynamics
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 2 - Laws of Thermodynamics, Entropy
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 3 - Maxwell's relations, velocity distribution
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 4 - Thermodynamic Potentials
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 5 - Binomial expansion, Random Walk
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 6 - Ensemble Theory, Micro and Macrostates and Liouvilles's Theorem
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 7 - Ergodic Hypothesis, Phase Space
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 8 - Microcanonical Ensemble and Its Applications
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 9 - Canonical Ensemble, Parition Function, Central Limit Theorem
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 10 - Applications of Canonical Ensemble
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 11 - Bounded System, Negative Temparature, Specific Heat of Solids
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 12 - Virial Theorem, Grand Canonical Distribution
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 13 - Grand Canonical Distribution, Photon Gas
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 14 - Canonical Ensemble, Parition Function, Central Limit Theorem
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 15 - Applications of Canonical Ensemble
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 16 - Bounded System, Negative Temparature, Specific Heat of Solids
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 17 - Virial Theorem, Grand Canonical Distribution
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 18 - Grand Canonical Distribution, Photon Gas
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 19 - Quantum Statistical Mechanics, Indistinguishability of Particles, Ensembles
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 20 - Density Matrix, Exchange Statistics, Bosons and Fermions
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 21 - MB, BE, FD Statistics
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 22 - Bose Statistics, Bose Einstein Condensation
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 23 - Properties of BEC, Phase Transition
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 24 - Experimental Aspects of BEC, Black Body Radiation, Phonons
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 25 - FD Statistics, Properties of Fermi Systems
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 26 - Bethe Ansatz
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 27 - Cluster expansion, Critical Isotherms
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 28 - Virial Coefficients, Equation of State for real gases
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 29 - de Haas-van Alphen effect
Link NOC:Statistical Physics of Non-Interacting and Interacting Systems Lecture 30 - Black Hole Thermodynamics
Link Nuclear Physics: Fundamentals and Applications Lecture 1 - Brief Overview of the course
Link Nuclear Physics: Fundamentals and Applications Lecture 2 - Nuclear Size
Link Nuclear Physics: Fundamentals and Applications Lecture 3 - Nuclear Size (Continued...)
Link Nuclear Physics: Fundamentals and Applications Lecture 4 - Nuclear Size (Continued...)
Link Nuclear Physics: Fundamentals and Applications Lecture 5 - Semi empirical Mass Formula
Link Nuclear Physics: Fundamentals and Applications Lecture 6 - Semi empirical Mass Formula (Continued...)
Link Nuclear Physics: Fundamentals and Applications Lecture 7 - Semi empirical Mass Formula (Continued...)
Link Nuclear Physics: Fundamentals and Applications Lecture 8 - Semi empirical Mass Formula (Continued...)
Link Nuclear Physics: Fundamentals and Applications Lecture 9 - Semi empirical Mass Formula (Continued...)
Link Nuclear Physics: Fundamentals and Applications Lecture 10 - How are Neutron stars bound
Link Nuclear Physics: Fundamentals and Applications Lecture 11 - Deuteron
Link Nuclear Physics: Fundamentals and Applications Lecture 12 - Deuteron (Continued...)
Link Nuclear Physics: Fundamentals and Applications Lecture 13 - Deuteron (Continued...)
Link Nuclear Physics: Fundamentals and Applications Lecture 14 - Scattering of nucleons
Link Nuclear Physics: Fundamentals and Applications Lecture 15 - Low energy n-p scattering
Link Nuclear Physics: Fundamentals and Applications Lecture 16 - Theories of nuclear forces
Link Nuclear Physics: Fundamentals and Applications Lecture 17 - Shell model
Link Nuclear Physics: Fundamentals and Applications Lecture 18 - Shell model (Continued...)
Link Nuclear Physics: Fundamentals and Applications Lecture 19 - Shell model (Continued...)
Link Nuclear Physics: Fundamentals and Applications Lecture 20 - Shell model (Continued...)
Link Nuclear Physics: Fundamentals and Applications Lecture 21 - Shell model (Continued...)
Link Nuclear Physics: Fundamentals and Applications Lecture 22 - Collective models
Link Nuclear Physics: Fundamentals and Applications Lecture 23 - Vibrational and Rotational levels
Link Nuclear Physics: Fundamentals and Applications Lecture 24 - Radioactivity, Alpha Decay
Link Nuclear Physics: Fundamentals and Applications Lecture 25 - Alpha decay (Continued...)
Link Nuclear Physics: Fundamentals and Applications Lecture 26 - Beta decay
Link Nuclear Physics: Fundamentals and Applications Lecture 27 - Beta decay (Continued...)
Link Nuclear Physics: Fundamentals and Applications Lecture 28 - Beta decay (Continued...)
Link Nuclear Physics: Fundamentals and Applications Lecture 29 - Gamma decay
Link Nuclear Physics: Fundamentals and Applications Lecture 30 - Nuclear Reactions
Link Nuclear Physics: Fundamentals and Applications Lecture 31 - Nuclear reaction (Continued...)
Link Nuclear Physics: Fundamentals and Applications Lecture 32 - Nuclear reaction (Continued...)
Link Nuclear Physics: Fundamentals and Applications Lecture 33 - Nuclear Fission basics
Link Nuclear Physics: Fundamentals and Applications Lecture 34 - Nuclear fission of uranium
Link Nuclear Physics: Fundamentals and Applications Lecture 35 - Nuclear Fission Reactor
Link Nuclear Physics: Fundamentals and Applications Lecture 36 - Nuclear Energy Programme of India
Link Nuclear Physics: Fundamentals and Applications Lecture 37 - Nuclear Fusion
Link Nuclear Physics: Fundamentals and Applications Lecture 38 - Nuclear fusion (Continued...)
Link Nuclear Physics: Fundamentals and Applications Lecture 39 - Thermonuclear fusion reactors
Link Nuclear Physics: Fundamentals and Applications Lecture 40 - Fusion reactions in Stars and stellar neutrinos
Link Nuclear Physics: Fundamentals and Applications Lecture 41 - Nucleosynthesis of elements in Stars
Link Nuclear Physics: Fundamentals and Applications Lecture 42 - Mossbauer Spectroscopy
Link Nuclear Physics: Fundamentals and Applications Lecture 43 - RBS, PIXE, NAA, Summary
Link NOC:Introduction to Electromagnetism Lecture 1 - Coloumb's Law
Link NOC:Introduction to Electromagnetism Lecture 2 - Coloumb's Force due to several Point charges
Link NOC:Introduction to Electromagnetism Lecture 3 - Force due to distribution of Charges
Link NOC:Introduction to Electromagnetism Lecture 4 - What is an Electric Field?
Link NOC:Introduction to Electromagnetism Lecture 5 - Electric Field due to a Charged Distribution
Link NOC:Introduction to Electromagnetism Lecture 6 - Helmholtz's Theorem for Electric Field
Link NOC:Introduction to Electromagnetism Lecture 7 - Divergence of a Field
Link NOC:Introduction to Electromagnetism Lecture 8 - Divergence of Electric Field & Gauss's Law
Link NOC:Introduction to Electromagnetism Lecture 9 - Curl Of a Field - I
Link NOC:Introduction to Electromagnetism Lecture 10 - Curl of a Field - II & Stokes' Theorem
Link NOC:Introduction to Electromagnetism Lecture 11 - Line surface area & volume elements in Cartesian & Cylindrical Coordinates
Link NOC:Introduction to Electromagnetism Lecture 12 - Line surface area & volume elements in Spherical Polar Coordinates
Link NOC:Introduction to Electromagnetism Lecture 13 - Examples of application of the divergence and stokes' theorems
Link NOC:Introduction to Electromagnetism Lecture 14 - Electrostatic Potential
Link NOC:Introduction to Electromagnetism Lecture 15 - Electric field as the gradient of electrostatic potential
Link NOC:Introduction to Electromagnetism Lecture 16 - Laplace's and Poisson's equations for electrostatic potential
Link NOC:Introduction to Electromagnetism Lecture 17 - Elecrostatic potential due to a charge distribution - I; a line charge of finite length
Link NOC:Introduction to Electromagnetism Lecture 18 - Elecrostatic potential due to a charge distribution - II;a ring and a spherical shell of charge
Link NOC:Introduction to Electromagnetism Lecture 19 - Uniqueness of the solution of Laplace's and Poisson's equations
Link NOC:Introduction to Electromagnetism Lecture 20 - Method of images I: point charge in front of a grounded metallic plane - I
Link NOC:Introduction to Electromagnetism Lecture 21 - Method of imagesII: point charge in front of a grounded metallic plane and grounded metal sphere
Link NOC:Introduction to Electromagnetism Lecture 22 - Laplaces equations in some other physical phenomena
Link NOC:Introduction to Electromagnetism Lecture 23 - Energy of a charge distribution - I
Link NOC:Introduction to Electromagnetism Lecture 24 - Energy of a charge distribution - II An example
Link NOC:Introduction to Electromagnetism Lecture 25 - Energy of a charge distribution - III Energy density in terms of electric field
Link NOC:Introduction to Electromagnetism Lecture 26 - Electric field and potential in a conductor
Link NOC:Introduction to Electromagnetism Lecture 27 - Reciprocity theorem for conductors - I
Link NOC:Introduction to Electromagnetism Lecture 28 - Reciprocity theorem for conductors - II
Link NOC:Introduction to Electromagnetism Lecture 29 - Electric polarization and bound charges - I
Link NOC:Introduction to Electromagnetism Lecture 30 - Electric polarization and bound charges - II
Link NOC:Introduction to Electromagnetism Lecture 31 - Electric Displacement
Link NOC:Introduction to Electromagnetism Lecture 32 - Elecrostatics in presence of Dielectric Materials - I
Link NOC:Introduction to Electromagnetism Lecture 33 - Elecrostatics in presence of Dielectric Materials - II
Link NOC:Introduction to Electromagnetism Lecture 34 - Introduction to Magnetostatics; The BiO-Savart law
Link NOC:Introduction to Electromagnetism Lecture 35 - Divergence and curl of Magnetic Field
Link NOC:Introduction to Electromagnetism Lecture 36 - Amperes law for Magnetic Fields
Link NOC:Introduction to Electromagnetism Lecture 37 - Vector Potential for Magnetic Fields
Link NOC:Introduction to Electromagnetism Lecture 38 - Calculation of Vector Potential for a given magnetic field
Link NOC:Introduction to Electromagnetism Lecture 39 - Equation for the Vector Potentialin terms of current density
Link NOC:Introduction to Electromagnetism Lecture 40 - Vector potential from Current Densities - I
Link NOC:Introduction to Electromagnetism Lecture 41 - Vector potential from Current Densities - II
Link NOC:Introduction to Electromagnetism Lecture 42 - Magnetic Materials - I
Link NOC:Introduction to Electromagnetism Lecture 43 - Magnetic Materials - II Bound Current Densities
Link NOC:Introduction to Electromagnetism Lecture 44 - The Auxiliary Field - H
Link NOC:Introduction to Electromagnetism Lecture 45 - Solving for Magnetic Field of a magnet - I
Link NOC:Introduction to Electromagnetism Lecture 46 - Solving for Magnetic Field of a magnet in presence of Magnetic Materials
Link NOC:Introduction to Electromagnetism Lecture 47 - Faradays Law
Link NOC:Introduction to Electromagnetism Lecture 48 - Induced Electric field due to changing Magnetic Field
Link NOC:Introduction to Electromagnetism Lecture 49 - Demonstrations on faradays law, Lenzs law and Nonconservative nature of Induced electric field
Link NOC:Introduction to Electromagnetism Lecture 50 - Energy stord in a magnetic Field-I
Link NOC:Introduction to Electromagnetism Lecture 51 - Energy stord in a magnetic Field-I;solved examples
Link NOC:Introduction to Electromagnetism Lecture 52 - Displacement Current
Link NOC:Introduction to Electromagnetism Lecture 53 - Quasistatic approximation
Link NOC:Introduction to Electromagnetism Lecture 54 - Energy transport by electromagnetic fields; The Poynting Vector
Link NOC:Introduction to Electromagnetism Lecture 55 - The Poynting Vector;solved examples
Link NOC:Introduction to Electromagnetism Lecture 56 - Linear Momentum and Angular Momentum carried by Electromagnetic Fields
Link NOC:Introduction to Electromagnetism Lecture 57
Link NOC:Introduction to Electromagnetism Lecture 58
Link NOC:Introduction to Electromagnetism Lecture 59
Link NOC:Introduction to Electromagnetism Lecture 60
Link NOC:Introduction to Electromagnetism Lecture 61
Link NOC:Introduction to Electromagnetism Lecture 62
Link NOC:Introduction to Electromagnetism Lecture 63
Link NOC:Introduction to Electromagnetism Lecture 64
Link NOC:Introduction to Electromagnetism Lecture 65
Link NOC:Introduction to Electromagnetism Lecture 66 - Solution Assignment 1 - Problems 1 to 3
Link NOC:Introduction to Electromagnetism Lecture 67 - Solution Assignment 1 - Problems 4 to 9
Link NOC:Introduction to Electromagnetism Lecture 68 - Solution Assignment 2 - Problems 1 to 4
Link NOC:Introduction to Electromagnetism Lecture 69 - Solution Assignment 2 - Problems 5 to 11
Link NOC:Introduction to Electromagnetism Lecture 70 - Solution Assignment 3 - Problems 1 to 5
Link NOC:Introduction to Electromagnetism Lecture 71 - Solution Assignment 3 - Problems 6 to 10
Link NOC:Introduction to Electromagnetism Lecture 72 - Solution Assignment 4- Problems 1 to 5
Link NOC:Introduction to Electromagnetism Lecture 73 - Solution Assignment 4- Problems 6 to 10
Link NOC:Introduction to Electromagnetism Lecture 74 - Solution Assignment 5- Problems 6 to 11
Link NOC:Introduction to Electromagnetism Lecture 75 - Solution Assignment 5- Problems 1to 5
Link NOC:Introduction to Electromagnetism Lecture 76 - Solution Assignment 6- Problems 1 to 4
Link NOC:Introduction to Electromagnetism Lecture 77 - Solution Assignment 6- Problems 5 to 8
Link NOC:Introduction to Electromagnetism Lecture 78 - Solution Problem Set 7
Link NOC:Engineering Mechanics Lecture 1 - Introduction to Vectors
Link NOC:Engineering Mechanics Lecture 2 - Addition and subtraction of vectors
Link NOC:Engineering Mechanics Lecture 3 - Multiplying vectors
Link NOC:Engineering Mechanics Lecture 4 - Introduction to vectors: solved examples - I
Link NOC:Engineering Mechanics Lecture 5 - Transformation of vectors under rotation
Link NOC:Engineering Mechanics Lecture 6 - Vector products and their geometric interpretation
Link NOC:Engineering Mechanics Lecture 7 - Vector Product: Kronecker Delta and Levi-Civita symbols - I
Link NOC:Engineering Mechanics Lecture 8 - Vector Product: Kronecker Delta and Levi-Civita symbols - II
Link NOC:Engineering Mechanics Lecture 9 - Introduction to vectors: solved examples - II
Link NOC:Engineering Mechanics Lecture 10 - Equilibrium of rigid bodies – Forces and torques
Link NOC:Engineering Mechanics Lecture 11 - Calculating torques and couple moments - I
Link NOC:Engineering Mechanics Lecture 12 - Calculating torques and couple moments - II
Link NOC:Engineering Mechanics Lecture 13 - Finding a force and a couple equivalent to an applied force
Link NOC:Engineering Mechanics Lecture 14 - Different elements and associated forces and torques - I
Link NOC:Engineering Mechanics Lecture 15 - Different elements and associated forces and torques - II
Link NOC:Engineering Mechanics Lecture 16 - Solved examples; equilibrium of bodies – I
Link NOC:Engineering Mechanics Lecture 17 - Solved examples; equilibrium of bodies – II
Link NOC:Engineering Mechanics Lecture 18 - Forces in different geometric configuration
Link NOC:Engineering Mechanics Lecture 19 - Plane trusses I - building a truss and condition for it to be statically determinate
Link NOC:Engineering Mechanics Lecture 20 - Plane trusses II - calculating forces in a simple truss and different types of trusses
Link NOC:Engineering Mechanics Lecture 21 - Plane trusses III - calculating forces in a simple truss by method of joints
Link NOC:Engineering Mechanics Lecture 22 - Plane trusses IV- Solved examples for calculating forces in a simple truss by method of joints
Link NOC:Engineering Mechanics Lecture 23 - Plane trusses V - Solved examples for calculating forces in a simple truss by method of joints
Link NOC:Engineering Mechanics Lecture 24 - Plane trusses VI - method of sections for calculating forces in a simple truss
Link NOC:Engineering Mechanics Lecture 25 - Dry friction I - introduction with an example
Link NOC:Engineering Mechanics Lecture 26 - Dry friction II - a solved example
Link NOC:Engineering Mechanics Lecture 27 - Dry friction III - Dry thrust bearing and belt friction with demonstration
Link NOC:Engineering Mechanics Lecture 28 - Dry friction IV - Screw friction and rolling friction
Link NOC:Engineering Mechanics Lecture 29 - Dry friction V - Solved examples
Link NOC:Engineering Mechanics Lecture 30 - Properties of plane surfaces I - First moment and centroid of an area
Link NOC:Engineering Mechanics Lecture 31 - Properties of plane surfaces II - Centroid of an area made by joining several plane surfaces
Link NOC:Engineering Mechanics Lecture 32 - Properties of plane surfaces III - Centroid of a distributed force and its relation with centre of gravity
Link NOC:Engineering Mechanics Lecture 33 - Properties of plane surfaces IV - solved examples of calculation of first moment and centroid of distributed forces
Link NOC:Engineering Mechanics Lecture 34 - Properties of plane surfaces V- Second moment and product of an area and radius of gyration
Link NOC:Engineering Mechanics Lecture 35 - Properties of plane surfaces VI - Parallel axis transfer theorem for second moment and product of an area
Link NOC:Engineering Mechanics Lecture 36 - Properties of plane surfaces VII - transformation of second moment and product of an area under rotation of coordinate axes
Link NOC:Engineering Mechanics Lecture 37 - Properties of plane surfaces VIII - second moment and product of an area, solved examples
Link NOC:Engineering Mechanics Lecture 38 - Method of virtual work I - degrees of freedom, constraints and constraint forces
Link NOC:Engineering Mechanics Lecture 39 - Method of virtual work II - virtual displacement, virtual work and equilibrium condition in terms of virtual work
Link NOC:Engineering Mechanics Lecture 40 - Method of virtual work III - solved examples
Link NOC:Engineering Mechanics Lecture 41 - Motion of a particle in a plane in terms of planar polar coordinates
Link NOC:Engineering Mechanics Lecture 42 - Planar polar coordinates: solved examples
Link NOC:Engineering Mechanics Lecture 43 - Description of motion in cylindrical and spherical coordinate systems
Link NOC:Engineering Mechanics Lecture 44 - Using planar polar, cylindrical and spherical coordinate systems: solved examples
Link NOC:Engineering Mechanics Lecture 45 - Motion with constraints, constraint forces and free body diagram
Link NOC:Engineering Mechanics Lecture 46 - Motion with constraints – solved examples
Link NOC:Engineering Mechanics Lecture 47 - Motion with dry friction – solved examples
Link NOC:Engineering Mechanics Lecture 48 - Motion with drag – solved examples
Link NOC:Engineering Mechanics Lecture 49 - Equation of motion in terms of linear momentum and the principle of conservation of linear momentum
Link NOC:Engineering Mechanics Lecture 50 - Linear momentum and centre of mass
Link NOC:Engineering Mechanics Lecture 51 - Momentum transfer, impulse and force due to a stream of particles hitting an object
Link NOC:Engineering Mechanics Lecture 52 - Momentum and the variable mass problem
Link NOC:Engineering Mechanics Lecture 53 - Linear momentum – solved examples
Link NOC:Engineering Mechanics Lecture 54 - Work and energy I - work energy theorem; conservative and non-conservative force fields
Link NOC:Engineering Mechanics Lecture 55 - Work and energy II - Definition of potential energy for conservative forces; total mechanical energy and the principle of conservation of energy
Link NOC:Engineering Mechanics Lecture 56 - Work and energy III - Two solved examples using conservation principles
Link NOC:Engineering Mechanics Lecture 57 - Work and energy IV – Further discussion on potential energy
Link NOC:Engineering Mechanics Lecture 58 - Work and energy V - Solved examples
Link NOC:Engineering Mechanics Lecture 59 - Work and energy VI – Applying conservation principles to solve a collision problem
Link NOC:Engineering Mechanics Lecture 60 - Work and energy VII - Solved examples
Link NOC:Engineering Mechanics Lecture 61 - Rigid body motion I - degrees of freedom and number of variables required to describe motion of a rigid body
Link NOC:Engineering Mechanics Lecture 62 - Rigid body motion II - Equation of motion for a single particle in terms of angular momentum and torque; motion of a conical pendulum
Link NOC:Engineering Mechanics Lecture 63 - Rigid body motion III - Conservation of angular momentum; angular momentum for a collection of particles
Link NOC:Engineering Mechanics Lecture 64 - Rigid body motion IV - applying angular momentum conservation, a solved example
Link NOC:Engineering Mechanics Lecture 65 - Rigid body motion V (fixed axis rotation) - some demonstrations of conservation of angular momentum about fixed axis
Link NOC:Engineering Mechanics Lecture 66 - Rigid body motion VI (fixed axis rotation) - Some more demonstrations and related problems
Link NOC:Engineering Mechanics Lecture 67 - Rigid body motion VII (fixed axis rotation) - Kinetic energy and moment of inertia for fixed axis rotation and some solved examples
Link NOC:Engineering Mechanics Lecture 68 - Rigid body motion VIII (fixed axis rotation) - solved examples for calculating moment of inertia and conservation of angular momentum
Link NOC:Engineering Mechanics Lecture 69 - Rigid body motion IX (fixed axis rotation) - solved examples
Link NOC:Engineering Mechanics Lecture 70 - Rigid body motion X - rotation and translation with axis moving parallel to itself
Link NOC:Engineering Mechanics Lecture 71 - Rigid body motion XI - solved examples for rotation and translation with axis moving parallel to itself
Link NOC:Engineering Mechanics Lecture 72 - Rigid-body dynamics XII - Some demonstrations on general motion of rigid bodies
Link NOC:Engineering Mechanics Lecture 73 - Rigid-body dynamics XIII - Infinitesimal angles as vector quantities and change of a vector when rotated by an infinitesimal angle
Link NOC:Engineering Mechanics Lecture 74 - Rigid-body dynamics XIV - Angular velocity and the rate of change of a rotating vector; relating change in angular velocity to an applied torque
Link NOC:Engineering Mechanics Lecture 75 - Rigid-body dynamics XV - Relationship between angular momentum and angular velocity – the moment of inertia tensor and the principal axes
Link NOC:Engineering Mechanics Lecture 76 - Rigid-body dynamics XVI - Solved examples
Link NOC:Engineering Mechanics Lecture 77 - Rigid body motion XVII – A review of the relation between angular momentum and angular velocity, moment of inertia tensor and the principal axes Edit Lesson
Link NOC:Engineering Mechanics Lecture 78 - Rigid body motion XVIII- Solved examples for calculating rate of change of angular momentum and torque when angular velocity and angular momentum are not parallel
Link NOC:Engineering Mechanics Lecture 79 - Rigid body dynamics XIX - understanding demonstrations shown earlier using equation of motion
Link NOC:Engineering Mechanics Lecture 80 - Rigid body dynamics XX - understanding demonstrations shown earlier using equation of motion (Euler equations)
Link NOC:Engineering Mechanics Lecture 81 - Rigid body dynamics XXI - Euler equations, solved examples
Link NOC:Engineering Mechanics Lecture 82 - Simple harmonic motion I - expanding potential energy about the equilibrium point and the corresponding force
Link NOC:Engineering Mechanics Lecture 83 - Simple harmonic motion II - solving the equation of motion with given initial conditions
Link NOC:Engineering Mechanics Lecture 84 - Simple harmonic motion III - solved examples
Link NOC:Engineering Mechanics Lecture 85 - Simple harmonic motion IV - representing simple harmonic motion on a phasor diagram; energy of an oscillator
Link NOC:Engineering Mechanics Lecture 86 - Simple harmonic motion V - solved examples
Link NOC:Engineering Mechanics Lecture 87 - Simple harmonic motion VI - solving the equation of motion with constant friction in the system
Link NOC:Engineering Mechanics Lecture 88 - Simple harmonic motion VII - harmonic oscillator with velocity-dependent damping (heavy damping)
Link NOC:Engineering Mechanics Lecture 89 - Simple harmonic motion VIII - harmonic oscillator with velocity-dependent damping (critical damping)
Link NOC:Engineering Mechanics Lecture 90 - Simple harmonic motion IX - solved examples
Link NOC:Engineering Mechanics Lecture 91 - Simple harmonic motion X - harmonic oscillator with velocity-dependent damping (light damping)
Link NOC:Engineering Mechanics Lecture 92 - Simple harmonic motion XI - solved examples
Link NOC:Engineering Mechanics Lecture 93 - Simple harmonic motion XII - oscillations of an un-damped harmonic oscillator subjected to an oscillatory force
Link NOC:Engineering Mechanics Lecture 94 - Simple harmonic motion XIII - oscillations of a forced damped harmonic oscillator - I
Link NOC:Engineering Mechanics Lecture 95 - Simple harmonic oscillator XIV - oscillations of a forced damped harmonic oscillator - II
Link NOC:Engineering Mechanics Lecture 96 - Simple harmonic oscillator XV - Energy and power in a forced damped harmonic oscillator
Link NOC:Engineering Mechanics Lecture 97 - Simple harmonic oscillator XVI - Solved examples
Link NOC:Engineering Mechanics Lecture 98 - Equation of motion in a uniformly accelerating frame
Link NOC:Engineering Mechanics Lecture 99 - Motion described in a uniformly accelerating frame; solved examples - I
Link NOC:Engineering Mechanics Lecture 100 - Motion described in a uniformly accelerating frame; solved examples - II
Link NOC:Computational Science and Engineering Using Python Lecture 1 - Lecture 1 - About Computers
Link NOC:Computational Science and Engineering Using Python Lecture 2 - Lecture 2 - Python: Variables and Assignments
Link NOC:Computational Science and Engineering Using Python Lecture 3 - Lecture 3 - Python: Numpy arrays
Link NOC:Computational Science and Engineering Using Python Lecture 4 - Lecture 4 - Python: Control structures
Link NOC:Computational Science and Engineering Using Python Lecture 5 - Lecture 5A - Python packages; Programming
Link NOC:Computational Science and Engineering Using Python Lecture 6 - Lecture 5B - Some suggestions on programming
Link NOC:Computational Science and Engineering Using Python Lecture 7 - Lecture 6 - Plotting in Python
Link NOC:Computational Science and Engineering Using Python Lecture 8 - Lecture 7 - Errors and Nondimensionalization
Link NOC:Computational Science and Engineering Using Python Lecture 9 - Lecture 8 - Data I/O and Mayavi
Link NOC:Computational Science and Engineering Using Python Lecture 10 - Lecture 9 - Lagrange interpolation
Link NOC:Computational Science and Engineering Using Python Lecture 11 - Lecture 10 - Interpolation II: 2D, splines
Link NOC:Computational Science and Engineering Using Python Lecture 12 - Lecture 11 - Integration I: Newton-Cotes
Link NOC:Computational Science and Engineering Using Python Lecture 13 - Lecture 12 - Integration II: Gaussian quadrature
Link NOC:Computational Science and Engineering Using Python Lecture 14 - Lecture 13 - Gaussian quadrature continued
Link NOC:Computational Science and Engineering Using Python Lecture 15 - Lecture 14 - Numerical Differentiation
Link NOC:Computational Science and Engineering Using Python Lecture 16 - Lecture 15 - ODE solvers
Link NOC:Computational Science and Engineering Using Python Lecture 17 - Lecture 16 - ODE solvers continued
Link NOC:Computational Science and Engineering Using Python Lecture 18 - Lecture 17 - Fourier transform
Link NOC:Computational Science and Engineering Using Python Lecture 19 - Lecture 18 - PDE solver: Diffusion equation in spectral method
Link NOC:Computational Science and Engineering Using Python Lecture 20 - Lecture 19A - PDE solver: Diffusion equation using finite difference
Link NOC:Computational Science and Engineering Using Python Lecture 21 - Lecture 19B - PDE solver: Wave equation using finite difference
Link NOC:Computational Science and Engineering Using Python Lecture 22 - Lecture 20 - Linear algebra: Ax = b solver
Link NOC:Computational Science and Engineering Using Python Lecture 23 - Lecture 21 - Summary
Link NOC:Introductory Quantum Mechanics Lecture 1 - Black Body Radiation I - Relevant Definitions and Black Body as cavity
Link NOC:Introductory Quantum Mechanics Lecture 2 - Black Body Radiation II - Intensity of radiation in terms of energy density
Link NOC:Introductory Quantum Mechanics Lecture 3 - Black Body Radiation III - Spectral energy density and radiation pressure inside a black body radiation
Link NOC:Introductory Quantum Mechanics Lecture 4 - Black Body Radiation IV - Stephen's Boltzman law
Link NOC:Introductory Quantum Mechanics Lecture 5 - Black Body Radiation V - Wein's Displacement law and analysis for spectral density
Link NOC:Introductory Quantum Mechanics Lecture 6 - Black Body Radiation VI - Wein's distribution law and rayleigh - Jeans distribution law
Link NOC:Introductory Quantum Mechanics Lecture 7 - Black Body Radiation VII - Quantum Hypothesis and plank's distribution Formula
Link NOC:Introductory Quantum Mechanics Lecture 8 - Radiation as a collection of particles called photons
Link NOC:Introductory Quantum Mechanics Lecture 9 - Quantum Hypothesis and specific heat of soilds
Link NOC:Introductory Quantum Mechanics Lecture 10 - Bohr's Model of hydrogen spectrum
Link NOC:Introductory Quantum Mechanics Lecture 11 - Wilson Sommerfeld quantum condition I - Harmonic oscillator and particle in a box
Link NOC:Introductory Quantum Mechanics Lecture 12 - Wilson Sommerfeld quantum condition II - Particle moving in a coulomb potential in a plane and related quantum numbers
Link NOC:Introductory Quantum Mechanics Lecture 13 - Wilson Sommerfeld quantum condition III - Particle moving in a coulomb potential in 3D and related quantum numbers
Link NOC:Introductory Quantum Mechanics Lecture 14 - Quantum conditions and atomic structure, electron spin and Pauli exclusion principle
Link NOC:Introductory Quantum Mechanics Lecture 15 - Interaction of atoms with radiation : Eienstien's A and B coefficients
Link NOC:Introductory Quantum Mechanics Lecture 16 - Stimulated emmision and amplification of light in a LASER
Link NOC:Introductory Quantum Mechanics Lecture 17 - Brief description of a LASER
Link NOC:Introductory Quantum Mechanics Lecture 18 - Introduction to the correspondence principle
Link NOC:Introductory Quantum Mechanics Lecture 19 - General nature of the correspondence principle
Link NOC:Introductory Quantum Mechanics Lecture 20 - Selection rules (for transitions) through the correspondence principle
Link NOC:Introductory Quantum Mechanics Lecture 21 - Applications of the correspondence principle : Einstiens A coefficient for the harmonic oscillator and the selection rules for atomic transitions
Link NOC:Introductory Quantum Mechanics Lecture 22 - Heisenberg's formulations of quantum mechanics : expressing kinetic variables as matrices
Link NOC:Introductory Quantum Mechanics Lecture 23 - Heisenberg's formulation of quantum mechanics : the quantum condition
Link NOC:Introductory Quantum Mechanics Lecture 24 - Heisenberg's formulation of the quantum mechanics : Application to harmonic oscillator
Link NOC:Introductory Quantum Mechanics Lecture 25 - Brief introduction to matrix mechanics and the quantum condition in matrix form
Link NOC:Introductory Quantum Mechanics Lecture 26 - Introduction to waves and wave equation
Link NOC:Introductory Quantum Mechanics Lecture 27 - Sationary waves eigen values and eigen functions
Link NOC:Introductory Quantum Mechanics Lecture 28 - Matter waves and their experimental detection
Link NOC:Introductory Quantum Mechanics Lecture 29 - Represenating a moving paticle by a wave packet
Link NOC:Introductory Quantum Mechanics Lecture 30 - Stationary-state Schrodinger equation and its solution for a particle in a box
Link NOC:Introductory Quantum Mechanics Lecture 31 - Solution of the stationary-state Schrodinger equation for a simple harmonic oscillator
Link NOC:Introductory Quantum Mechanics Lecture 32 - Equivalance of Heisenberg and the Schrodinger formulations : Mathematical preliminaries
Link NOC:Introductory Quantum Mechanics Lecture 33 - Equivalance of Heisenberg and Schrodinger formulations : The x and p operators and the quantum condition
Link NOC:Introductory Quantum Mechanics Lecture 34 - Born interpretation of the wavefunction and expectation values of x and p operators
Link NOC:Introductory Quantum Mechanics Lecture 35 - Uncertainty principle and its simple applications
Link NOC:Introductory Quantum Mechanics Lecture 36 - Time dependent Schrodinger equation the probability current density and the continuity equation for the probability density
Link NOC:Introductory Quantum Mechanics Lecture 37 - Ehrenfest theorem for the expectation values of x and p operators
Link NOC:Introductory Quantum Mechanics Lecture 38 - Solution of Schrodinger equation for a particle in one and two delta function potentials
Link NOC:Introductory Quantum Mechanics Lecture 39 - Solution of Schrodinger equation for a particle in a finite well
Link NOC:Introductory Quantum Mechanics Lecture 40 - Numerical solution of a one dimensional Schrodinger equation for bound states - I
Link NOC:Introductory Quantum Mechanics Lecture 41 - Numerical solution of a one dimensional Schrodinger equation for bound states - II
Link NOC:Introductory Quantum Mechanics Lecture 42 - Reflection and transmission of particles across a potential barrier
Link NOC:Introductory Quantum Mechanics Lecture 43 - Quantum-tunneling and its examples
Link NOC:Introductory Quantum Mechanics Lecture 44 - Solution of the Schrodinger for free paticles and periodic boundary conditions
Link NOC:Introductory Quantum Mechanics Lecture 45 - Electrons in a metal : Density of states and Fermi energy
Link NOC:Introductory Quantum Mechanics Lecture 46 - Schrodinger equation for particles in spherically symmetric potential, angular momentum operator
Link NOC:Introductory Quantum Mechanics Lecture 47 - Angular momentum operator and its eigenfunctions
Link NOC:Introductory Quantum Mechanics Lecture 48 - Equation for radial component of the wavefunction in spherically symmteric potentials and general properties of its solution
Link NOC:Introductory Quantum Mechanics Lecture 49 - Solution for radial component of the wavefunction for the hydrogen atom
Link NOC:Introductory Quantum Mechanics Lecture 50 - Numerical solution for the radial component of wavefunction for spherically symmetric potentials
Link NOC:Introductory Quantum Mechanics Lecture 51 - Solution of the Schrodinger equation for one dimensional periodic potential : Bloch's theorem
Link NOC:Introductory Quantum Mechanics Lecture 52 - Kroning-Penny model and energy bands
Link NOC:Introductory Quantum Mechanics Lecture 53 - Kroning-Penny model with periodic Dirac delta function and energy bands
Link NOC:Introductory Quantum Mechanics Lecture 54 - Discussion on bands
Link NOC:Introductory Quantum Mechanics Lecture 55 - Summary of the course
Link NOC:Introduction to Solid State Physics Lecture 1 - Introduction to Drude's theory of electrons in a metal - Part 1
Link NOC:Introduction to Solid State Physics Lecture 2 - Introduction to Drude's theory of electrons in a metal - Part 2
Link NOC:Introduction to Solid State Physics Lecture 3 - Postulates of Drude's theory
Link NOC:Introduction to Solid State Physics Lecture 4 - Calculating electrical conductivity of metal using Drude's theory of electrons in metal - Part 1
Link NOC:Introduction to Solid State Physics Lecture 5 - Calculating the electrical conductivity of metal using Drude's Model - Part 2
Link NOC:Introduction to Solid State Physics Lecture 6 - Introduction to Hall effect in Metals - Part 1
Link NOC:Introduction to Solid State Physics Lecture 7 - Introduction to Hall effect in metals - Part 2
Link NOC:Introduction to Solid State Physics Lecture 8 - Introduction to Hall effect in metals - Part 3
Link NOC:Introduction to Solid State Physics Lecture 9 - Understanding thermal conductivity of a metal using Drude's model - Part 1
Link NOC:Introduction to Solid State Physics Lecture 10 - Understanding thermal conductivity of a metal using Drude's model - Part 2
Link NOC:Introduction to Solid State Physics Lecture 11 - Introduction to Sommerfeld's Theory of electrons in a metal - Part 1
Link NOC:Introduction to Solid State Physics Lecture 12 - Introduction to Sommerfeld's Theory of electrons in a metal - Part 2
Link NOC:Introduction to Solid State Physics Lecture 13 - Introduction to Sommerfeld's Theory of electrons in a metal - Part 3
Link NOC:Introduction to Solid State Physics Lecture 14 - Fermi Energy and Fermi Sphere - Part 1
Link NOC:Introduction to Solid State Physics Lecture 15 - Fermi Energy and Fermi Sphere - Part 2
Link NOC:Introduction to Solid State Physics Lecture 16 - Density of States - Part 1
Link NOC:Introduction to Solid State Physics Lecture 17 - Density of States - Part 2
Link NOC:Introduction to Solid State Physics Lecture 18 - Summary and Discussions of Sommerfeld's Model
Link NOC:Introduction to Solid State Physics Lecture 19 - Electronic Contribution to the Specific heat of a Solid - Part 1
Link NOC:Introduction to Solid State Physics Lecture 20 - Electronic Contribution to the Specific heat of a Solid - Part 2
Link NOC:Introduction to Solid State Physics Lecture 21 - Electronic Contribution to the Specific heat of a Solid - Part 3
Link NOC:Introduction to Solid State Physics Lecture 22 - Electronic Contribution to the Specific heat of a Solid - Part 4
Link NOC:Introduction to Solid State Physics Lecture 23 - Understanding Thermal conductivity of Metals
Link NOC:Introduction to Solid State Physics Lecture 24 - Introduction to Magnetism in Metal - Part 1
Link NOC:Introduction to Solid State Physics Lecture 25 - Introduction to Magnetism in Metal - Part 2
Link NOC:Introduction to Solid State Physics Lecture 26 - Introduction to Magnetism in Metal - Part 3
Link NOC:Introduction to Solid State Physics Lecture 27 - Introduction to crystals and bonding in crystals
Link NOC:Introduction to Solid State Physics Lecture 28 - Understanding crystal structure using Bravais Lattice
Link NOC:Introduction to Solid State Physics Lecture 29 - Bravais Lattice Types - Part 1
Link NOC:Introduction to Solid State Physics Lecture 30 - Bravais Lattice Types - Part 2
Link NOC:Introduction to Solid State Physics Lecture 31 - Introduction to different crystal types - Part 1
Link NOC:Introduction to Solid State Physics Lecture 32 - Introduction to different crystal types - Part 2
Link NOC:Introduction to Solid State Physics Lecture 33 - Indexing crystal planes
Link NOC:Introduction to Solid State Physics Lecture 34 - Scattering of X rays from crystals - Part 1
Link NOC:Introduction to Solid State Physics Lecture 35 - Scattering of X rays from crystals - Part 2
Link NOC:Introduction to Solid State Physics Lecture 36 - Reciprocal lattice vectors - Part 1
Link NOC:Introduction to Solid State Physics Lecture 37 - Reciprocal lattice vectors - Part 2
Link NOC:Introduction to Solid State Physics Lecture 38 - Reciprocal lattice vectors and Laue's condition for diffraction of waves in crystals - Part 1
Link NOC:Introduction to Solid State Physics Lecture 39 - Reciprocal lattice vectors and Laue's condition for diffraction of waves in crystals - Part 2
Link NOC:Introduction to Solid State Physics Lecture 40 - Reciprocal lattice vectors, Laue's condition and Bragg's law for diffraction of waves by a crystal
Link NOC:Introduction to Solid State Physics Lecture 41 - Wave equation in a continuous medium and generalization to a discrete medium
Link NOC:Introduction to Solid State Physics Lecture 42 - Derivation of wave equation for motion of atoms in a crystal
Link NOC:Introduction to Solid State Physics Lecture 43 - Solution of the wave equation for a crystal and the relation between frequency ω and wavevector k
Link NOC:Introduction to Solid State Physics Lecture 44 - Group velocity of waves and speed of sound in a crystal
Link NOC:Introduction to Solid State Physics Lecture 45 - Waves in a crystal considering interaction among atoms beyond their nearest neighbours
Link NOC:Introduction to Solid State Physics Lecture 46 - Normal modes in a crystal : Phonons and their momenta and energy
Link NOC:Introduction to Solid State Physics Lecture 47 - Experimental determination of Phonon dispersion curves
Link NOC:Introduction to Solid State Physics Lecture 48 - Lattice with two atom basis: Optical Phonons
Link NOC:Introduction to Solid State Physics Lecture 49 - Displacement of the atoms for the acoustic and optical Phonons
Link NOC:Introduction to Solid State Physics Lecture 50 - Density of states of phonons
Link NOC:Introduction to Solid State Physics Lecture 51 - Calculating the density of states of Phonons: The Einstein's and the Debye's Models
Link NOC:Introduction to Solid State Physics Lecture 52 - Average energy of Phonons at Temperature T
Link NOC:Introduction to Solid State Physics Lecture 53 - Debye's Model of specific heat of crystals
Link NOC:Introduction to Solid State Physics Lecture 54 - Anharmonic effects in crystals: thermal expansion and Umkclapp processes
Link NOC:Introduction to Solid State Physics Lecture 55 - Going beyond free electron model: Periodic crystal potential and Bloch's theorem for the wavefunction
Link NOC:Introduction to Solid State Physics Lecture 56 - Applying perturbation theory to free electron wavefunctions and nearly free electron model
Link NOC:Introduction to Solid State Physics Lecture 57 - Applying perturbation theory to free electron wavefunctions and creation of energy gap at zone boundaries
Link NOC:Introduction to Solid State Physics Lecture 58 - Mixing of plane waves to get Bloch Wavefunction - I
Link NOC:Introduction to Solid State Physics Lecture 59 - Mixing of plane waves to get Bloch Wavefunction - II
Link NOC:Introduction to Solid State Physics Lecture 60 - Equivalence of wave vectors k and k+G and reduced zone scheme
Link NOC:Introduction to Solid State Physics Lecture 61 - Applying periodic boundary condition to Bloch wavefunction and counting the number of states
Link NOC:Introduction to Solid State Physics Lecture 62 - Band theory of metals, insulators and semiconductors
Link NOC:Introduction to Solid State Physics Lecture 63 - Kronig- Penney model
Link NOC:Introduction to Solid State Physics Lecture 64 - Bloch wavefunction as a linear combination of atomic orbitals: Tight Binding Model- I
Link NOC:Introduction to Solid State Physics Lecture 65 - Tight Binding Model - II
Link NOC:Introduction to Solid State Physics Lecture 66 - Semiclassical dynamics of a particle in a band and Bloch oscillations
Link NOC:Introduction to Solid State Physics Lecture 67 - Experimental observations of Bloch oscillations
Link NOC:Introduction to Solid State Physics Lecture 68 - Concept of hole as a current carrier in semiconductors - I
Link NOC:Introduction to Solid State Physics Lecture 69 - Concept of hole as a current carrier in semiconductors - II
Link NOC:Introduction to Solid State Physics Lecture 70 - Calculating carrier density in semiconductors - I
Link NOC:Introduction to Solid State Physics Lecture 71 - Calculating carrier density in semiconductors - II
Link NOC:Introduction to Solid State Physics Lecture 72 - Donor and acceptor energy levels in a semiconductor
Link NOC:Introduction to Solid State Physics Lecture 73 - charge carrier density in n-type and p-type semiconductors
Link NOC:Introduction to Solid State Physics Lecture 74 - Electrical conductivity and hall coefficient in semiconductors
Link NOC:Introduction to Solid State Physics Lecture 75 - Paramagnetism in solids I - Magnetic moment and Lande g factor for atoms
Link NOC:Introduction to Solid State Physics Lecture 76 - Paramagnetism in solids II - temperature dependence of paramagnetic susceptibility and Curie's Law
Link NOC:Introduction to Solid State Physics Lecture 77 - Hund's rule for calculating the total angular momentum J, orbital angular momentum L and spin angular momentum S for an atom
Link NOC:Introduction to Solid State Physics Lecture 78 - Examples of performing paramagnetic susceptibility calculations
Link NOC:Introduction to Solid State Physics Lecture 79 - Diamagnetism in Solids
Link NOC:Introduction to Solid State Physics Lecture 80 - Understanding quenching of orbital angular momentum in transition metal ions
Link NOC:Introduction to Solid State Physics Lecture 81 - Ferromagnetism in solids
Link NOC:Introduction to Solid State Physics Lecture 82 - Introduction to Meissner state of superconductors and levitation
Link NOC:Introduction to Solid State Physics Lecture 83 - Superconducting materials and Type-I and Type-II superconductors
Link NOC:Introduction to Solid State Physics Lecture 84 - London's equation for superconductors
Link NOC:Introduction to Solid State Physics Lecture 85 - Application of London's equation, behavior of specific heat and density of states in superconductors
Link NOC:Introduction to Solid State Physics Lecture 86 - A qualitative introduction to BCS theory of superconductivity
Link NOC:Introduction to Solid State Physics Lecture 87 - Josephson's effect in superconductors and tunneling current across barriers
Link NOC:Physics of Turbulence Lecture 1 - The turbulence problem
Link NOC:Physics of Turbulence Lecture 2 - Basic hydrodynamics - Governing equations
Link NOC:Physics of Turbulence Lecture 3 - Basic hydrodynamics - Vorticity
Link NOC:Physics of Turbulence Lecture 4 - Basic hydrodynamics - Conservation Laws
Link NOC:Physics of Turbulence Lecture 5 - Basic hydrodynamics - Example problems
Link NOC:Physics of Turbulence Lecture 6 - Fourier space representation - Definitions
Link NOC:Physics of Turbulence Lecture 7 - Fourier space representation - Flow equations
Link NOC:Physics of Turbulence Lecture 8 - Fourier space representation - Kinetic energy
Link NOC:Physics of Turbulence Lecture 9 - Fourier space representation - Vorticity, Kinetic Helicity, and Enstrophy
Link NOC:Physics of Turbulence Lecture 10 - Fourier space representation - Examples
Link NOC:Physics of Turbulence Lecture 11 - Fourier space representation - Examples (Continued...)
Link NOC:Physics of Turbulence Lecture 12 - Craya-Herring Basis: Definitions
Link NOC:Physics of Turbulence Lecture 13 - Craya-Herring Basis: Equations of Motion for a Triad
Link NOC:Physics of Turbulence Lecture 14 - Craya-Herring Basis: Equations of Motion for an Anticlockwise Triad
Link NOC:Physics of Turbulence Lecture 15 - Thermal Instability
Link NOC:Physics of Turbulence Lecture 16 - Thermal Instabilities (Continued...)
Link NOC:Physics of Turbulence Lecture 17 - Rotating Convection: Instability and Patterns
Link NOC:Physics of Turbulence Lecture 18 - Magnetoconvection: Instability and Patterns
Link NOC:Physics of Turbulence Lecture 19 - Nonlinear Saturation: Lorenz Equation
Link NOC:Physics of Turbulence Lecture 20 - Patterns, Chaos, and Turbulence
Link NOC:Physics of Turbulence Lecture 21 - Energy Transfers: Mode-to-mode Energy Transfers
Link NOC:Physics of Turbulence Lecture 22 - Energy Transfers: Mode-to-mode Energy Transfers (Continued...)
Link NOC:Physics of Turbulence Lecture 23 - Energy Transfers: Examples
Link NOC:Physics of Turbulence Lecture 24 - Energy Transfers: Spectral Energy Flux and Shell-to-Shell Energy Transfer
Link NOC:Physics of Turbulence Lecture 25 - Energy Transfers: Fluid Simulations using Spectral Method
Link NOC:Physics of Turbulence Lecture 26 - Energy Transfers: Fluid Simulations - Dealiasing
Link NOC:Physics of Turbulence Lecture 27 - Kolmogorov's Theory: Energy Spectrum and Flux
Link NOC:Physics of Turbulence Lecture 28 - Kolmogorov's Theory: Insights and its Verification with Direct Numerical Simulation
Link NOC:Physics of Turbulence Lecture 29 - Kolmogorov's Theory: Spectrum and Flux in inertial-dissipation range
Link NOC:Physics of Turbulence Lecture 30 - Kolmogorov's four-fifth law: Isotropic Tensor and Correlations
Link NOC:Physics of Turbulence Lecture 31 - Kolmogorov's four-fifth law: Derivation
Link NOC:Physics of Turbulence Lecture 32 - Kolmogorov's four-fifth law: Derivation (Final steps)
Link NOC:Physics of Turbulence Lecture 33 - Enstrophy Spectrum and Flux
Link NOC:Physics of Turbulence Lecture 34 - Two-dimensional Turbulence
Link NOC:Physics of Turbulence Lecture 35 - Helical turbulence
Link NOC:Physics of Turbulence Lecture 36 - Flow with a scalar
Link NOC:Physics of Turbulence Lecture 37 - Passive scalar turbulence
Link NOC:Physics of Turbulence Lecture 38 - Stably stratified turbulence
Link NOC:Physics of Turbulence Lecture 39 - Turbulent thermal convection
Link NOC:Physics of Turbulence Lecture 40 - Flow with a vector
Link NOC:Physics of Turbulence Lecture 41 - MHD Turbulence: Formalism
Link NOC:Physics of Turbulence Lecture 42 - MHD Turbulence: Energy Transfers
Link NOC:Physics of Turbulence Lecture 43 - MHD Turbulence: Turbulence Models
Link NOC:Physics of Turbulence Lecture 44 - MHD Turbulence: Dynamo
Link NOC:Introduction to Astrophysical Fluids Lecture 1 - General introduction
Link NOC:Introduction to Astrophysical Fluids Lecture 2 - Phase space and Liouville's theorem
Link NOC:Introduction to Astrophysical Fluids Lecture 3 - Collisionless Boltzmann equation
Link NOC:Introduction to Astrophysical Fluids Lecture 4 - Boltzmann equation for collisional system - I
Link NOC:Introduction to Astrophysical Fluids Lecture 5 - Boltzmann equation for collisional system - II
Link NOC:Introduction to Astrophysical Fluids Lecture 6 - Equilibrium distribution function - I
Link NOC:Introduction to Astrophysical Fluids Lecture 7 - Equilibrium distribution function - II
Link NOC:Introduction to Astrophysical Fluids Lecture 8 - Derivation of moment equations - I
Link NOC:Introduction to Astrophysical Fluids Lecture 9 - Derivation of moment equations - II
Link NOC:Introduction to Astrophysical Fluids Lecture 10 - Application of moment equations in collisionless systems
Link NOC:Introduction to Astrophysical Fluids Lecture 11 - Derivation of ideal fluid equations
Link NOC:Introduction to Astrophysical Fluids Lecture 12 - Macroscopic forces on an ideal fluid
Link NOC:Introduction to Astrophysical Fluids Lecture 13 - Properties of ideal fluid
Link NOC:Introduction to Astrophysical Fluids Lecture 14 - Kevin's vorticity theorem
Link NOC:Introduction to Astrophysical Fluids Lecture 15 - Conservative form and invariants in ideal fluids
Link NOC:Introduction to Astrophysical Fluids Lecture 16 - Steady flow, streamlines and stream function
Link NOC:Introduction to Astrophysical Fluids Lecture 17 - Departure from Maxwellian distribution
Link NOC:Introduction to Astrophysical Fluids Lecture 18 - Derivation of real fluid equations
Link NOC:Introduction to Astrophysical Fluids Lecture 19 - Hydrostatics: Model of solar corona
Link NOC:Introduction to Astrophysical Fluids Lecture 20 - Stellar/solar wind
Link NOC:Introduction to Astrophysical Fluids Lecture 21 - Accretion disks - I
Link NOC:Introduction to Astrophysical Fluids Lecture 22 - A small digression: Newtonian fluids
Link NOC:Introduction to Astrophysical Fluids Lecture 23 - Accretion disk - II
Link NOC:Introduction to Astrophysical Fluids Lecture 24 - Weak perturbation in a compressible fluid: sound wave
Link NOC:Introduction to Astrophysical Fluids Lecture 25 - Effect of nonlinearity: shocks
Link NOC:Introduction to Astrophysical Fluids Lecture 26 - Supernova explosion and spherical blast waves - I
Link NOC:Introduction to Astrophysical Fluids Lecture 27 - Supernova explosion and spherical blast waves - II
Link NOC:Introduction to Astrophysical Fluids Lecture 28 - de Laval nozzle and extragalactic jets
Link NOC:Introduction to Astrophysical Fluids Lecture 29 - Convective instability and Swarzschild stability criterian
Link NOC:Introduction to Astrophysical Fluids Lecture 30 - Rayleigh Benard convection - I
Link NOC:Introduction to Astrophysical Fluids Lecture 31 - Rayleigh Benard convection - II
Link NOC:Introduction to Astrophysical Fluids Lecture 32 - Jeans instability
Link NOC:Introduction to Astrophysical Fluids Lecture 33 - Waves and instabilities in a two-fluid interface - I
Link NOC:Introduction to Astrophysical Fluids Lecture 34 - Waves and instabilities in a two-fluid interface - II
Link NOC:Introduction to Astrophysical Fluids Lecture 35 - Oscillations of stars
Link NOC:Introduction to Astrophysical Fluids Lecture 36 - Oscillation of stars (Continued...)
Link NOC:Introduction to Astrophysical Fluids Lecture 37 - Rotation in astrofluids and Rayleigh criterion
Link NOC:Introduction to Astrophysical Fluids Lecture 38 - Fluid dynamics in a rotating frame of reference
Link NOC:Introduction to Astrophysical Fluids Lecture 39 - Vorticity theorem in rotating frame and Taylor-Proudman theorem
Link NOC:Introduction to Astrophysical Fluids Lecture 40 - Effect of rotation on a self gravitating mass
Link NOC:Introduction to Astrophysical Fluids Lecture 41 - Effect of rotation in stars
Link NOC:Introduction to Astrophysical Fluids Lecture 42 - Introduction to Plasmas
Link NOC:Introduction to Astrophysical Fluids Lecture 43 - Description of Plasma
Link NOC:Introduction to Astrophysical Fluids Lecture 44 - Kinetic to fluid picture of plasmas
Link NOC:Introduction to Astrophysical Fluids Lecture 45 - MHD fluids: magnetic pressure, magnetic tension and plasma beta
Link NOC:Introduction to Astrophysical Fluids Lecture 46 - Inviscid invariants in MHD
Link NOC:Introduction to Astrophysical Fluids Lecture 47 - Inviscid invariants in MHD (Continued...)
Link NOC:Introduction to Astrophysical Fluids Lecture 48 - Elsasser variables in MHD
Link NOC:Introduction to Astrophysical Fluids Lecture 49 - Linear wave modes in MHD
Link NOC:Introduction to Astrophysical Fluids Lecture 50 - MHD in space plasmas
Link NOC:Introduction to Astrophysical Fluids Lecture 51 - Introduction to turbulence in fluids
Link NOC:Introduction to Astrophysical Fluids Lecture 52 - Richardson-Kolmogorov phenomenology of turbulence
Link NOC:Introduction to Astrophysical Fluids Lecture 53 - Turbulent diffusion
Link NOC:Introduction to Astrophysical Fluids Lecture 54 - Turbulent viscosity
Link NOC:Introduction to Astrophysical Fluids Lecture 55 - Turbulence in MHD fluids
Link NOC:Introduction to Astrophysical Fluids Lecture 56 - Introduction to astrophysical dynamos
Link NOC:Introduction to Astrophysical Fluids Lecture 57 - Anti-dynamo theorem and turbulent dynamos
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 1
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 2
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 3
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 4
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 5
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 6
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 7
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 8
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 9
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 10
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 11
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 12
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 13
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 14
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 15
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 16
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 17
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 18
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 19
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 20
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 21
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 22
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 23
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 24
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 25
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 26
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 27
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 28
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 29
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 30
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 31
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 32
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 33
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 34
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 35
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 36
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 37
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 38
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 39
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 40
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 41
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 42
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 43
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 44
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 45
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 46
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 47
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 48
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 49
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 50
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 51
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 52
Link NOC:Introduction to Electromagnetic Theory (Hindi) Lecture 53
Link NOC:Scientific Computing Using Python Lecture 1
Link NOC:Scientific Computing Using Python Lecture 2
Link NOC:Scientific Computing Using Python Lecture 3
Link NOC:Scientific Computing Using Python Lecture 4
Link NOC:Scientific Computing Using Python Lecture 5
Link NOC:Scientific Computing Using Python Lecture 6
Link NOC:Scientific Computing Using Python Lecture 7
Link NOC:Scientific Computing Using Python Lecture 8
Link NOC:Scientific Computing Using Python Lecture 9
Link NOC:Scientific Computing Using Python Lecture 10
Link NOC:Scientific Computing Using Python Lecture 11
Link NOC:Scientific Computing Using Python Lecture 12
Link NOC:Scientific Computing Using Python Lecture 13
Link NOC:Scientific Computing Using Python Lecture 14
Link NOC:Scientific Computing Using Python Lecture 15
Link NOC:Scientific Computing Using Python Lecture 16
Link NOC:Scientific Computing Using Python Lecture 17
Link NOC:Scientific Computing Using Python Lecture 18
Link NOC:Scientific Computing Using Python Lecture 19
Link NOC:Scientific Computing Using Python Lecture 20
Link NOC:Scientific Computing Using Python Lecture 21
Link NOC:Scientific Computing Using Python Lecture 22
Link NOC:Scientific Computing Using Python Lecture 23
Link NOC:Scientific Computing Using Python Lecture 24
Link NOC:Scientific Computing Using Python Lecture 25
Link NOC:Scientific Computing Using Python Lecture 26
Link NOC:Scientific Computing Using Python Lecture 27
Link NOC:Scientific Computing Using Python Lecture 28
Link NOC:Scientific Computing Using Python Lecture 29
Link NOC:Scientific Computing Using Python Lecture 30
Link NOC:Scientific Computing Using Python Lecture 31
Link NOC:Scientific Computing Using Python Lecture 32
Link NOC:Scientific Computing Using Python Lecture 33
Link NOC:Scientific Computing Using Python Lecture 34
Link NOC:Scientific Computing Using Python Lecture 35
Link NOC:Scientific Computing Using Python Lecture 36
Link NOC:Scientific Computing Using Python Lecture 37
Link NOC:Scientific Computing Using Python Lecture 38
Link NOC:Scientific Computing Using Python Lecture 39
Link NOC:Scientific Computing Using Python Lecture 40
Link NOC:Scientific Computing Using Python Lecture 41
Link NOC:Scientific Computing Using Python Lecture 42
Link NOC:Scientific Computing Using Python Lecture 43
Link NOC:Scientific Computing Using Python Lecture 44
Link NOC:Scientific Computing Using Python Lecture 45
Link NOC:Scientific Computing Using Python Lecture 46
Link NOC:Scientific Computing Using Python Lecture 47
Link NOC:Scientific Computing Using Python Lecture 48
Link NOC:Scientific Computing Using Python Lecture 49
Link NOC:Scientific Computing Using Python Lecture 50
Link NOC:Scientific Computing Using Python Lecture 51
Link NOC:Scientific Computing Using Python Lecture 52
Link NOC:Scientific Computing Using Python Lecture 53
Link NOC:Scientific Computing Using Python Lecture 54
Link NOC:Scientific Computing Using Python Lecture 55
Link NOC:Scientific Computing Using Python Lecture 56
Link NOC:Scientific Computing Using Python Lecture 57
Link NOC:Scientific Computing Using Python Lecture 58
Link NOC:Scientific Computing Using Python Lecture 59
Link NOC:Scientific Computing Using Python Lecture 60
Link NOC:Scientific Computing Using Python Lecture 61
Link NOC:Scientific Computing Using Python Lecture 62
Link NOC:Scientific Computing Using Python Lecture 63
Link NOC:Scientific Computing Using Python Lecture 64
Link NOC:Scientific Computing Using Python Lecture 65
Link NOC:Scientific Computing Using Python Lecture 66
Link NOC:Scientific Computing Using Python Lecture 67
Link NOC:Scientific Computing Using Python Lecture 68
Link NOC:Scientific Computing Using Python Lecture 69
Link NOC:Scientific Computing Using Python Lecture 70
Link NOC:Scientific Computing Using Python Lecture 71
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 1 - Introduction to Field Theory and Course
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 2 - Integration using Complex Analysis
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 3 - Cauchy Principal Value Theorem
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 4 - Fourier Transform
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 5 - Green's Function and Examples
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 6 - Green's Function in Fourier Space
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 7 - Fourier Transform, Time Frequency
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 8 - Green's Function for Helmholtz Equation and Wave Equation
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 9 - Green's Function for Diffusion and Schrodinger Equation
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 10 - Dimensional Analysis
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 11 - Functionals - Part 1
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 12 - Lagrangian Formalism - Part 2
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 13 - Relativistic Fields
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 14 - Hamiltonian Formalism
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 15 - Principle of Least Action
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 16 - Relativistic Fields and Hamiltonian Formalism
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 17 - Noether's Theorem and Symmetries
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 18 - Review of Quantum Mechanics
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 19 - Second Quantization
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 20 - Field Operators
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 21 - Fock Space and Vaccum Energy
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 22 - Quantization of Bosons and Fermions
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 23 - Examples
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 24 - Free Fermi Gas
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 25 - Propagators and Perturbations
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 26 - Relativistic Quantum Field Theory
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 27 - Feynman Propagator
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 28 - Review of Statistical Mechanics (Partition Function)
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 29 - Feynman Path Integral
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 30 - Diagrammatic Field Theory (Wick's Theorem)
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 31 - Wick's Theorem (Continued...)
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 32 - Diagrammatic Perturbation Theory
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 33 - Green's Function and Correlation Function
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 34 - Feynman Diagrams
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 35 - Phase Transition and Landau Theory
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 36 - Failure of Landau's Theory
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 37 - Scale Invariance
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 38 - Renormalization Group - Preliminary
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 39 - RG Steps
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 40 - Pertubative Calculations
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 41 - RG Fixed Points
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 42 - Relevent and Irrelevant Variables
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 43 - Behaviour Near Critical Points
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 44 - Computing Critical Exponents
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 45 - Mass and Charge Renormalization, Running Coupling const: Φ4 Theory
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 46 - Charge and Mass Renormalization: QED and QCD
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 47 - Breaking a Continuous Symmetry (Goldstone Mode)
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 48 - Covariant Electrodynamics (Gauge Interactions)
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 49 - Higgs Mechanism
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 50 - Introduction to Non-Equilibrium Field Theory (Langevin Equation)
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 51 - Fluctuation Dissipation Theorem
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 52 - Kolgomorov's Theory of Turbulence
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 53 - Equilibrium and Non Equilibrium Solution of Navier Stokes
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 54 - Energy Flux in Navier Stokes Equation
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 55 - RG Analysis of Field Theory of Turbulence
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 56 - Renormalized Viscosity and Discussion
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 57 - Renormalization of the Coupling Constant for the Shell Model
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 58 - Flux Computation for the Shell Model of Turbulence
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 59 - Renormalization Group Analysis of Navier Stokes Equation
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 60 - Flux Computation for the Navier Stokes Equation
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 61 - Functional Form of a Dynamical Equation
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 62 - Surface Growth Phenomena: Introduction
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 63 - Surface Growth Phenomena: EW Equation
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 64 - Surface Growth Phenomena: KPZ Equation
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 65 - Surface Growth Phenomena: KPZ Equation (Continued...)
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 66 - RG Procedure for KPZ Equation
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 67 - Noise Renormalization
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 68 - Fixed Point Solution
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 69 - Weak Turbulence Theory using Examples
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 70 - Weak Turbulence Applications (Rotating Turbulence, Internal and Surface Gravity Waves)
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 71 - Nonlinear Schodinger Equation
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 72 - Field Theory of Passive Scalar Turbulence
Link NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives Lecture 73 - Course Summary
Link NOC:Coherence and Quantum Entanglement Lecture 1 - Main differences between classical and quantum mechanics
Link NOC:Coherence and Quantum Entanglement Lecture 2 - Introduction to Coherence and Stochastic Processes
Link NOC:Coherence and Quantum Entanglement Lecture 3 - The Joint Probability Function used in Classical Optics: The Correlation Functions
Link NOC:Coherence and Quantum Entanglement Lecture 4 - Second-order Coherence Theory (Temporal)
Link NOC:Coherence and Quantum Entanglement Lecture 5 - Quantifying the Temporal Correlations
Link NOC:Coherence and Quantum Entanglement Lecture 6 - Second-order Coherence Theory (Spatial); Spatial Correlations
Link NOC:Coherence and Quantum Entanglement Lecture 7 - Quantifying the Spatial Correlations
Link NOC:Coherence and Quantum Entanglement Lecture 8 - Second-order Coherence Theory (Angular); Angular Correlations
Link NOC:Coherence and Quantum Entanglement Lecture 9 - Second-order Coherence Theory (Polarization)
Link NOC:Coherence and Quantum Entanglement Lecture 10 - Degree of Polarization
Link NOC:Coherence and Quantum Entanglement Lecture 11 - Coherent Mode Representation of Optical Fields
Link NOC:Coherence and Quantum Entanglement Lecture 12 - Review of Quantum Mechanics
Link NOC:Coherence and Quantum Entanglement Lecture 13 - Quantum Mechanical Correlation Functions
Link NOC:Coherence and Quantum Entanglement Lecture 14 - Basics of Nonlinear Optics
Link NOC:Coherence and Quantum Entanglement Lecture 15 - Two-Photon State Produced by Parametric Down-Conversion
Link NOC:Coherence and Quantum Entanglement Lecture 16 - Coherence and Quantum Entanglement
Link NOC:Coherence and Quantum Entanglement Lecture 17 - Temporal Two-Photon Interference
Link NOC:Coherence and Quantum Entanglement Lecture 18 - Some example of Two-Photon Interference Effects
Link NOC:Coherence and Quantum Entanglement Lecture 19 - Spatial Two-Photon Interference
Link NOC:Coherence and Quantum Entanglement Lecture 20 - Quantum Measurements
Link NOC:Coherence and Quantum Entanglement Lecture 21 - Can the Quantum Mechanical Description of Physical Reality be Considered Complete ?
Link NOC:Coherence and Quantum Entanglement Lecture 22 - Hidden Variable Interpretation of Quantum Mechanics
Link NOC:Coherence and Quantum Entanglement Lecture 23 - Bell Inequalities
Link NOC:Coherence and Quantum Entanglement Lecture 24 - Entanglement Verification
Link NOC:Coherence and Quantum Entanglement Lecture 25 - Entanglement Quantification and Connection Between Coherence and Entanglement
Link NOC:Coherence and Quantum Entanglement Lecture 26 - 84 Quantum Cryptography
Link NOC:Coherence and Quantum Entanglement Lecture 27 - Quantum Teleportation
Link NOC:Classical Motion of a Single Particle Lecture 1 - Introduction and Newton's laws of motion
Link NOC:Classical Motion of a Single Particle Lecture 2 - From dynamics to Kinematics
Link NOC:Classical Motion of a Single Particle Lecture 3 - Equations of dynamics and constants of motion
Link NOC:Classical Motion of a Single Particle Lecture 4 - Constants of motion (Continued...), Wrok-energy theorem and conservative forces
Link NOC:Classical Motion of a Single Particle Lecture 5 - Dynamics under constants and central forces
Link NOC:Classical Motion of a Single Particle Lecture 6 - Derivation of gradient form from zero curl condition
Link NOC:Classical Motion of a Single Particle Lecture 7 - Concept of equilibrium
Link NOC:Classical Motion of a Single Particle Lecture 8 - Terminal velocity, stable and unstable equilibria
Link NOC:Classical Motion of a Single Particle Lecture 9 - Stable and unstable equilibria in more than one dimensions
Link NOC:Classical Motion of a Single Particle Lecture 10 - Motion in one-dimensional potential
Link NOC:Classical Motion of a Single Particle Lecture 11 - Solving equations of motion in one dimension
Link NOC:Classical Motion of a Single Particle Lecture 12 - Calculation of Work Done in a Force Field
Link NOC:Classical Motion of a Single Particle Lecture 13 - Central forces, Velocity and Acceleration in Plane Polar Coordinates
Link NOC:Classical Motion of a Single Particle Lecture 14 - Dynamics and Trajectories Under a Central Force
Link NOC:Classical Motion of a Single Particle Lecture 15 - Equation For Trajectories Under a Central Force (Continued...) : Binet Equation
Link NOC:Classical Motion of a Single Particle Lecture 16 - Trajectory of a Particle Under Attractive Inverse-Square Force Law
Link NOC:Classical Motion of a Single Particle Lecture 17 - Energy Diagram in an Effective One-Dimensional Motion
Link NOC:Classical Motion of a Single Particle Lecture 18 - Two Interesting Problems On the motion Under Central Forces
Link NOC:Classical Motion of a Single Particle Lecture 19 - Motion Under an Attractive Inverse-Square Force
Link NOC:Classical Motion of a Single Particle Lecture 20 - Motion Under an Attractive Inverse-Square Force (Continued...)
Link NOC:Classical Motion of a Single Particle Lecture 21 - Trajectories Under Attractive Inverse-Square Force, Laws of Kepler
Link NOC:Classical Motion of a Single Particle Lecture 22 - Laplace Runge-Lenz Vector
Link NOC:Classical Motion of a Single Particle Lecture 23 - Simple harmonic oscillators
Link NOC:Classical Motion of a Single Particle Lecture 24 - Two examples of simple harmonic oscillation
Link NOC:Classical Motion of a Single Particle Lecture 25 - Forced harmonic oscillator
Link NOC:Classical Motion of a Single Particle Lecture 26 - Forced harmonic oscillator at resonance
Link NOC:Classical Motion of a Single Particle Lecture 27 - Damped harmonic oscillator
Link NOC:Classical Motion of a Single Particle Lecture 28 - Nature of motion under a harmonic potential
Link NOC:Classical Motion of a Single Particle Lecture 29 - Comparison among three types of damped oscillation
Link NOC:Classical Motion of a Single Particle Lecture 30 - Forced harmonic oscillator with damping
Link NOC:Classical Motion of a Single Particle Lecture 31 - A problem on damped harmonic oscillator
Link NOC:Classical Motion of a Single Particle Lecture 32 - Beats
Link NOC:Classical Motion of a Single Particle Lecture 33 - Motion of a particle in electric and magnetic fields
Link NOC:Classical Motion of a Single Particle Lecture 34 - E X B drift
Link NOC:Classical Motion of a Single Particle Lecture 35 - Inertial frames of reference, Galilean transformation
Link NOC:Classical Motion of a Single Particle Lecture 36 - Non-inertial frames of reference, pseudo forces
Link NOC:Classical Motion of a Single Particle Lecture 37 - Motion of a particle in a rotating frame of reference
Link NOC:Classical Motion of a Single Particle Lecture 38 - Motion of a particle relative to an observer on earth
Link NOC:Classical Motion of a Single Particle Lecture 39 - Motion of a particle under various constraints
Link NOC:Classical Motion of a Single Particle Lecture 40 - Principle of Virtual work, D'Alembert's principle
Link NOC:Classical Motion of a Single Particle Lecture 41 - Lagrange's equation of first kind
Link NOC:Classical Motion of a Single Particle Lecture 42 - Solving problems using Lagrange's equation of first kind
Link NOC:Classical Motion of a Single Particle Lecture 43 - Generalized Coordinates and Generalized Velocities
Link NOC:Classical Motion of a Single Particle Lecture 44 - Knetic Energy and Acceleration in Terms of Generalized Coordinates
Link NOC:Classical Motion of a Single Particle Lecture 45 - Generalized Momentum and Generalized Force; Derivation of Euler-Lagrange Equation
Link NOC:Classical Motion of a Single Particle Lecture 46 - Euler Lagrange Equation, Cyclic Coordinates and Other Properties
Link NOC:Classical Motion of a Single Particle Lecture 47 - Properties of Euler-Lagrange equations (Continued...)
Link NOC:Classical Motion of a Single Particle Lecture 48 - Lagrangian of various oscillating systems
Link NOC:Classical Motion of a Single Particle Lecture 49 - Problem solving using Euler-Lagrange equations
Link NOC:Classical Motion of a Single Particle Lecture 50 - Concept of Phase Space
Link NOC:Classical Motion of a Single Particle Lecture 51 - Phase space trajectories and fixed points
Link NOC:Classical Motion of a Single Particle Lecture 52 - Stability of fixed points
Link NOC:Classical Motion of a Single Particle Lecture 53 - Different types of fixed points
Link NOC:Classical Motion of a Single Particle Lecture 54 - Fixed points and their stability for mechanical systems
Link NOC:Classical Motion of a Single Particle Lecture 55 - Linear two-dimensional phase space dynamics
Link NOC:Classical Motion of a Single Particle Lecture 56 - Linear two-dimensional phase space dynamics (Continued...)
Link NOC:Classical Motion of a Single Particle Lecture 57 - Concept of limit cycles
Link NOC:Classical Motion of a Single Particle Lecture 58 - Lorenz equations and introduction to chaos
Link Astrophysics and Cosmology Lecture 1 - Introduction
Link Astrophysics and Cosmology Lecture 2 - Keplers Law
Link Astrophysics and Cosmology Lecture 3 - The Solar System
Link Astrophysics and Cosmology Lecture 4 - The Solar System (Continued...)
Link Astrophysics and Cosmology Lecture 5 - Binary Systems
Link Astrophysics and Cosmology Lecture 6 - Binary Systems (Continued...)
Link Astrophysics and Cosmology Lecture 7 - Tidal Forces and the Earth Moon System
Link Astrophysics and Cosmology Lecture 8 - Fluid Mechanics
Link Astrophysics and Cosmology Lecture 9 - Hydrostatics and the Solar Wind
Link Astrophysics and Cosmology Lecture 10 - Radiative Transfer
Link Astrophysics and Cosmology Lecture 11 - Radiative Transfer (Continued...)
Link Astrophysics and Cosmology Lecture 12 - Thermal Radiation
Link Astrophysics and Cosmology Lecture 13 - Thermal Radiation and the Sun
Link Astrophysics and Cosmology Lecture 14 - Virial Theorem and Its Application to Stars
Link Astrophysics and Cosmology Lecture 15 - Stars: Magnitudes and the H-R Diagram
Link Astrophysics and Cosmology Lecture 16 - Stellar Physics - I
Link Astrophysics and Cosmology Lecture 17 - Stellar Physics - II
Link Astrophysics and Cosmology Lecture 18 - Stellar Physics - III
Link Astrophysics and Cosmology Lecture 19 - Stellar Physics - IV
Link Astrophysics and Cosmology Lecture 20 - Stellar Physics - V
Link Astrophysics and Cosmology Lecture 21 - White Dwarfs
Link Astrophysics and Cosmology Lecture 22 - White Dwarfs and Neutron Stars
Link Astrophysics and Cosmology Lecture 23 - Galaxies
Link Astrophysics and Cosmology Lecture 24 - Galaxies and the Expanding Universe
Link Astrophysics and Cosmology Lecture 25 - The Expanding Universe
Link Astrophysics and Cosmology Lecture 26 - Dynamics of the Expanding Universe
Link Astrophysics and Cosmology Lecture 27 - Dynamics of the Expanding Universe (Continued...)
Link Astrophysics and Cosmology Lecture 28 - The Expanding Universe and the Cosmological Metric
Link Astrophysics and Cosmology Lecture 29 - The Cosmological Space - Time
Link Astrophysics and Cosmology Lecture 30 - Distances
Link Astrophysics and Cosmology Lecture 31 - Distances (Continued...)
Link Astrophysics and Cosmology Lecture 32 - Distances and the Hubble Parameter
Link Astrophysics and Cosmology Lecture 33 - Distances, the Hubble Parameter and Dark Energy (Continued...)
Link Astrophysics and Cosmology Lecture 34 - CMBR and Thermal History
Link Astrophysics and Cosmology Lecture 35 - CMBR and Thermal History (Continued...1)
Link Astrophysics and Cosmology Lecture 36 - CMBR and Thermal History (Continued...2)
Link Astrophysics and Cosmology Lecture 37 - Thermal History, Expansion Rate and Neutrino Mass
Link Astrophysics and Cosmology Lecture 38 - Thermal History: Neutrino Mass, Nucleosynthesis
Link Astrophysics and Cosmology Lecture 39 - Big Bang Nucleosynthesis
Link Astrophysics and Cosmology Lecture 40 - Big Bang Nucleosynthesis (Continued...)
Link NOC:Mathematics Methods in Physics - I Lecture 1 - Set, Group, Field, Ring
Link NOC:Mathematics Methods in Physics - I Lecture 2 - Vector Space
Link NOC:Mathematics Methods in Physics - I Lecture 3 - Span, Linear combination of vectors
Link NOC:Mathematics Methods in Physics - I Lecture 4 - Linearly dependent and independent vector, Basis
Link NOC:Mathematics Methods in Physics - I Lecture 5 - Dual Space
Link NOC:Mathematics Methods in Physics - I Lecture 6 - Inner Product
Link NOC:Mathematics Methods in Physics - I Lecture 7 - Schwarz Inequality
Link NOC:Mathematics Methods in Physics - I Lecture 8 - Inner product space, Gram-Schmidt Ortho-normalization
Link NOC:Mathematics Methods in Physics - I Lecture 9 - Projection operator
Link NOC:Mathematics Methods in Physics - I Lecture 10 - Transformation of Basis
Link NOC:Mathematics Methods in Physics - I Lecture 11 - Transformation of Basis (Continued...)
Link NOC:Mathematics Methods in Physics - I Lecture 12 - Unitary transformation, Similarity Transformation
Link NOC:Mathematics Methods in Physics - I Lecture 13 - Eigen Value, Eigen Vectors
Link NOC:Mathematics Methods in Physics - I Lecture 14 - Normal Matrix
Link NOC:Mathematics Methods in Physics - I Lecture 15 - Diagonalization of a Matrix
Link NOC:Mathematics Methods in Physics - I Lecture 16 - Hermitian Matrix
Link NOC:Mathematics Methods in Physics - I Lecture 17 - Rank of a Matrix
Link NOC:Mathematics Methods in Physics - I Lecture 18 - Cayley - Hamilton Theorem, Function space
Link NOC:Mathematics Methods in Physics - I Lecture 19 - Metric Space, Linearly dependent - independent functions
Link NOC:Mathematics Methods in Physics - I Lecture 20 - Linearly dependent –independent functions (Continued...), Inner Product of functions
Link NOC:Mathematics Methods in Physics - I Lecture 21 - Orthogonal functions
Link NOC:Mathematics Methods in Physics - I Lecture 22 - Delta Function, Completeness
Link NOC:Mathematics Methods in Physics - I Lecture 23 - Fourier
Link NOC:Mathematics Methods in Physics - I Lecture 24 - Fourier Series (Continued...)
Link NOC:Mathematics Methods in Physics - I Lecture 25 - Parseval Theorem, Fourier Transform
Link NOC:Mathematics Methods in Physics - I Lecture 26 - Parseval Relation, Convolution Theorem
Link NOC:Mathematics Methods in Physics - I Lecture 27 - Polynomial space, Legendre Polynomial
Link NOC:Mathematics Methods in Physics - I Lecture 28 - Monomial Basis, Factorial Basis, Legendre Basis
Link NOC:Mathematics Methods in Physics - I Lecture 29 - Complex Numbers
Link NOC:Mathematics Methods in Physics - I Lecture 30 - Geometrical interpretation of complex numbers
Link NOC:Mathematics Methods in Physics - I Lecture 31 - de Moivre’s Theorem
Link NOC:Mathematics Methods in Physics - I Lecture 32 - Roots of a complex number
Link NOC:Mathematics Methods in Physics - I Lecture 33 - Set of complex no, Stereographic projection
Link NOC:Mathematics Methods in Physics - I Lecture 34 - Complex Function, Concept of Limit
Link NOC:Mathematics Methods in Physics - I Lecture 35 - Derivative of Complex Function, Cauchy-Riemann Equation
Link NOC:Mathematics Methods in Physics - I Lecture 36 - Analytic Function
Link NOC:Mathematics Methods in Physics - I Lecture 37 - Harmonic Conjugate
Link NOC:Mathematics Methods in Physics - I Lecture 38 - Polar form of Cauchy-Riemann Equation
Link NOC:Mathematics Methods in Physics - I Lecture 39 - Multi-valued function and Branches
Link NOC:Mathematics Methods in Physics - I Lecture 40 - Complex Line Integration, Contour, Regions
Link NOC:Mathematics Methods in Physics - I Lecture 41 - Complex Line Integration (Continued...)
Link NOC:Mathematics Methods in Physics - I Lecture 42 - Cauchy-Goursat Theorem
Link NOC:Mathematics Methods in Physics - I Lecture 43 - Application of Cauchy-Goursat Theorem
Link NOC:Mathematics Methods in Physics - I Lecture 44 - Cauchy’s Integral Formula
Link NOC:Mathematics Methods in Physics - I Lecture 45 - Cauchy’s Integral Formula (Continued...)
Link NOC:Mathematics Methods in Physics - I Lecture 46 - Series and Sequence
Link NOC:Mathematics Methods in Physics - I Lecture 47 - Series and Sequence (Continued...)
Link NOC:Mathematics Methods in Physics - I Lecture 48 - Circle and radius of convergence
Link NOC:Mathematics Methods in Physics - I Lecture 49 - Taylor Series
Link NOC:Mathematics Methods in Physics - I Lecture 50 - Classification of singularity
Link NOC:Mathematics Methods in Physics - I Lecture 51 - Laurent Series, Singularity
Link NOC:Mathematics Methods in Physics - I Lecture 52 - Laurent series expansion
Link NOC:Mathematics Methods in Physics - I Lecture 53 - Laurent series expansion (Continued...), Concept of Residue
Link NOC:Mathematics Methods in Physics - I Lecture 54 - Classification of Residue
Link NOC:Mathematics Methods in Physics - I Lecture 55 - Calculation of Residue for quotient from
Link NOC:Mathematics Methods in Physics - I Lecture 56 - Cauchy’s Residue Theorem
Link NOC:Mathematics Methods in Physics - I Lecture 57 - Cauchy’s Residue Theorem (Continued...)
Link NOC:Mathematics Methods in Physics - I Lecture 58 - Real Integration using Cauchy’s Residue Theorem
Link NOC:Mathematics Methods in Physics - I Lecture 59 - Real Integration using Cauchy’s Residue Theorem (Continued...)
Link NOC:Mathematics Methods in Physics - I Lecture 60 - Real Integration using Cauchy’s Residue Theorem (Continued...)
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 1
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 2
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 3
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 4
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 5
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 6 - Systems with variable mass - 3
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 7 - Systems with variable mass - 4
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 8 - Central force - 1
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 9 - Central force - 2
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 10 - Central force - 3
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 11 - Central force - 4
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 12 - Central force - 5
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 13 - Central force - 6
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 14 - Central force - 7
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 15 - Central force - 8
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 16 - Central force - 9
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 17 - Central force - 10
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 18 - Central force - 11
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 19 - Central force - 12
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 20 - Central force - 13
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 21 - Central force - 14
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 22 - Central force - 15
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 23 - Mooring Co-ordinate Systems - 1
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 24 - Mooring Co-ordinate Systems - 2
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 25 - Mooring Co-ordinate Systems - 3
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 26 - Mooring Co-ordinate Systems - 4
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 27 - Rigid body dynamics - 1
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 28 - Rigid body dynamics - 2
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 29 - Rigid body dynamics - 3
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 30 - Rigid body dynamics - 4
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 31 - Rigid body dynamics - 5
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 32 - Rigid body dynamics - 6
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 33 - Rigid body dynamics - 7
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 34 - Rigid body dynamics - 8
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 35 - Rigid body dynamics - 9
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 36 - Rigid body dynamics - 10
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 37 - Rigid body dynamics - 11
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 38 - Rigid body dynamics - 12
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 39 - Rigid body dynamics - 13
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 40 - Rigid body dynamics - 14
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 41 - Rigid body dynamics - 15
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 42 - Rigid body dynamics - 16
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 43 - Lagrangian Formulation - 1
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 44 - Lagrangian Formulation - 2
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 45 - Lagrangian Formulation - 3
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 46 - Lagrangian Formulation - 4
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 47 - Lagrangian Formulation - 5
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 48 - Lagrangian Formulation - 6
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 49 - Lagrangian Formulation - 7
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 50 - Lagrangian Formulation - 8
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 51 - Lagrangian Formulation - 9
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 52 - Lagrangian Formulation - 10
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 53 - Small oscillation - 1
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 54 - Small oscillation - 2
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 55 - Small oscillation - 3
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 56 - Small oscillation - 4
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 57 - Small oscillation - 5
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 58 - Small oscillation - 6
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 59 - Small oscillation - 7
Link NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation Lecture 60 - Small oscillation - 8
Link NOC:Solid State Physics Lecture 1 - Atom to Solid Structure
Link NOC:Solid State Physics Lecture 2 - Atom to Solid Structure (Continued...)
Link NOC:Solid State Physics Lecture 3 - Structure of Solid
Link NOC:Solid State Physics Lecture 4 - Structure of Solid (Continued...)
Link NOC:Solid State Physics Lecture 5 - Crystal Structure
Link NOC:Solid State Physics Lecture 6 - Crystal Structure (Continued...)
Link NOC:Solid State Physics Lecture 7 - Crystal Structure (Continued...)
Link NOC:Solid State Physics Lecture 8 - Crystal Structure (Continued...)
Link NOC:Solid State Physics Lecture 9 - Crystal Structure (Continued...)
Link NOC:Solid State Physics Lecture 10 - Crystal Structure (Continued...)
Link NOC:Solid State Physics Lecture 11 - Crystal Structure (Continued...)
Link NOC:Solid State Physics Lecture 12 - Crystal Structure (Continued...)
Link NOC:Solid State Physics Lecture 13 - Crystal Structure (Continued...)
Link NOC:Solid State Physics Lecture 14 - Crystal Structure (Continued...)
Link NOC:Solid State Physics Lecture 15 - Crystal Structure (Continued...)
Link NOC:Solid State Physics Lecture 16 - Crystal Structure (Continued...)
Link NOC:Solid State Physics Lecture 17 - Crystal Structure (Continued...)
Link NOC:Solid State Physics Lecture 18 - X-ray Diffraction from Crystal
Link NOC:Solid State Physics Lecture 19 - X-ray Diffraction from Crystal (Continued...)
Link NOC:Solid State Physics Lecture 20 - X-ray Diffraction from Crystal (Continued...)
Link NOC:Solid State Physics Lecture 21 - X-ray Diffraction from Crystal (Continued...)
Link NOC:Solid State Physics Lecture 22 - X-ray Diffraction from Crystal (Continued...)
Link NOC:Solid State Physics Lecture 23 - X-ray Diffraction from Crystal (Continued...)
Link NOC:Solid State Physics Lecture 24 - X-ray Diffraction from Crystal (Continued...)
Link NOC:Solid State Physics Lecture 25 - Reciprocal Lattice
Link NOC:Solid State Physics Lecture 26 - Reciprocal Lattice (Continued...)
Link NOC:Solid State Physics Lecture 27 - Reciprocal Lattice (Continued...)
Link NOC:Solid State Physics Lecture 28 - Reciprocal Lattice (Continued...)
Link NOC:Solid State Physics Lecture 29 - Reciprocal Lattice (Continued...)
Link NOC:Solid State Physics Lecture 30 - Intensity of Bragg Diffraction
Link NOC:Solid State Physics Lecture 31 - Intensity of Bragg Diffraction (Continued...)
Link NOC:Solid State Physics Lecture 32 - Electrical Properties of Metal
Link NOC:Solid State Physics Lecture 33 - Electrical Properties of Metal (Continued...)
Link NOC:Solid State Physics Lecture 34 - Electrical Properties of Metal (Continued...)
Link NOC:Solid State Physics Lecture 35 - Electrical Properties of Metal (Continued...)
Link NOC:Solid State Physics Lecture 36 - Electrical Properties of Metal (Continued...)
Link NOC:Solid State Physics Lecture 37 - Electrical Properties of Metal (Continued...)
Link NOC:Solid State Physics Lecture 38 - Electrical Properties of Metal (Continued...)
Link NOC:Solid State Physics Lecture 39 - Electrical Properties of Metal (Continued...)
Link NOC:Solid State Physics Lecture 40 - Band Theory of Solids
Link NOC:Solid State Physics Lecture 41 - Band Theory of Solids (Continued...)
Link NOC:Solid State Physics Lecture 42 - Band Theory of Solids (Continued...)
Link NOC:Solid State Physics Lecture 43 - Band Theory of Solids (Continued...)
Link NOC:Solid State Physics Lecture 44 - Band Theory of Solids (Continued...)
Link NOC:Solid State Physics Lecture 45 - Band Theory of Solids (Continued...)
Link NOC:Solid State Physics Lecture 46 - Band Theory of Solids (Continued...)
Link NOC:Solid State Physics Lecture 47 - Physics of Semiconductor
Link NOC:Solid State Physics Lecture 48 - Physics of Semiconductor (Continued...)
Link NOC:Solid State Physics Lecture 49 - Physics of Semiconductor
Link NOC:Solid State Physics Lecture 50 - Electrical Conduction
Link NOC:Solid State Physics Lecture 51 - Electrical Conduction
Link NOC:Solid State Physics Lecture 52
Link NOC:Solid State Physics Lecture 53
Link NOC:Solid State Physics Lecture 54 - Thermal Properties of Solid (Continued...)
Link NOC:Solid State Physics Lecture 55 - Thermal Properties of Solid (Continued...)
Link NOC:Solid State Physics Lecture 56 - Thermal Properties of Solid (Continued...)
Link NOC:Solid State Physics Lecture 57 - Thermal Properties of Solid (Continued...)
Link NOC:Solid State Physics Lecture 58 - Magnetic Property of Solid
Link NOC:Solid State Physics Lecture 59 - Magnetic Property of Solid (Continued...)
Link NOC:Solid State Physics Lecture 60 - Magnetic Property of Solid (Continued...)
Link NOC:Solid State Physics Lecture 61 - Magnetic Property of Solid (Continued...)
Link NOC:Solid State Physics Lecture 62 - Magnetic Property of Solid (Continued...)
Link NOC:Solid State Physics Lecture 63 - Magnetic Property of Solid (Continued...)
Link NOC:Solid State Physics Lecture 64 - Magnetic Property of Solid (Continued...)
Link NOC:Solid State Physics Lecture 65 - Magnetic Property of Solid (Continued...)
Link NOC:Solid State Physics Lecture 66 - Magnetic Property of Solid (Continued...)
Link NOC:Solid State Physics Lecture 67 - Magnetic Property of Solid (Continued...)
Link NOC:Solid State Physics Lecture 68 - Magnetic Property of Solid (Continued...)
Link NOC:Solid State Physics Lecture 69 - Magnetic Property of Solid (Continued...)
Link NOC:Solid State Physics Lecture 70 - Magnetic Property of Solid (Continued...)
Link NOC:Solid State Physics Lecture 71 - Magnetic Property of Solids (Continued...)
Link NOC:Solid State Physics Lecture 72 - Dielectric Properties of Solid
Link NOC:Solid State Physics Lecture 73 - Dielectric Properties of Solid (Continued...)
Link NOC:Solid State Physics Lecture 74 - Dielectric Properties of Solid (Continued...)
Link NOC:Solid State Physics Lecture 75 - Superconductivity
Link NOC:Atomic and Molecular Physics Lecture 1 - Experimental observations and theoretical development in discovery of constituents of an atom
Link NOC:Atomic and Molecular Physics Lecture 2 - Experimental observations and theoretical development in discovery of constituents of an atom (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 3 - Experimental observations and theoretical development in discovery of constituents of an atom (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 4 - Experimental observations and theoretical development in discovery of constituents of an atom (Continued...:
Link NOC:Atomic and Molecular Physics Lecture 5 - Experimental observations and theoretical development in discovery of constituents of an atom (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 6 - Structure of an atom
Link NOC:Atomic and Molecular Physics Lecture 7 - Structure of an atom
Link NOC:Atomic and Molecular Physics Lecture 8 - Structure of an atom (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 9 - Atomic structure of an atom
Link NOC:Atomic and Molecular Physics Lecture 10 - Atomic structure of an atom
Link NOC:Atomic and Molecular Physics Lecture 11 - Structure of an atom
Link NOC:Atomic and Molecular Physics Lecture 12 - Atomic structure of an atom
Link NOC:Atomic and Molecular Physics Lecture 13 - Atomic structure of an atom
Link NOC:Atomic and Molecular Physics Lecture 14 - Structure of an atom
Link NOC:Atomic and Molecular Physics Lecture 15 - Structure of an atom
Link NOC:Atomic and Molecular Physics Lecture 16 - Structure of an atom
Link NOC:Atomic and Molecular Physics Lecture 17 - Structure of an atom
Link NOC:Atomic and Molecular Physics Lecture 18 - Structure of an atom
Link NOC:Atomic and Molecular Physics Lecture 19 - Structure of an atom
Link NOC:Atomic and Molecular Physics Lecture 20 - Structure of an atom
Link NOC:Atomic and Molecular Physics Lecture 21 - Atomic spectra
Link NOC:Atomic and Molecular Physics Lecture 22 - Atomic spectra
Link NOC:Atomic and Molecular Physics Lecture 23 - Multielectron atoms
Link NOC:Atomic and Molecular Physics Lecture 24 - Multielectron atoms (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 25 - Multielectron atoms (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 26 - Multielectron atoms (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 27 - Quantum mechanical treatment
Link NOC:Atomic and Molecular Physics Lecture 28 - Quantum mechanical treatment (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 29 - Quantum mechanical treatment of H-like atom
Link NOC:Atomic and Molecular Physics Lecture 30 - Quantum mechanical treatment of H-like atom (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 31 - Quantum mechanical treatment of Hydrogen like atom
Link NOC:Atomic and Molecular Physics Lecture 32 - Quantum mechanical treatment of Hydrogen like atom (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 33 - Quantum mechanical treatment of hydrogen like atom (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 34 - Quantum mechanical treatment of hydrogen like atom (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 35 - Quantum mechanical treatment of hydrogen like atom (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 36 - Quantum Mechanical treatment of Hydrogen like atom (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 37 - Quantum Mechanical treatment of Hydrogen like atom (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 38 - Hydrogen like atom in magnetic field
Link NOC:Atomic and Molecular Physics Lecture 39 - Hydrogen like atom in magnetic field (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 40 - Hydrogen like atom in electric field
Link NOC:Atomic and Molecular Physics Lecture 41 - Physics of molecules
Link NOC:Atomic and Molecular Physics Lecture 42 - Rotation of a molecule
Link NOC:Atomic and Molecular Physics Lecture 43 - Rotation of a molecule (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 44 - Rotation of a molecule (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 45 - Rotation of a molecule (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 46 - Vibration of a molecule
Link NOC:Atomic and Molecular Physics Lecture 47 - Vibration of a molecule (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 48 - Vibration of a molecule (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 49 - Vibration of a molecule (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 50 - Vibration of a molecule (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 51 - Electronic spectra of a molecule
Link NOC:Atomic and Molecular Physics Lecture 52 - Electronic spectra of a molecule (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 53 - Electronic structure of molecules
Link NOC:Atomic and Molecular Physics Lecture 54 - Electronic structure of molecules (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 55 - Electronic structure of a molecule
Link NOC:Atomic and Molecular Physics Lecture 56 - Atomic and Molecular Spectroscopy
Link NOC:Atomic and Molecular Physics Lecture 57 - Raman Spectroscopy
Link NOC:Atomic and Molecular Physics Lecture 58 - Raman Spectroscopy (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 59 - Raman Spectroscopy (Continued...)
Link NOC:Atomic and Molecular Physics Lecture 60 - Resonance spectroscopy
Link NOC:Modern Optics Lecture 1 - Maxwells equations and electromagnetic waves
Link NOC:Modern Optics Lecture 2 - Maxwells equations and electromagnetic waves (Continued...)
Link NOC:Modern Optics Lecture 3 - Maxwells equations and electromagnetic waves (Continued...)
Link NOC:Modern Optics Lecture 4 - Maxwells equations and electromagnetic waves (Continued...)
Link NOC:Modern Optics Lecture 5 - Maxwells equations and electromagnetic waves (Continued...)
Link NOC:Modern Optics Lecture 6 - Maxwells equations and electromagnetic waves (Continued...)
Link NOC:Modern Optics Lecture 7 - Maxwells equations and electromagnetic waves (Continued...)
Link NOC:Modern Optics Lecture 8 - Wave propagation in anisotropic media
Link NOC:Modern Optics Lecture 9 - Wave propagation in anisotropic media (Continued...)
Link NOC:Modern Optics Lecture 10 - Wave propagation in anisotropic media (Continued...)
Link NOC:Modern Optics Lecture 11 - Wave propagation in anisotropic media (Continued...)
Link NOC:Modern Optics Lecture 12 - Wave propagation in anisotropic media (Continued...)
Link NOC:Modern Optics Lecture 13 - Wave propagation in layered structures
Link NOC:Modern Optics Lecture 14 - Wave propagation in layered structures (Continued...)
Link NOC:Modern Optics Lecture 15 - Wave propagation in layered structures (Continued...)
Link NOC:Modern Optics Lecture 16 - Wave propagation in layered structures (Continued...)
Link NOC:Modern Optics Lecture 17 - Wave propagation in layered structures (Continued...)
Link NOC:Modern Optics Lecture 18 - Waves in guided structures and modes
Link NOC:Modern Optics Lecture 19 - Waves in guided structures and modes (Continued...)
Link NOC:Modern Optics Lecture 20 - Waves in guided structures and modes (Continued...)
Link NOC:Modern Optics Lecture 21 - Waves in guided structures and modes (Continued...)
Link NOC:Modern Optics Lecture 22 - Waves in guided structures and modes (Continued...)
Link NOC:Modern Optics Lecture 23 - Waves in guided structures and modes (Continued...)
Link NOC:Modern Optics Lecture 24 - Coupling of waves and optical couplers
Link NOC:Modern Optics Lecture 25 - Coupling of waves and optical couplers (Continued...)
Link NOC:Modern Optics Lecture 26 - Coupling of waves and optical couplers (Continued...)
Link NOC:Modern Optics Lecture 27 - Coupling of waves and optical couplers (Continued...)
Link NOC:Modern Optics Lecture 28 - Coupling of waves and optical couplers (Continued...)
Link NOC:Modern Optics Lecture 29 - Electro-optic Effect
Link NOC:Modern Optics Lecture 30 - Electro-optic Effect (Continued...)
Link NOC:Modern Optics Lecture 31 - Electro-optic Effect (Continued...)
Link NOC:Modern Optics Lecture 32 - Electro-optic Effect (Continued...)
Link NOC:Modern Optics Lecture 33 - Electro-optic Effect (Continued...)
Link NOC:Modern Optics Lecture 34 - Electro-optic Modulators and Devices
Link NOC:Modern Optics Lecture 35 - Electro-optic Modulators and Devices (Continued...)
Link NOC:Modern Optics Lecture 36 - Electro-optic Modulators and Devices (Continued...)
Link NOC:Modern Optics Lecture 37 - Electro-optic Modulators and Devices (Continued...)
Link NOC:Modern Optics Lecture 38 - Electro-optic Modulators and Devices (Continued...)
Link NOC:Modern Optics Lecture 39 - Electro-optic Modulators and Devices (Continued...)
Link NOC:Modern Optics Lecture 40 - Electro-optic Modulators and Devices (Continued...)
Link NOC:Modern Optics Lecture 41 - Acousto-optic Effect
Link NOC:Modern Optics Lecture 42 - Acousto-optic Effect (Continued...)
Link NOC:Modern Optics Lecture 43 - Acousto-optic Effect (Continued...)
Link NOC:Modern Optics Lecture 44 - Acousto-optic Effect (Continued...)
Link NOC:Modern Optics Lecture 45 - Acousto-optic Effect (Continued...)
Link NOC:Modern Optics Lecture 46 - Acousto-optic Effect (Continued...)
Link NOC:Modern Optics Lecture 47 - Acousto-optic Effect (Continued...)
Link NOC:Modern Optics Lecture 48 - Acousto-optic Effect (Continued...)
Link NOC:Modern Optics Lecture 49 - Acousto-optic Effect (Continued...)
Link NOC:Modern Optics Lecture 50 - Acousto-optic Effect (Continued...)
Link NOC:Modern Optics Lecture 51 - Acousto-optic Effect (Continued...)
Link NOC:Modern Optics Lecture 52 - Acousto-optic Effect (Continued...)
Link NOC:Modern Optics Lecture 53 - Acousto-optic Effect (Continued...)
Link NOC:Modern Optics Lecture 54 - Acousto-optic Modulators and Devices
Link NOC:Modern Optics Lecture 55 - Acousto-optic Modulators and Devices (Continued...)
Link NOC:Modern Optics Lecture 56 - Acousto-optic Modulators and Devices (Continued...)
Link NOC:Modern Optics Lecture 57 - Acousto-optic Modulators and Devices (Continued...)
Link NOC:Modern Optics Lecture 58 - Magneto-optic Effect
Link NOC:Modern Optics Lecture 59 - Magneto-optic Effect (Continued...)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 1 - Basic Linear Optics
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 2 - Basic Linear Optics (Continued...)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 3 - Basic Linear Optics (Continued...)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 4 - Basic Linear Optics (Continued...)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 5 - Basic Linear Optics (Continued...)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 6 - Basic Linear Optics (Continued...)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 7 - Basic Linear Optics (Continued...)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 8 - Basic Linear Optics (Continued...)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 9 - Basic Linear Optics (Continued...)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 10 - Nonlinear Optics : An Introduction
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 11 - Classical origin of optical nonlinearity
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 12 - Miller’s Rule
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 13 - Second Harmonic Generation (SHG)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 14 - Optical Rectification, Linear electro-optic effect
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 15 - Sum and Difference frequency generation
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 16 - Nonlinear Maxwell’s equation
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 17 - Theory of SHG
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 18 - Phase matching
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 19 - Phase matching of SHG, Gain band width calculation
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 20 - Manley-Rowe Relation, Energy conservation in SHG,
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 21 - Birefringence phase-matching (BPM),Type I and Type II phase matching
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 22 - Type II phase matching, Symmetry in nonlinear susceptibility
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 23 - Kleinman’s Symmetry, Neumann’s Principle
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 24 - Neumann’s Principle (Continued...) Centrosymmetric system
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 25 - Matrix form : SHG, SFG, DFG , SHG in KDP Crystal
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 26 - SHG in KDP crystal, Calculation of deff
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 27 - SHG in LiNbO3
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 28 - Quasi phase matching (QPM)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 29 - Quasi phase matching (QPM) (Continued...), Periodic d function
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 30 - 1st, 2nd, 3rd order QPM, SHG under depleted pump
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 31 - Realistic calculation of SHG, 3 wave interaction
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 32 - 3 wave interaction, Equation for pump, signal and idler wave, Non-collinear phase matching
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 33 - Manley-Rowe Relation (3 wave mixing), Parametric down conversion
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 34 - Parametric down conversion (Continued...), Optical Parametric Amplification (OPA)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 35 - Optical Parametric Amplification (OPA), Difference frequency generation under OPA
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 36 - Sum frequency generation under OPA
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 37 - OPA under non-phase matching condition, Expression of gain
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 38 - Optical parametric Oscillator (OPO), Singly resonant oscillator
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 39 - Doubly Resonant Oscillator (DRO)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 40 - Doubly Resonant Oscillator (DRO) (Continued...)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 41 - 3rd order nonlinear effect
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 42 - Optical Kerr effect and Self-focusing, Symmetry in 3rd order susceptibility
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 43 - Symmetry in 3rd order susceptibility (Continued...), Self Phase Modulation (SPM)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 44 - Self Phase Modulation (Continued...), Frequency Shift
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 45 - Third Harmonic Generation(3HG), Energy conservation
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 46 - Third Harmonic Generation (Continued...)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 47 - Third Harmonic Generation (Continued...), Cross Phase Modulation (XPM)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 48 - Cross Phase Modulation (Continued...), Nonlinear Absorption
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 49 - Four Wave Mixing
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 50 - Four Wave mixing (Continued...)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 51 - Parametric Amplification under FWM
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 52 - Parametric Amplification under FWM (Continued...)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 53 - Optical Phase Conjugation
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 54 - Raman Scattering
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 55 - Stimulated Raman Scattering
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 56 - Raman Amplification
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 57 - Raman Amplification (Continued...)
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 58 - Linear pulse propagation
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 59 - Nonlinear Pulse propagation
Link NOC:Introduction to Non-linear Optics and its Applications Lecture 60 - Optical Soliton
Link NOC:Upstream LNG Technology Lecture 1 - Introduction
Link NOC:Upstream LNG Technology Lecture 2 - Concentration
Link NOC:Upstream LNG Technology Lecture 3 - Sources and Process Overview of Natural Gas
Link NOC:Upstream LNG Technology Lecture 4 - Pure Component Phase Behavior
Link NOC:Upstream LNG Technology Lecture 5 - Mixture Phase Behavior
Link NOC:Upstream LNG Technology Lecture 6 - Phase Behaviour of Natural Gas
Link NOC:Upstream LNG Technology Lecture 7 - Dew Point and Bubble Point Calculations
Link NOC:Upstream LNG Technology Lecture 8 - Vapor Liquid Equilibrium
Link NOC:Upstream LNG Technology Lecture 9 - Problems on Vapor Pressure, Gibb's Phase Rule, Dew Point Bubble Point Temperatures
Link NOC:Upstream LNG Technology Lecture 10 - Thermophysical Properties of Natural Gas - I
Link NOC:Upstream LNG Technology Lecture 11 - Thermophysical Properties of Natural Gas - II
Link NOC:Upstream LNG Technology Lecture 12 - Thermodynamic and Chemical Properties
Link NOC:Upstream LNG Technology Lecture 13 - Combustion Properties
Link NOC:Upstream LNG Technology Lecture 14 - Flow in Natural Gas Systems
Link NOC:Upstream LNG Technology Lecture 15 - Flow Measurement In Natural Gas - I
Link NOC:Upstream LNG Technology Lecture 16 - Flow Measurement In Natural Gas - II
Link NOC:Upstream LNG Technology Lecture 17 - Temperature and Quality Measurement in Natural Gas Systems
Link NOC:Upstream LNG Technology Lecture 18 - Pressure measurement in natural gas systems
Link NOC:Upstream LNG Technology Lecture 19 - Tutorial on the estimation of thermophysical properties
Link NOC:Upstream LNG Technology Lecture 20 - Tutorial on the combustion and thermodynamic properties of natural gas
Link NOC:Upstream LNG Technology Lecture 21 - Tutorial on fluid mechanics
Link NOC:Upstream LNG Technology Lecture 22 - Tutorial on flow and pressure measurement in natural gas systems
Link NOC:Upstream LNG Technology Lecture 23 - Tutorial on temperature and quality measurement in natural gas
Link NOC:Upstream LNG Technology Lecture 24 - Heat transfer in natural gas systems
Link NOC:Upstream LNG Technology Lecture 25 - Tutorial on heat transfer in natural gas systems
Link NOC:Upstream LNG Technology Lecture 26 - Heat exchangers in natural gas systems
Link NOC:Upstream LNG Technology Lecture 27 - Analysis of heat exchangers in natural gas systems
Link NOC:Upstream LNG Technology Lecture 28 - Tutorial on heat exchanger analysis
Link NOC:Upstream LNG Technology Lecture 29 - Equillibrium vapour-liquid separation
Link NOC:Upstream LNG Technology Lecture 30 - Equillibrium in multicomponent systems
Link NOC:Upstream LNG Technology Lecture 31 - Separation by distillation
Link NOC:Upstream LNG Technology Lecture 32 - Design of distillation column
Link NOC:Upstream LNG Technology Lecture 33 - Equillibrium fluid solid separation
Link NOC:Upstream LNG Technology Lecture 34 - Membrane separation in natural gas systems
Link NOC:Upstream LNG Technology Lecture 35 - Estimation of water content in natural gas
Link NOC:Upstream LNG Technology Lecture 36 - Multistage single component equillibrium separation
Link NOC:Upstream LNG Technology Lecture 37 - Tutorial on vapour liquid separation
Link NOC:Upstream LNG Technology Lecture 38 - Tutorial on ideal binary distillation
Link NOC:Upstream LNG Technology Lecture 39 - Tutorial on equillibrium gas- solid separation
Link NOC:Upstream LNG Technology Lecture 40 - Tutorial on membrane gas separation
Link NOC:Upstream LNG Technology Lecture 41 - Dehydration of natural gas
Link NOC:Upstream LNG Technology Lecture 42 - Natural gas Processing - hydrate removal
Link NOC:Upstream LNG Technology Lecture 43 - Acid gas removal in natural gas system - I
Link NOC:Upstream LNG Technology Lecture 44 - Acid gas removal in natural gas system - II
Link NOC:Upstream LNG Technology Lecture 45 - Nitrogen removal in natural gas system - I
Link NOC:Upstream LNG Technology Lecture 46 - Nitrogen removal in natural gas system - II
Link NOC:Upstream LNG Technology Lecture 47 - Compression in natural gas systems
Link NOC:Upstream LNG Technology Lecture 48 - Compressors used in natural gas systems
Link NOC:Upstream LNG Technology Lecture 49 - Tutorial on hydrate removal
Link NOC:Upstream LNG Technology Lecture 50 - Multicomponent distillation column design: Approximate method
Link NOC:Upstream LNG Technology Lecture 51 - Sulfur recovery in natural gas systems - I
Link NOC:Upstream LNG Technology Lecture 52 - Tutorial on compression
Link NOC:Upstream LNG Technology Lecture 53 - Pigging
Link NOC:Upstream LNG Technology Lecture 54 - Sulfur recovery in natural gas systems - II
Link NOC:Upstream LNG Technology Lecture 55 - Trace components in natural gas
Link NOC:Upstream LNG Technology Lecture 56 - Helium recovery, upgradation and purification
Link NOC:Upstream LNG Technology Lecture 57 - Fundamentals of absorption and stripping for natural gas processing
Link NOC:Upstream LNG Technology Lecture 58 - Tutorial on absorption and stripping
Link NOC:Upstream LNG Technology Lecture 59 - Gas liquid separation in natural gas systems - I
Link NOC:Upstream LNG Technology Lecture 60 - Gas liquid separation in natural gas systems - II
Link NOC:Upstream LNG Technology Lecture 61 - Tutorial on equillibrium in multicomponent systems
Link NOC:Upstream LNG Technology Lecture 62 - Tutorial on multicomponent distillation - I
Link NOC:Upstream LNG Technology Lecture 63 - Tutorial on multicomponent distillation - II
Link NOC:Upstream LNG Technology Lecture 64 - Pumps in natural gas systems - I
Link NOC:Upstream LNG Technology Lecture 65 - Pumps in natural gas systems - II
Link NOC:Upstream LNG Technology Lecture 66 - Pumps in natural gas systems - III
Link NOC:Upstream LNG Technology Lecture 67 - Tutorial on pumps - I
Link NOC:Upstream LNG Technology Lecture 68 - Tutorial on pumps - II
Link NOC:Upstream LNG Technology Lecture 69 - Cryogenic refrigeration and liquefaction in natural gas systems - I
Link NOC:Upstream LNG Technology Lecture 70 - Cryogenic refrigeration and liquefaction in natural gas systems - II
Link NOC:Upstream LNG Technology Lecture 71 - Tutorial on refrigeration - I
Link NOC:Upstream LNG Technology Lecture 72 - Tutorial on refrigeration - II
Link NOC:Upstream LNG Technology Lecture 73 - Cryogenic refrigeration and liquefaction in natural gas systems - III
Link NOC:Upstream LNG Technology Lecture 74 - Cryogenic refrigeration and liquefaction in natural gas systems - IV
Link NOC:Upstream LNG Technology Lecture 75 - Cryogenic refrigeration and liquefaction in natural gas systems - V
Link NOC:Upstream LNG Technology Lecture 76 - Tutorial on refrigeration - III
Link NOC:Upstream LNG Technology Lecture 77 - Tutorial on refrigeration and liquefaction - IV
Link NOC:Upstream LNG Technology Lecture 78 - Tutorial on refrigeration and liquefaction - V
Link NOC:Upstream LNG Technology Lecture 79 - Hydrocarbon recovery in natural gas system - I
Link NOC:Upstream LNG Technology Lecture 80 - Hydrocarbon recovery in natural gas system - II
Link NOC:Upstream LNG Technology Lecture 81 - Hydrocarbon recovery in natural gas system - III
Link NOC:Upstream LNG Technology Lecture 82 - Tutorial on hydrocarbon recovery in natural gas
Link NOC:Upstream LNG Technology Lecture 83 - Piping in natural gas systems - I
Link NOC:Upstream LNG Technology Lecture 84 - Piping in natural gas systems - II
Link NOC:Upstream LNG Technology Lecture 85 - Tutorial on piping in natural gas systems - I
Link NOC:Upstream LNG Technology Lecture 86 - Tutorial on piping in natural gas systems - II
Link NOC:Experimental Physics-I Lecture 1 - Introduction
Link NOC:Experimental Physics-I Lecture 2 - Basic tools and apparatus
Link NOC:Experimental Physics-I Lecture 3 - Basic tools and apparatus (Continued...)
Link NOC:Experimental Physics-I Lecture 4 - Basic tools and apparatus (Continued...)
Link NOC:Experimental Physics-I Lecture 5 - Basic tools and apparatus (Continued...)
Link NOC:Experimental Physics-I Lecture 6 - Basic tools and apparatus (Continued...)
Link NOC:Experimental Physics-I Lecture 7 - Basic components
Link NOC:Experimental Physics-I Lecture 8 - Basic apparatus
Link NOC:Experimental Physics-I Lecture 9 - Basic apparatus (Continued...)
Link NOC:Experimental Physics-I Lecture 10 - Basic analysis
Link NOC:Experimental Physics-I Lecture 11 - Basics analysis (Continued...)
Link NOC:Experimental Physics-I Lecture 12 - Basics analysis (Continued...)
Link NOC:Experimental Physics-I Lecture 13 - Basics analysis (Continued...)
Link NOC:Experimental Physics-I Lecture 14 - Basics analysis (Continued...)
Link NOC:Experimental Physics-I Lecture 15 - Basics analysis (Continued...)
Link NOC:Experimental Physics-I Lecture 16 - Basics analysis (Continued...)
Link NOC:Experimental Physics-I Lecture 17 - Basics analysis (Continued...)
Link NOC:Experimental Physics-I Lecture 18 - Basics analysis (Continued...)
Link NOC:Experimental Physics-I Lecture 19 - Basics analysis (Continued...)
Link NOC:Experimental Physics-I Lecture 20 - Determination of Young's modulus
Link NOC:Experimental Physics-I Lecture 21 - Demonstration on the experiment of Young's modulus of mettalic bar and data collection
Link NOC:Experimental Physics-I Lecture 22 - Calculate the value of young's modulus of given metallic bar form the recorded datas
Link NOC:Experimental Physics-I Lecture 23 - Experimental demonstration to calculate the spring constant of a given spring
Link NOC:Experimental Physics-I Lecture 24 - Calculate the value of calculate the spring constant of a given spring form the recorded datas
Link NOC:Experimental Physics-I Lecture 25 - Theory regarding Moment of inertia of a flywheel
Link NOC:Experimental Physics-I Lecture 26 - Experimental demonstration to calculate the moment of inertia of a given flywheel
Link NOC:Experimental Physics-I Lecture 27 - How to calculate the value of moment of inertia of a flywheelform the recorded data
Link NOC:Experimental Physics-I Lecture 28 - Theory regarding surface tension of the liquid
Link NOC:Experimental Physics-I Lecture 29 - Demonstration on the experiment of surface tension and data collection
Link NOC:Experimental Physics-I Lecture 30 - How to calculate the value of surface tension of water from the recorded data
Link NOC:Experimental Physics-I Lecture 31 - Theory regarding viscosity of liquid
Link NOC:Experimental Physics-I Lecture 32 - Demonstration on the experiment of viscosity
Link NOC:Experimental Physics-I Lecture 33 - Data analysis of recorded data on viscosity
Link NOC:Experimental Physics-I Lecture 34 - Forced Oscillations Pohls pendulum
Link NOC:Experimental Physics-I Lecture 35 - Coupled Pendulum
Link NOC:Experimental Physics-I Lecture 36 - Demonstration on the experiment of compound pendulum
Link NOC:Experimental Physics-I Lecture 37 - Theory regarding compound pendulum has been discussed
Link NOC:Experimental Physics-I Lecture 38 - Experimental demonstration on the standing Waves on a String has been shown clearly how to determine the linear mass density of the string.
Link NOC:Experimental Physics-I Lecture 39 - Linear expansion of metal
Link NOC:Experimental Physics-I Lecture 40 - Expt. to study linear expansion
Link NOC:Experimental Physics-I Lecture 41 - Determine the coefficient of thermal conductivity of a bad conductor
Link NOC:Experimental Physics-I Lecture 42 - Determination of electrical equivalent of heat
Link NOC:Experimental Physics-I Lecture 43 - Determination of specific heat of the given solid metals using Dulong-Petit's law
Link NOC:Experimental Physics-I Lecture 44 - Determination of the calibration curve of a given (Type K chromel–alumel) thermocouple and hence determination of Seebeck coefficient
Link NOC:Experimental Physics-I Lecture 45 - Theorey and Demonstartion Platinum Resistance thermometer
Link NOC:Experimental Physics-I Lecture 46 - Experiment on Platinum Resistance thermometer
Link NOC:Experimental Physics-I Lecture 47 - To study the current-voltage relationship of an L-R circuit
Link NOC:Experimental Physics-I Lecture 48 - To study the variation in current and voltage in a series LCR circuit
Link NOC:Experimental Physics-I Lecture 49 - Sensitivity of Blastic Galvanometer
Link NOC:Experimental Physics-I Lecture 50 - Expt. for Sensitivity of Blastic Galvanometer
Link NOC:Experimental Physics-I Lecture 51 - Theory on RC Circuit
Link NOC:Experimental Physics-I Lecture 52 - Expt. on RC Circuit
Link NOC:Experimental Physics-I Lecture 53 - Theory regarding the magnetic field along the axis of a circular coil
Link NOC:Experimental Physics-I Lecture 54 - Experiment regarding the magnetic field along the axis of a circular coil
Link NOC:Experimental Physics-I Lecture 55 - Study the induced e.m.f of inductance coil
Link NOC:Experimental Physics-I Lecture 56 - Mutual inductance
Link NOC:Experimental Physics-I Lecture 57 - Theory regarding permeability of air
Link NOC:Experimental Physics-I Lecture 58 - Experiment to determination the permeability of air
Link NOC:Experimental Physics-I Lecture 59 - Devices around us
Link NOC:Experimental Physics-I Lecture 60 - Devices around us (Continued...)
Link NOC:Experimental Physics-II Lecture 1 - Introduction
Link NOC:Experimental Physics-II Lecture 2 - Summary of Experimental Physics - I
Link NOC:Experimental Physics-II Lecture 3 - Summary of Experimental Physics - I (Continued...)
Link NOC:Experimental Physics-II Lecture 4 - Summary of Experimental Physics - I (Continued...)
Link NOC:Experimental Physics-II Lecture 5 - Summary of Experimental Physics - I (Continued...)
Link NOC:Experimental Physics-II Lecture 6 - Basic analysis
Link NOC:Experimental Physics-II Lecture 7 - Basic analysis (Continued...)
Link NOC:Experimental Physics-II Lecture 8 - Basic components
Link NOC:Experimental Physics-II Lecture 9 - Basic components (Continued...)
Link NOC:Experimental Physics-II Lecture 10 - Basic components (Continued...)
Link NOC:Experimental Physics-II Lecture 11 - Basic idea on mirros and lenses and their applications
Link NOC:Experimental Physics-II Lecture 12 - Determination of focal length of concave mirror
Link NOC:Experimental Physics-II Lecture 13 - Determination of focal length of concave mirror (Continued...)
Link NOC:Experimental Physics-II Lecture 14 - Determination of focal length of convex mirror
Link NOC:Experimental Physics-II Lecture 15 - Determination of focal length of convex lens
Link NOC:Experimental Physics-II Lecture 16 - Determination of focal length of concave lens
Link NOC:Experimental Physics-II Lecture 17 - Determination of focal length of convex lens by diplacement method
Link NOC:Experimental Physics-II Lecture 18 - Applications of mirrors and lenses
Link NOC:Experimental Physics-II Lecture 19 - Determination of refractive index of liquid using travelling microscope
Link NOC:Experimental Physics-II Lecture 20 - Basic discussion on spectrometer and prism
Link NOC:Experimental Physics-II Lecture 21 - Basic discussion on spectrometer and prism (Continued...)
Link NOC:Experimental Physics-II Lecture 22 - Basic discussion on spectrometer and prism (Continued...)
Link NOC:Experimental Physics-II Lecture 23 - Schuster's method
Link NOC:Experimental Physics-II Lecture 24 - Discussion on angle of the prism, angular dispersion and dispersive power of given prism
Link NOC:Experimental Physics-II Lecture 25 - Determination of the angle of prism
Link NOC:Experimental Physics-II Lecture 26 - Determination of the angle of minimum deviation for a given prism and hence to determine the refractive index of the given prism
Link NOC:Experimental Physics-II Lecture 27 - Discussion on the angle of incidence and corresponding deviation of light through a prism and determination of the angle of minimum deviation for a given prism from the plot of the angle of incidence versus deviation.
Link NOC:Experimental Physics-II Lecture 28 - Determination of the angle of minimum deviation from (i-D) plot for a given prism and hence to determine the refractive index of the given prism.
Link NOC:Experimental Physics-II Lecture 29 - Determination of the calibration plot of deviation versus wavelength for a given prism and hence determination of the wavelength of the unknown light source using the calibration plot
Link NOC:Experimental Physics-II Lecture 30 - Determination of the dispersive power, Cauchy constant and resolving power of a given prism.
Link NOC:Experimental Physics-II Lecture 31 - Interference Phenomena
Link NOC:Experimental Physics-II Lecture 32 - Interference Phenomena (Continued...)
Link NOC:Experimental Physics-II Lecture 33 - Interference Phenomena (Continued...)
Link NOC:Experimental Physics-II Lecture 34 - Bi-prism
Link NOC:Experimental Physics-II Lecture 35 - Bi-prism (Continued...)
Link NOC:Experimental Physics-II Lecture 36 - Interference phenomena by Newton ring (Theory)
Link NOC:Experimental Physics-II Lecture 37 - Interference phenomena by Newton ring (Experiment)
Link NOC:Experimental Physics-II Lecture 38 - Michelson interferometer (Theory)
Link NOC:Experimental Physics-II Lecture 39 - Michelson interferometer (Experiment)
Link NOC:Experimental Physics-II Lecture 40 - Theory of diffraction
Link NOC:Experimental Physics-II Lecture 41 - Theory of diffraction (Continued...)
Link NOC:Experimental Physics-II Lecture 42 - Theory of diffraction (Continued...)
Link NOC:Experimental Physics-II Lecture 43 - Single slit diffraction
Link NOC:Experimental Physics-II Lecture 44 - Double slit diffraction
Link NOC:Experimental Physics-II Lecture 45 - Plane transmission grating
Link NOC:Experimental Physics-II Lecture 46 - Plane transmission grating (Continued...)
Link NOC:Experimental Physics-II Lecture 47 - Theory of polarization
Link NOC:Experimental Physics-II Lecture 48 - Theory of polarization (Continued...)
Link NOC:Experimental Physics-II Lecture 49 - Experiment for Verification of Malus law
Link NOC:Experimental Physics-II Lecture 50 - Experiment for brewester
Link NOC:Experimental Physics-II Lecture 51 - Experiment for Brewester angle
Link NOC:Experimental Physics-II Lecture 52 - Experiment on e-ray and o-ray
Link NOC:Experimental Physics-II Lecture 53 - Polarimeter
Link NOC:Experimental Physics-II Lecture 54 - Zone-plate Theory
Link NOC:Experimental Physics-II Lecture 55 - Zone-plate Experiment
Link NOC:Experimental Physics-II Lecture 56 - Theory of Photoelectric Effect
Link NOC:Experimental Physics-II Lecture 57 - Experiment on Photoelectric Effect
Link NOC:Experimental Physics-II Lecture 58 - Thomson experiment to determine the specific charge of an electron (e/m)
Link NOC:Experimental Physics-II Lecture 59 - Frank-Hertz Experiment
Link NOC:Experimental Physics-II Lecture 60 - Experiment on Rydberg constant
Link NOC:Experimental Physics-II Lecture 61 - Experiment on Rydberg constant (Continued...)
Link NOC:Experimental Physics-III Lecture 1 - Basic Tools and Instruments in the Laboratory
Link NOC:Experimental Physics-III Lecture 2 - Basic Tools and Instruments in the Laboratory (Continued...)
Link NOC:Experimental Physics-III Lecture 3 - Cathode Ray Oscilloscope (CRO)
Link NOC:Experimental Physics-III Lecture 4 - Cathode Ray Oscilloscope (CRO) (Continued...)
Link NOC:Experimental Physics-III Lecture 5 - Electro Magnet and Constant Current Power Supply
Link NOC:Experimental Physics-III Lecture 6 - Electro Magnet and Constant Current Power Supply (Continued...)
Link NOC:Experimental Physics-III Lecture 7 - Electro Magnet and Constant Current Power Supply (Continued...)
Link NOC:Experimental Physics-III Lecture 8 - Gaussmeter/Teslameter
Link NOC:Experimental Physics-III Lecture 9 - Gaussmeter/Teslameter (Continued...)
Link NOC:Experimental Physics-III Lecture 10 - Lock in Amplifier
Link NOC:Experimental Physics-III Lecture 11 - Lock in Amplifier (Continued...)
Link NOC:Experimental Physics-III Lecture 12 - Measurement of magneto resistance
Link NOC:Experimental Physics-III Lecture 13 - Magneto resistance for Semiconductor
Link NOC:Experimental Physics-III Lecture 14 - Hall Effect
Link NOC:Experimental Physics-III Lecture 15 - Hall Effect as a function of magnetic Field
Link NOC:Experimental Physics-III Lecture 16 - Hall Effect as a function of temperature
Link NOC:Experimental Physics-III Lecture 17 - To study the variation of resistivity of metal and semiconductor at low temperature region (Continued...)
Link NOC:Experimental Physics-III Lecture 18 - To study the variation of resistivity of metal and semiconductor at low temperature region (Continued...)
Link NOC:Experimental Physics-III Lecture 19 - Measurement of magnetisation of ferromagnetic material
Link NOC:Experimental Physics-III Lecture 20 - Measurement of magnetisation of ferromagnetic material (Continued...)
Link NOC:Experimental Physics-III Lecture 21 - Susceptibility of paramagnetic substance by Quincke's tube method
Link NOC:Experimental Physics-III Lecture 22 - Experiment of Quincke's Tube Method
Link NOC:Experimental Physics-III Lecture 23 - Susceptibility of paramagnetic substance by Gouy's method
Link NOC:Experimental Physics-III Lecture 24 - Dielectric constant of solid
Link NOC:Experimental Physics-III Lecture 25 - Dielectric constant of non-conducting liquid
Link NOC:Experimental Physics-III Lecture 26 - P-E Loop of Ferroelectric Material
Link NOC:Experimental Physics-III Lecture 27 - Measurement of Ionic Conductivity
Link NOC:Experimental Physics-III Lecture 28 - Measurement of Ionic Conductivity (Continued...)
Link NOC:Experimental Physics-III Lecture 29 - Electron Spin Resonance (ESR)
Link NOC:Experimental Physics-III Lecture 30 - Electron Spin Resonance (ESR) Experiment
Link NOC:Experimental Physics-III Lecture 31 - Superconductivity
Link NOC:Experimental Physics-III Lecture 32 - Superconductivity (Continued...)
Link NOC:Experimental Physics-III Lecture 33 - Superconductivity (Continued...)
Link NOC:Experimental Physics-III Lecture 34 - Nuclear g-factor
Link NOC:Experimental Physics-III Lecture 35 - Nuclear g-factor (Continued...)
Link NOC:Experimental Physics-III Lecture 36 - P-N Junction
Link NOC:Experimental Physics-III Lecture 37 - P-N Junction (Continued...)
Link NOC:Experimental Physics-III Lecture 38 - P-N Junction (Continued...)
Link NOC:Experimental Physics-III Lecture 39 - Zeeman Effect
Link NOC:Experimental Physics-III Lecture 40 - Zeeman Effect (Continued...)
Link NOC:Experimental Physics-III Lecture 41 - Zeeman Effect (Continued...)
Link NOC:Experimental Physics-III Lecture 42 - Sodium Yellow Doublet
Link NOC:Experimental Physics-III Lecture 43 - Sodium Yellow Doublet (Continued...)
Link NOC:Experimental Physics-III Lecture 44 - Study of Absorption Spectrum of Iodine Vapour
Link NOC:Experimental Physics-III Lecture 45 - Study of Absorption Spectrum of Iodine Vapour (Continued...)
Link NOC:Experimental Physics-III Lecture 46 - Study of Absorption Spectrum of Iodine Vapour (Continued...)
Link NOC:Experimental Physics-III Lecture 47 - Determination of Wavelength of Spectral Lines using Constant Deviation Spectrometer
Link NOC:Experimental Physics-III Lecture 48 - Determination of Wavelength of Spectral Lines using Constant Deviation Spectrometer (Continued...)
Link NOC:Experimental Physics-III Lecture 49 - Photoelastic Property of Materials
Link NOC:Experimental Physics-III Lecture 50 - Photoelastic Property of Materials (Continued...)
Link NOC:Experimental Physics-III Lecture 51 - Photoelastic Property of Materials (Continued...)
Link NOC:Experimental Physics-III Lecture 52 - Faraday Effect
Link NOC:Experimental Physics-III Lecture 53 - Faraday Effect (Continued...)
Link NOC:Experimental Physics-III Lecture 54 - Electron Diffraction
Link NOC:Experimental Physics-III Lecture 55 - Electron Diffraction (Continued...)
Link NOC:Experimental Physics-III Lecture 56 - Determination of Velocity of Light in Free Space
Link NOC:Experimental Physics-III Lecture 57 - Determination of Velocity of Light in Free Space (Continued...)
Link NOC:Experimental Physics-III Lecture 58 - X-Ray Diffraction and Crystal Structure
Link NOC:Experimental Physics-III Lecture 59 - X-Ray Diffraction and Crystal Structure (Continued...)
Link NOC:Experimental Physics-III Lecture 60 - X-Ray Diffraction and Crystal Structure (Continued...)
Link NOC:Experimental Physics-III Lecture 61 - X-Ray Diffraction and Crystal Structure (Continued...)
Link NOC:Experimental Physics-III Lecture 62
Link NOC:Electronic Theory of Solids Lecture 1 - Free electrons: Drude Theory
Link NOC:Electronic Theory of Solids Lecture 2 - Weidemann Franz Law
Link NOC:Electronic Theory of Solids Lecture 3 - Drude Model continued: Hall Effect
Link NOC:Electronic Theory of Solids Lecture 4 - Schrodinger Equation: Boundary Conditions
Link NOC:Electronic Theory of Solids Lecture 5 - Density of States
Link NOC:Electronic Theory of Solids Lecture 6 - Properties of Degenerate Fermi Gas
Link NOC:Electronic Theory of Solids Lecture 7 - Statistics Fermi-Dirac distribution and Maxwell-Boltzmann Distribution: comparison and Specific Heat
Link NOC:Electronic Theory of Solids Lecture 8 - Sommerfeld Expansion and Band Formation: Temperature dependent densities, Chemical Potential, Specific Heat
Link NOC:Electronic Theory of Solids Lecture 9 - Bonding and Band Formation: N=2 solid Molecular Orbitals, Linear combinations of Atomic Orbitals (LCAO)
Link NOC:Electronic Theory of Solids Lecture 10 - Variational Method: Molecular Orbitals, Bonding and anti-bonding Orbitals
Link NOC:Electronic Theory of Solids Lecture 11 - Bonding and Band Formation (LCAO)
Link NOC:Electronic Theory of Solids Lecture 12 - Bonding and Band Formation (LCAO) (Continued...)
Link NOC:Electronic Theory of Solids Lecture 13 - Bloch's Theorem
Link NOC:Electronic Theory of Solids Lecture 14 - Proof of Bloch's Theorem
Link NOC:Electronic Theory of Solids Lecture 15 - N atoms Solid
Link NOC:Electronic Theory of Solids Lecture 16 - Brillouin Zones
Link NOC:Electronic Theory of Solids Lecture 17 - Tight binding: lattice with a basis
Link NOC:Electronic Theory of Solids Lecture 18 - Fermi Surfaces
Link NOC:Electronic Theory of Solids Lecture 19 - Lattice with basis:Energy Spectrum
Link NOC:Electronic Theory of Solids Lecture 20 - Energy spectrum (Continued...)
Link NOC:Electronic Theory of Solids Lecture 21 - Graphene and Fermi Surfaces
Link NOC:Electronic Theory of Solids Lecture 22 - Fermi Surfaces Instabilities
Link NOC:Electronic Theory of Solids Lecture 23 - Low Dimensional Systems
Link NOC:Electronic Theory of Solids Lecture 24 - Integer Quantum Hall Effect (IQHE)
Link NOC:Electronic Theory of Solids Lecture 25 - Integer Quantum Hall Effect (Continued...)
Link NOC:Electronic Theory of Solids Lecture 26 - Electron in a Strong Magnetic Field and IQHE
Link NOC:Electronic Theory of Solids Lecture 27 - Spintronics: Introduction and Applications
Link NOC:Electronic Theory of Solids Lecture 28 - Magnetism
Link NOC:Electronic Theory of Solids Lecture 29 - Magnetism: Quantum Theory
Link NOC:Electronic Theory of Solids Lecture 30 - Hund's Rule
Link NOC:Electronic Theory of Solids Lecture 31 - Curie's Law and Van Vleck Paramagnetism
Link NOC:Electronic Theory of Solids Lecture 32 - Curie's law for any J, Susceptibility
Link NOC:Electronic Theory of Solids Lecture 33 - Susceptibility and Thermal Properties
Link NOC:Electronic Theory of Solids Lecture 34 - Adiabatic Demagnetisation
Link NOC:Electronic Theory of Solids Lecture 35 - Pauli Paramagnetism
Link NOC:Electronic Theory of Solids Lecture 36 - Paramagnetism of metals
Link NOC:Electronic Theory of Solids Lecture 37 - Exchange interaction for 2 electrons
Link NOC:Electronic Theory of Solids Lecture 38 - Exchange interactions of different types
Link NOC:Electronic Theory of Solids Lecture 39 - Magnetic Order
Link NOC:Electronic Theory of Solids Lecture 40 - Magnetic Order of different types and Heisenberg model
Link NOC:Electronic Theory of Solids Lecture 41 - Ising Model
Link NOC:Electronic Theory of Solids Lecture 42 - Mean Field Theory
Link NOC:Electronic Theory of Solids Lecture 43 - Spontaneous magnetisation and 1D Ising Model
Link NOC:Electronic Theory of Solids Lecture 44 - Symmetries of Ising model, Exact Solution
Link NOC:Electronic Theory of Solids Lecture 45 - Ferromagnetic Heisenberg Model
Link NOC:Electronic Theory of Solids Lecture 46 - Ground State and Magnons/Excitations
Link NOC:Electronic Theory of Solids Lecture 47 - Superconductivity
Link NOC:Electronic Theory of Solids Lecture 48 - London Equation
Link NOC:Electronic Theory of Solids Lecture 49 - Meisner Effect from London Equation
Link NOC:Electronic Theory of Solids Lecture 50 - Cooper problem
Link NOC:Electronic Theory of Solids Lecture 51 - Instability of the Fermi Surface
Link NOC:Electronic Theory of Solids Lecture 52 - BCS Theory Introduction
Link NOC:Electronic Theory of Solids Lecture 53 - BCS Theory, Excitation Spectrum
Link NOC:Electronic Theory of Solids Lecture 54 - BCS
Link NOC:Electronic Theory of Solids Lecture 55 - Tunneling and Ginzberg Landau Theory
Link NOC:Electronic Theory of Solids Lecture 56 - Electrodynamics of Superconductivity
Link NOC:Electronic Theory of Solids Lecture 57 - Type II superconductors
Link NOC:Electronic Theory of Solids Lecture 58 - Josephson junction
Link NOC:Electronic Theory of Solids Lecture 59 - Vortices, SQUID, Quantum Supremacy and Qubits
Link NOC:Electronic Theory of Solids Lecture 60 - Topological state of matter, XY Model, Topological Insulators
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 1 - Wave Equation, Maxwell’s equation, Plane wave
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 2 - EM wave in vacuum, Poynting vector, Maxwell’s equation in Dielectric Medium
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 3 - Poynting Vector, Maxwell’s equation in dielectric medium (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 4 - Total Internal reflection, Evanescent wave
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 5 - Step-index fiber (SIF), Light guidance in SIF
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 6 - Light guidance in SIF (Skew Ray), V-Parameter, Discrete Ray
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 7 - Cutoff wavelength, Fiber characteristics
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 8 - Fiber Loss, dB units, Dispersion
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 9 - Dispersion, Ray Path constant
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 10 - Ray path constant, Ray equation
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 11 - Ray equation (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 12 - Ray transit time
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 13 - Ray transit time (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 14 - Material dispersion
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 15 - Material dispersion (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 16 - Material Dispersion (Continued...), Dispersion Coefficient
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 17 - Pulse Broadening
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 18 - Pulse Propagation in Dispersive Medium
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 19 - Pulse Propagation in Dispersive Medium (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 20 - Concept of Modes
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 21 - TE and TM Modes
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 22 - TE and TM Modes (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 23 - Modes in Slab waveguide
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 24 - Modes in Slab waveguide (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 25 - Modes in Slab waveguide (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 26 - Modes in Slab Waveguide (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 27 - Waveguide Dispersion
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 28 - Physical Understanding of Modes
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 29 - Power Associated with a Modes
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 30 - Modes in an Optical Fiber
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 31 - Modes in an optical fiber (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 32 - Modes in an optical fiber (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 33 - LPlm mode structure
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 34 - Optical fiber mode morphology (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 35 - Effective area of mode, Fiber optics components
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 36 - Directional Coupler
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 37 - Coupled Mode Theory
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 38 - Coupled Mode Theory (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 39 - 3 dB power splitter
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 40 - Working principle of WDM coupler
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 41 - Fiber Bragg Grating
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 42 - Fiber Bragg Grating (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 43 - Reflectivity Calculation
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 44 - Reflectivity Calculation (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 45 - Reflectivity calculation of FBG (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 46 - Reflectivity calculation of FBG (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 47 - Reflectivity calculation of FBG (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 48 - Bandwidth of reflectivity
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 49 - Basic nonlinear optics
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 50 - Frequency mixing, Optical Kerr effect
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 51 - Optical Kerr effect (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 52 - Self Phase Modulation
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 53 - Self Phase Modulation (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 54 - Self Phase Modulation (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 55 - Pulse propagation in nonlinear waveguide
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 56 - Pulse propagation in nonlinear waveguide (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 57 - Pulse propagation in nonlinear dispersive waveguide
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 58 - Pulse propagation in nonlinear dispersive waveguide (Continued...)
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 59 - Concept of optical soliton
Link NOC:Physics of Linear and Nonlinear Optical Waveguides Lecture 60 - Concept of optical soliton (Continued...)
Link NOC:Physics of Renewable Energy Systems Lecture 1 - Introduction and relevance of the course
Link NOC:Physics of Renewable Energy Systems Lecture 2 - Energy sources
Link NOC:Physics of Renewable Energy Systems Lecture 3 - Solar Radiation
Link NOC:Physics of Renewable Energy Systems Lecture 4 - Solar Photovoltaic Systems
Link NOC:Physics of Renewable Energy Systems Lecture 5 - Origin of Band Structure and Energy Band Gap
Link NOC:Physics of Renewable Energy Systems Lecture 6 - Basics of Semiconductors
Link NOC:Physics of Renewable Energy Systems Lecture 7 - Construction of Solar Cells
Link NOC:Physics of Renewable Energy Systems Lecture 8 - Characterization of Solar Cells and Future Direction
Link NOC:Physics of Renewable Energy Systems Lecture 9 - Solar Heaters
Link NOC:Physics of Renewable Energy Systems Lecture 10 - Introduction to Wind Energy
Link NOC:Physics of Renewable Energy Systems Lecture 11 - Continuity Equation and its applications
Link NOC:Physics of Renewable Energy Systems Lecture 12 - Betz Criteria for extracting wind power
Link NOC:Physics of Renewable Energy Systems Lecture 13 - Wind turbines and their operation
Link NOC:Physics of Renewable Energy Systems Lecture 14 - Materials Aspects and future direction
Link NOC:Physics of Renewable Energy Systems Lecture 15 - Introduction to Hydroelectric Power
Link NOC:Physics of Renewable Energy Systems Lecture 16 - Hydroelectric Power Station and Turbines
Link NOC:Physics of Renewable Energy Systems Lecture 17 - Wave power and converters
Link NOC:Physics of Renewable Energy Systems Lecture 18 - Introduction to Tidal Power
Link NOC:Physics of Renewable Energy Systems Lecture 19 - Tidal Power and Geothermal Energy
Link NOC:Physics of Renewable Energy Systems Lecture 20 - Introduction to Energy Storage Systems
Link NOC:Physics of Renewable Energy Systems Lecture 21 - Thermal Energy Storage
Link NOC:Physics of Renewable Energy Systems Lecture 22 - Basics of Mechanical Energy Storage
Link NOC:Physics of Renewable Energy Systems Lecture 23 - Pumped Hydroelectric to Flywheels (Mechanical Energy Storage Systems)
Link NOC:Physics of Renewable Energy Systems Lecture 24 - Introduction to Li-ion battery
Link NOC:Physics of Renewable Energy Systems Lecture 25 - Characteristics and Parameters of Li-ion batteries
Link NOC:Physics of Renewable Energy Systems Lecture 26 - Cathode Materials for Li-ion batteries
Link NOC:Physics of Renewable Energy Systems Lecture 27 - Anode Materials for Li-ion batteries
Link NOC:Physics of Renewable Energy Systems Lecture 28 - Electrolytes and Separators for Li-batteries
Link NOC:Physics of Renewable Energy Systems Lecture 29 - From battery to supercapacitors
Link NOC:Physics of Renewable Energy Systems Lecture 30 - Construction, development and classification of Supercapacitors
Link NOC:Physics of Renewable Energy Systems Lecture 31 - Electric double layer capacitors (EDLCs)
Link NOC:Physics of Renewable Energy Systems Lecture 32 - Pseudocapacitors
Link NOC:Physics of Renewable Energy Systems Lecture 33 - Electrochemical Techniques for Supercapacitors and Batteries
Link NOC:Physics of Renewable Energy Systems Lecture 34 - From material to a supercapacitor device
Link NOC:Physics of Renewable Energy Systems Lecture 35 - Effect of temperature on supercapacitor performance
Link NOC:Physics of Renewable Energy Systems Lecture 36 - Effect of external magnetic field and frequency on supercapacitors
Link NOC:Physics of Renewable Energy Systems Lecture 37 - Introduction to Fuel Cells
Link NOC:Physics of Renewable Energy Systems Lecture 38 - Explanation of Fuel cell systems
Link NOC:Physics of Renewable Energy Systems Lecture 39 - Microbial Fuel Cells
Link NOC:Physics of Renewable Energy Systems Lecture 40 - Nanotechnology and Nanomaterials for Energy Applications
Link NOC:Physics of Renewable Energy Systems Lecture 41 - Synthesis of nanomaterials
Link NOC:Physics of Renewable Energy Systems Lecture 42 - Carbon- and metal-oxide based nanomaterials
Link NOC:Physics of Renewable Energy Systems Lecture 43 - Nanocatalysts
Link NOC:Physics of Renewable Energy Systems Lecture 44 - Characterization techniques for solid materials
Link NOC:Physics of Renewable Energy Systems Lecture 45 - X-ray diffraction method
Link NOC:Physics of Renewable Energy Systems Lecture 46 - UV-Visible Spectroscopy
Link NOC:Physics of Renewable Energy Systems Lecture 47 - Fourier Transform Infrared Spectroscopy
Link NOC:Physics of Renewable Energy Systems Lecture 48 - SEM, TEM and XPS
Link NOC:Physics of Renewable Energy Systems Lecture 49 - Particle size and zeta potential analysis
Link NOC:Physics of Renewable Energy Systems Lecture 50 - BET analysis
Link NOC:Physics of Renewable Energy Systems Lecture 51 - Electrochemical Impedance Spectroscopy
Link NOC:Thermal Physics Lecture 1 - Foundation of kinetic theory of gasses
Link NOC:Thermal Physics Lecture 2 - Maxwell's law for speed distribution of gas molecules
Link NOC:Thermal Physics Lecture 3 - Average speeds in an ideal gas assembly
Link NOC:Thermal Physics Lecture 4 - Principle of equipartition of energy
Link NOC:Thermal Physics Lecture 5 - Maxwell's law for energy distribution of gas molecules
Link NOC:Thermal Physics Lecture 6 - The mean free path of a gas assembly
Link NOC:Thermal Physics Lecture 7 - Expression for mean free path
Link NOC:Thermal Physics Lecture 8 - Experimental determination of mean free path
Link NOC:Thermal Physics Lecture 9 - Pressure an molecular flux from mean free path
Link NOC:Thermal Physics Lecture 10 - Problems on mean free path
Link NOC:Thermal Physics Lecture 11 - Transport in fluids: introduction
Link NOC:Thermal Physics Lecture 12 - Viscosity: transport of momentum
Link NOC:Thermal Physics Lecture 13 - Thermal conductivity: trasnport of thermal energy
Link NOC:Thermal Physics Lecture 14 - Diffusion coefficient: transport of mass
Link NOC:Thermal Physics Lecture 15 - Molecular effusion: theory and applications
Link NOC:Thermal Physics Lecture 16 - Brownian motion: concept, features, theory of fluctuation
Link NOC:Thermal Physics Lecture 17 - Brownian motion: mean square displacement and vertical distribution of particles
Link NOC:Thermal Physics Lecture 18 - Perrin's experiment on Brownian motion - Part 1
Link NOC:Thermal Physics Lecture 19 - Perrin's experiment on Brownian motion - Part 2
Link NOC:Thermal Physics Lecture 20 - Problems on Brownian motion, Rotational brownian motion
Link NOC:Thermal Physics Lecture 21 - Specific heat of solids: Dulong-Petit law and Einstein theory
Link NOC:Thermal Physics Lecture 22 - Limitaion of Einstein theory of specific heat
Link NOC:Thermal Physics Lecture 23 - Debye theory of specific heat
Link NOC:Thermal Physics Lecture 24 - Behavior of real gasses
Link NOC:Thermal Physics Lecture 25 - Van der Waals equation of state
Link NOC:Thermal Physics Lecture 26 - Critical parameters from Van der Waal's equation
Link NOC:Thermal Physics Lecture 27 - Determination of Van der Waals' constants and Boyle temperature
Link NOC:Thermal Physics Lecture 28 - Other equations of state
Link NOC:Thermal Physics Lecture 29 - Measurement of temperature: Celcius scale, ideal gas scale, absolute zero
Link NOC:Thermal Physics Lecture 30 - The platinum resistance thermometer
Link NOC:Thermal Physics Lecture 31 - Basic concepts of classical thermodynamics
Link NOC:Thermal Physics Lecture 32 - Basic concepts of classical thermodynamics (Continued...)
Link NOC:Thermal Physics Lecture 33 - First law of thermodynamics
Link NOC:Thermal Physics Lecture 34 - General description of work done and specific heat
Link NOC:Thermal Physics Lecture 35 - General discussion on Heat conduction and elastic properties
Link NOC:Thermal Physics Lecture 36 - Cyclic processes
Link NOC:Thermal Physics Lecture 37 - The reversible heat engine: Carnot cycle
Link NOC:Thermal Physics Lecture 38 - Refrigarator and Carnot Theorem
Link NOC:Thermal Physics Lecture 39 - 2nd law and Clausius theorem
Link NOC:Thermal Physics Lecture 40 - Concept of Entropy and mathematical form of 2nd law
Link NOC:Thermal Physics Lecture 41 - The entropy principle
Link NOC:Thermal Physics Lecture 42 - Efficiency of a cycle from T-S diagram
Link NOC:Thermal Physics Lecture 43 - The Otto cycle
Link NOC:Thermal Physics Lecture 44 - The Diesel cycle
Link NOC:Thermal Physics Lecture 45 - Entropy and available energy
Link NOC:Thermal Physics Lecture 46 - Thermodynamic relations
Link NOC:Thermal Physics Lecture 47 - Application of thermodynamic relation
Link NOC:Thermal Physics Lecture 48 - The free energy functions
Link NOC:Thermal Physics Lecture 49 - Condition for thermodynamic equilibri
Link NOC:Thermal Physics Lecture 50 - Thermodynamics of chemical reaction
Link NOC:Thermal Physics Lecture 51 - Equilibruim between phases: The Clapeyron equation
Link NOC:Thermal Physics Lecture 52 - 1st order phase transion along liquid-vapor equilibrium
Link NOC:Thermal Physics Lecture 53 - Phase diagram and triple point
Link NOC:Thermal Physics Lecture 54 - The 2nd latent heat equation
Link NOC:Thermal Physics Lecture 55 - Gibbs phase rule and basics of second order phase transion
Link NOC:Thermal Physics Lecture 56 - Basic concepts of radiation
Link NOC:Thermal Physics Lecture 57 - Diffused radiation and Kirchhoff's law
Link NOC:Thermal Physics Lecture 58 - Cavity radiation as a thermodynamic system: Stefan-Boltzmann law
Link NOC:Thermal Physics Lecture 59 - Thermodynamics of cavity radiation
Link NOC:Thermal Physics Lecture 60 - 3rd law of thermodynamics
Link NOC:Concepts in Magnetism and Superconductivity Lecture 1 - Introduction: Magnetism and superconductivity as macroscopic quantum phenomena
Link NOC:Concepts in Magnetism and Superconductivity Lecture 2 - Bohr magneton, BvL theorem
Link NOC:Concepts in Magnetism and Superconductivity Lecture 3 - An electron in a magnetic field, magnetism of isolated atoms
Link NOC:Concepts in Magnetism and Superconductivity Lecture 4 - Magnetism of isolated atoms (Continued...), Diamagnetism
Link NOC:Concepts in Magnetism and Superconductivity Lecture 5 - Magnetism of atoms-dia and paramagnetic susceptibilities. Hund's rules,Van Vleck paramagnetism
Link NOC:Concepts in Magnetism and Superconductivity Lecture 6 - Van Vleck paramagnetism (Continued...), Paramagnetism
Link NOC:Concepts in Magnetism and Superconductivity Lecture 7 - Curie's law for arbitrary J, adiabatic demagnetization
Link NOC:Concepts in Magnetism and Superconductivity Lecture 8 - Paramagnetism of conduction electrons - Pauli paramagnetism
Link NOC:Concepts in Magnetism and Superconductivity Lecture 9 - Ions in a solid: crystal field, orbital quenching, Jahn-Teller effect
Link NOC:Concepts in Magnetism and Superconductivity Lecture 10 - Jahn-Teller effect (Continued...), Magnetic resonance techniques NMR, ESR
Link NOC:Concepts in Magnetism and Superconductivity Lecture 11 - Resonance techniques (Continued...), Recapitulation and overview
Link NOC:Concepts in Magnetism and Superconductivity Lecture 12 - Recapitulation, interacting moments and long range order, dipolar exchange
Link NOC:Concepts in Magnetism and Superconductivity Lecture 13 - Interacting moments, 2-electron system, origin of exchange and spin Hamiltonian
Link NOC:Concepts in Magnetism and Superconductivity Lecture 14 - Spin Hamiltonian, Heisenberg model, Exchange interactions: direct
Link NOC:Concepts in Magnetism and Superconductivity Lecture 15 - GMR, spin model and mean-field theory, Ising model
Link NOC:Concepts in Magnetism and Superconductivity Lecture 16 - Ising model and its properties
Link NOC:Concepts in Magnetism and Superconductivity Lecture 17 - Ising model and its properties (Continued...), absence of LRO in d=1, mean-field theory
Link NOC:Concepts in Magnetism and Superconductivity Lecture 18 - Ising model recap, applications, exact solutions
Link NOC:Concepts in Magnetism and Superconductivity Lecture 19 - Exact solution of Ising model in d=1, exact results in d=2. Mermin-Wagner theorem
Link NOC:Concepts in Magnetism and Superconductivity Lecture 20 - Recap - Exact solution of Ising model. Mermin-Wagner theorem on the absence
Link NOC:Concepts in Magnetism and Superconductivity Lecture 21 - Ferromagnetic Heisenberg model ground state
Link NOC:Concepts in Magnetism and Superconductivity Lecture 22 - Ferromagnetic Heisenberg model, spin-waves and magnons
Link NOC:Concepts in Magnetism and Superconductivity Lecture 23 - Antiferromagnetic Heisenberg model, AF magnetic structures
Link NOC:Concepts in Magnetism and Superconductivity Lecture 24 - AF magnetic structures, susceptibility and excitations
Link NOC:Concepts in Magnetism and Superconductivity Lecture 25 - Antiferromagnets and frustration, spin glass
Link NOC:Concepts in Magnetism and Superconductivity Lecture 26 - Superconductivity: discovery, properties
Link NOC:Concepts in Magnetism and Superconductivity Lecture 27 - Superconductivity: Meissner effect, London Equation
Link NOC:Concepts in Magnetism and Superconductivity Lecture 28 - Electron-phonon interaction, Cooper problem
Link NOC:Concepts in Magnetism and Superconductivity Lecture 29 - Cooper problem, setting up the BCS theory
Link NOC:Concepts in Magnetism and Superconductivity Lecture 30 - BCS wave function, the Superconducting state and calculations of various properties
Link NOC:Concepts in Magnetism and Superconductivity Lecture 31 - BCS theory (Continued...), energy gap, transition temperature
Link NOC:Concepts in Magnetism and Superconductivity Lecture 32 - Consequences of BCS theory, gap vs T, Transition temperature, specific heat, tunnelling
Link NOC:Concepts in Magnetism and Superconductivity Lecture 33 - Transition temperature, specific heat, tunnelling
Link NOC:Concepts in Magnetism and Superconductivity Lecture 34 - Andreev reflection, Ginzburg-Landau Theory and electrodynamics of superconductors
Link NOC:Concepts in Magnetism and Superconductivity Lecture 35 - Ginzburg-Landau theory, coherence length and Type I and II superconductors
Link NOC:Concepts in Magnetism and Superconductivity Lecture 36 - Flux lattice, Flux quantization, Josephson junctions
Link NOC:Concepts in Magnetism and Superconductivity Lecture 37 - Josephson effect and Josephson junctions
Link NOC:Concepts in Magnetism and Superconductivity Lecture 38 - SQUID, Quantum computers and Josephson junction Qubits
Link NOC:Concepts in Magnetism and Superconductivity Lecture 39 - High-Temperature Superconductivity: an enduring enigma
Link NOC:Concepts in Magnetism and Superconductivity Lecture 40 - Overview and conclusion
Link NOC:Foundations of Classical Electrodynamics Lecture 1 - Vector analysis, Scalar and vector fields, vector identities
Link NOC:Foundations of Classical Electrodynamics Lecture 2 - Vector Analysis (Continued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 3 - Use of Levi-Civita Symbol, Coordinate system
Link NOC:Foundations of Classical Electrodynamics Lecture 4 - Coordinate system, Orthogonal Transformation
Link NOC:Foundations of Classical Electrodynamics Lecture 5 - Spherical Coordinate system, Line, surface and volume element
Link NOC:Foundations of Classical Electrodynamics Lecture 6 - Line, surface and volume element (Continued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 7 - Line, surface and volume integral
Link NOC:Foundations of Classical Electrodynamics Lecture 8 - Differential calculus, Gradient
Link NOC:Foundations of Classical Electrodynamics Lecture 9 - Gradient operator, Concept of divergence
Link NOC:Foundations of Classical Electrodynamics Lecture 10 - Divergence operator, Divergence Theorem
Link NOC:Foundations of Classical Electrodynamics Lecture 11 - Curl operator, Stokes Theorem
Link NOC:Foundations of Classical Electrodynamics Lecture 12 - Gradient, Divergence and Curl (A recap), Vector identities
Link NOC:Foundations of Classical Electrodynamics Lecture 13 - Curvilinear coordinate system
Link NOC:Foundations of Classical Electrodynamics Lecture 14 - Curvilinear coordinate system (Continued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 15 - Curvilinear coordinate system (Continued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 16 - Delta Function
Link NOC:Foundations of Classical Electrodynamics Lecture 17 - Delta Function (Continued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 18 - Helmholtz's Theorem
Link NOC:Foundations of Classical Electrodynamics Lecture 19 - Helmholtz's Theorem(Recap), Tutorial
Link NOC:Foundations of Classical Electrodynamics Lecture 20 - Tutorial (Continued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 21 - Concept of charge, Charge density
Link NOC:Foundations of Classical Electrodynamics Lecture 22 - Coulomb's Law
Link NOC:Foundations of Classical Electrodynamics Lecture 23 - Coulomb's Law (Continued...), Charge distribution
Link NOC:Foundations of Classical Electrodynamics Lecture 24 - Charge distribution problem, Gauss's Law
Link NOC:Foundations of Classical Electrodynamics Lecture 25 - Topics More on Gauss's Law
Link NOC:Foundations of Classical Electrodynamics Lecture 26 - Application of Gauss's Law
Link NOC:Foundations of Classical Electrodynamics Lecture 27 - Electrostatic potential
Link NOC:Foundations of Classical Electrodynamics Lecture 28 - Electrostatic potential (Continued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 29 - Electrostatic energy
Link NOC:Foundations of Classical Electrodynamics Lecture 30 - Electrostatic energy (Continued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 31 - Electrostatic energy calculation
Link NOC:Foundations of Classical Electrodynamics Lecture 32 - Electrostatic dipole
Link NOC:Foundations of Classical Electrodynamics Lecture 33 - Electric dipole (Continued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 34 - Multipole expansion
Link NOC:Foundations of Classical Electrodynamics Lecture 35 - Monopole and Dipole moment
Link NOC:Foundations of Classical Electrodynamics Lecture 36 - Quadrupole moment
Link NOC:Foundations of Classical Electrodynamics Lecture 37 - Dipole and Quadrupole moment (Continued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 38 - Conductor
Link NOC:Foundations of Classical Electrodynamics Lecture 39 - Conductor (Continued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 40 - Boundary condition
Link NOC:Foundations of Classical Electrodynamics Lecture 41 - Electrostatic pressure, Capacitor
Link NOC:Foundations of Classical Electrodynamics Lecture 42 - Energy of the Capacitor, Dielectric
Link NOC:Foundations of Classical Electrodynamics Lecture 43 - Dielectric (Continued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 44 - Displacement Vector
Link NOC:Foundations of Classical Electrodynamics Lecture 45 - Electrostatic boundary value problem
Link NOC:Foundations of Classical Electrodynamics Lecture 46 - Electrostatic boundary value problem (Continued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 47 - Electrostatic boundary value problem (Continued...), Image method
Link NOC:Foundations of Classical Electrodynamics Lecture 48 - Image method (Continued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 49 - Charge particle in magnetic field
Link NOC:Foundations of Classical Electrodynamics Lecture 50 - Biot-Savart Law
Link NOC:Foundations of Classical Electrodynamics Lecture 51 - Application of Biot-Savart Law
Link NOC:Foundations of Classical Electrodynamics Lecture 52 - Ampere's Law
Link NOC:Foundations of Classical Electrodynamics Lecture 53 - Application of Ampere's Law
Link NOC:Foundations of Classical Electrodynamics Lecture 54 - Magnetic vector potential
Link NOC:Foundations of Classical Electrodynamics Lecture 55 - Magnetic vector potential (Continued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 56 - Magnetic dipole moment
Link NOC:Foundations of Classical Electrodynamics Lecture 57 - Magnetic dipole moment (Continued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 58 - Torque and potential energy of magnetic dipole, Magnetization
Link NOC:Foundations of Classical Electrodynamics Lecture 59 - Bound Current
Link NOC:Foundations of Classical Electrodynamics Lecture 60 - Magnetic materials
Link NOC:Foundations of Classical Electrodynamics Lecture 61 - Electromagnetic Induction
Link NOC:Foundations of Classical Electrodynamics Lecture 62 - Self and mutual inductance
Link NOC:Foundations of Classical Electrodynamics Lecture 63 - Wave equation, Maxwell’s Equation
Link NOC:Foundations of Classical Electrodynamics Lecture 64 - Maxwells Equation (Continued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 65 - Maxwells Equation: a complete overview
Link NOC:Foundations of Classical Electrodynamics Lecture 66 - Maxwells Equation: a complete overview (Continued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 67 - Lorentz Gauge, Maxwell's wave equation
Link NOC:Foundations of Classical Electrodynamics Lecture 68 - Maxwell's wave equation (Coninued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 69 - Maxwell's Equation in matter
Link NOC:Foundations of Classical Electrodynamics Lecture 70 - Maxwell's Equation in matter (Continued...)
Link NOC:Foundations of Classical Electrodynamics Lecture 71 - Tutorial 2 (Electrostatic)
Link NOC:Foundations of Classical Electrodynamics Lecture 72 - Tutorial 3 (Magnetostatic)
Link NOC:Foundations of Classical Electrodynamics Lecture 73 - Tutorial 4 (Magnetostatic and EM Wave)
Link NOC:Physics of Functional Materials and Devices Lecture 1 - Introduction to solid state materials - From conventional to functional
Link NOC:Physics of Functional Materials and Devices Lecture 2 - Ceramics and Composites - I
Link NOC:Physics of Functional Materials and Devices Lecture 3 - Ceramics and Composites - II
Link NOC:Physics of Functional Materials and Devices Lecture 4 - Polymers
Link NOC:Physics of Functional Materials and Devices Lecture 5 - Introduction to Nanomaterials and functionality
Link NOC:Physics of Functional Materials and Devices Lecture 6 - Synthesis protocols - I
Link NOC:Physics of Functional Materials and Devices Lecture 7 - Synthesis protocols - II
Link NOC:Physics of Functional Materials and Devices Lecture 8 - Synthesis protocols - III
Link NOC:Physics of Functional Materials and Devices Lecture 9 - Crystal structure - I
Link NOC:Physics of Functional Materials and Devices Lecture 10 - Crystal structure - II
Link NOC:Physics of Functional Materials and Devices Lecture 11 - Crystal structure - III
Link NOC:Physics of Functional Materials and Devices Lecture 12 - Crystal imperfections
Link NOC:Physics of Functional Materials and Devices Lecture 13 - Alloys and Melts
Link NOC:Physics of Functional Materials and Devices Lecture 14 - Theory of Solids
Link NOC:Physics of Functional Materials and Devices Lecture 15 - Nearlly free electron model
Link NOC:Physics of Functional Materials and Devices Lecture 16 - Bonds in molecules and solids
Link NOC:Physics of Functional Materials and Devices Lecture 17 - Transformations kinetics and reaction rates
Link NOC:Physics of Functional Materials and Devices Lecture 18 - Themodynamics
Link NOC:Physics of Functional Materials and Devices Lecture 19 - Phase and phase transitions
Link NOC:Physics of Functional Materials and Devices Lecture 20 - Diffusion and various properties
Link NOC:Physics of Functional Materials and Devices Lecture 21 - Mechanical properties of solids
Link NOC:Physics of Functional Materials and Devices Lecture 22 - Thermal Properties of Solids
Link NOC:Physics of Functional Materials and Devices Lecture 23 - Negative and Zero Expansion Ceramics
Link NOC:Physics of Functional Materials and Devices Lecture 24 - Heat Capacity
Link NOC:Physics of Functional Materials and Devices Lecture 25 - Thermogravimetric (TGA) analysis
Link NOC:Physics of Functional Materials and Devices Lecture 26 - Introduction to magnetism and Magnetic properties of solids
Link NOC:Physics of Functional Materials and Devices Lecture 27 - From magnetic to multiferroic materials
Link NOC:Physics of Functional Materials and Devices Lecture 28 - Magnetic materials and their applications
Link NOC:Physics of Functional Materials and Devices Lecture 29 - Magnetism at nanoscale
Link NOC:Physics of Functional Materials and Devices Lecture 30 - GMR materials
Link NOC:Physics of Functional Materials and Devices Lecture 31 - CMR materials
Link NOC:Physics of Functional Materials and Devices Lecture 32 - Ferrofluids
Link NOC:Physics of Functional Materials and Devices Lecture 33 - Spintronics and devices
Link NOC:Physics of Functional Materials and Devices Lecture 34 - Introduction to the basic properties of liquids and melts
Link NOC:Physics of Functional Materials and Devices Lecture 35 - Heat capacity and diffusion of liquids and melts
Link NOC:Physics of Functional Materials and Devices Lecture 36 - Viscosity, electric and thermal conduction of liquids and melts
Link NOC:Physics of Functional Materials and Devices Lecture 37 - Sensors
Link NOC:Physics of Functional Materials and Devices Lecture 38 - Electrochemical Sensors
Link NOC:Physics of Functional Materials and Devices Lecture 39 - Introduction to energy storage devices and basics of supercapacitors
Link NOC:Physics of Functional Materials and Devices Lecture 40 - Supercapacitors - II
Link NOC:Physics of Functional Materials and Devices Lecture 41 - Magnetic supercapacitors
Link NOC:Physics of Functional Materials and Devices Lecture 42 - Battery - I
Link NOC:Physics of Functional Materials and Devices Lecture 43 - Battery - II
Link NOC:Physics of Functional Materials and Devices Lecture 44 - Solar Cells - I
Link NOC:Physics of Functional Materials and Devices Lecture 45 - Solar Cells - II
Link NOC:Physics of Functional Materials and Devices Lecture 46 - X-ray Diffraction (XRD)
Link NOC:Physics of Functional Materials and Devices Lecture 47 - Fourier Transform Infrared Spectroscopy
Link NOC:Physics of Functional Materials and Devices Lecture 48 - UV- Vis Spectroscopy
Link NOC:Physics of Functional Materials and Devices Lecture 49 - Scanning and Transmission Electron Microscopy
Link NOC:Physics of Functional Materials and Devices Lecture 50 - Summary
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 1 - Introduction to waves, 1D wave equation and its solutions
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 2 - 1D Light waves
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 3 - Characteristics of light waves - amplitude, absolute phase, wavelenght and frequency
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 4 - Phase, Phase velocity and Phase delay
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 5 - Complex notation for the description light waves and superposition
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 6 - Maxwell's equations to the 3D wave equation and its solutions
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 7 - Recap of Week 1
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 8 - 3D wave equation and plane waves
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 9 - Complex notation for Electric fields, Superposition and interference
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 10 - Fabry-Perot inteferometer and it transmittance
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 11 - Physical interpretation of FP transmittance
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 12 - Recap of Fabry-Perot modes
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 13 - Free spectral range of a Fabry-Perot etalon
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 14 - Resonator modes and optical pulses - insight
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 15 - Table - Top Coherent and Incoherent Imaging
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 16 - Recap of Etalon free spectral range
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 17 - Line width and finesse of an etalon
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 18 - Actual resonator modes
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 19 - Resonator configurations and stability
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 20 - Recap of optical resonators
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 21 - Introduction of light pulses
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 22 - Complex amplitude, Gaussian pulse
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 23 - Recap of light pulses
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 24 - Introduction of Fourier Transforms
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 25 - Tutorial 1
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 26 - Motivating Fourier Transforms
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 27 - Fourier Transform Properties
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 28 - Frequency domain electric field
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 29 - Recap of Fourier transform properties
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 30 - Frequency domain description of pulses
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 31 - Spectral Phase
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 32 - Recap of spectral phase
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 33 - Instantaneous Frequency and group delay
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 34 - Phase wrapping, blanking, and Tayor series expansion
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 35 - Recap of instantaneous frequency, phase wrapping, and phase blanking
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 36 - Frequency domain phase expansion, group delay dispersion
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 37 - Absolute Phase
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 38 - Recap of concepts + discussion
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 39 - Absolute Phase (revisited)
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 40 - Carrier envelope phase, frequency comb
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 41 - Discussion
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 42 - Recap of concepts
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 43 - First order phase
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 44 - Second order phase
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 45 - Recap of first order and second order phase
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 46 - Chirped pulse: Instantaneous frequency and Fourier transform
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 47 - Group delay, nonlinearly chirped pulse
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 48 - Recap of chirped pulses
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 49 - Quadratic chirp pulses
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 50 - Higher order spectral phase
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 51 - Recap and discussion on higher order phase
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 52 - Relative importance of intensity and phase
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 53 - Pulse propagation through a medium
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 54 - Recap of pulse propagation and pulse length
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 55 - Discussion of RMS pulse width and uncertainty principle
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 56 - Time-bandwidth product
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 57 - Recap of previous module
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 58 - Introduction of Lorentz Oscillator Model
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 59 - Effect of matter on light
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 60 - Recap of Lorentz oscillator, Polarization tensor
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 61 - Dynamics of electrons in the Lorentz oscillator
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 62 - Solving the inhomogeneous wave equation
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 63 - Inhomogeneous wave equation, absorption coefficient, refractive index
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 64 - Nonlinear response of matter
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 65 - Origin of nonlinear optical effects
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 66 - Wave equation in an inert gas
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 67 - Perturbation theory and second harmonics
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 68 - Numerical simulation strategy
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 69 - Atoms in the presence of fields
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 70 - Ionization models
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 71 - Attosecond pulse generation and metrology
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 72 - Nonlinear optics review
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 73 - Nonlinear response of matter to light
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 74 - Sum and difference frequency generation
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 75 - Recap of sum and difference frequency generation, second harmonic generation
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 76 - Generalized nonlinear effects, conservation laws in SHG
Link NOC:Fundamentals of Attosecond Science and Technology (FAST) Lecture 77 - Phase matching in SHG, polarization dependent refractive index
Link NOC:Wave Optics Lecture 1 - Introduction
Link NOC:Wave Optics Lecture 2 - Introduction (Continued...)
Link NOC:Wave Optics Lecture 3 - Concept of wave, Wave Equation
Link NOC:Wave Optics Lecture 4 - Plane wave, Spherical wave
Link NOC:Wave Optics Lecture 5 - Maxwell's wave equation, Poynting Vector
Link NOC:Wave Optics Lecture 6 - Superposition of waves
Link NOC:Wave Optics Lecture 7 - Superposition of wave (Complex method)
Link NOC:Wave Optics Lecture 8 - Random and coherent sourse, standing wave formation
Link NOC:Wave Optics Lecture 9 - Group and Phase velocity
Link NOC:Wave Optics Lecture 10 - Material Dispersion
Link NOC:Wave Optics Lecture 11 - Material Dispersion (Continued...)
Link NOC:Wave Optics Lecture 12 - Concept of Coherence
Link NOC:Wave Optics Lecture 13 - Concept of Coherence (Continued...)
Link NOC:Wave Optics Lecture 14 - Concept of Coherence (Continued...)
Link NOC:Wave Optics Lecture 15 - Concept of Coherence (Continued...)
Link NOC:Wave Optics Lecture 16 - Two beam interference
Link NOC:Wave Optics Lecture 17 - Young's double slit experiment
Link NOC:Wave Optics Lecture 18 - Young’s double slit experiment (Continued...)
Link NOC:Wave Optics Lecture 19 - Interference by division of amplitude
Link NOC:Wave Optics Lecture 20 - Interference by division of amplitude (Continued...)
Link NOC:Wave Optics Lecture 21 - Newton's Ring
Link NOC:Wave Optics Lecture 22 - Newton’s Ring (Continued...)
Link NOC:Wave Optics Lecture 23 - Newton’s Ring (Continued...)
Link NOC:Wave Optics Lecture 24 - Optical Interferometers
Link NOC:Wave Optics Lecture 25 - Michelson Interferometer
Link NOC:Wave Optics Lecture 26 - Multiple beam interference
Link NOC:Wave Optics Lecture 27 - Febry-Perot Interferometer
Link NOC:Wave Optics Lecture 28 - Febry-Perot Interferometer (Continued...)
Link NOC:Wave Optics Lecture 29 - Resolving power of Fabry-Perot interferometer
Link NOC:Wave Optics Lecture 30 - Diffraction of Light
Link NOC:Wave Optics Lecture 31 - Huygen’s Theory
Link NOC:Wave Optics Lecture 32 - Fraunhofer Diffraction
Link NOC:Wave Optics Lecture 33 - Single-slit Diffraction
Link NOC:Wave Optics Lecture 34 - Single-slit Diffraction (Continued...)
Link NOC:Wave Optics Lecture 35 - Double–Slit Diffraction
Link NOC:Wave Optics Lecture 36 - Multi–Slit Diffraction
Link NOC:Wave Optics Lecture 37 - Multi-Slit Diffraction (Continued...)
Link NOC:Wave Optics Lecture 38 - Grating spectra
Link NOC:Wave Optics Lecture 39 - Grating spectra (Continued...)
Link NOC:Wave Optics Lecture 40 - Resolving power of grating
Link NOC:Wave Optics Lecture 41 - Fraunhofer diffraction for a circular aperture
Link NOC:Wave Optics Lecture 42 - Fraunhofer diffraction for a rectangular aperture
Link NOC:Wave Optics Lecture 43 - Fresnel Diffraction
Link NOC:Wave Optics Lecture 44 - Fresnel’s half period zone
Link NOC:Wave Optics Lecture 45 - Fresnel’s half period zone (Continued...)
Link NOC:Wave Optics Lecture 46 - Zone Plate
Link NOC:Wave Optics Lecture 47 - Fresnel’s diffraction from an aperture
Link NOC:Wave Optics Lecture 48 - Fresnel’s diffraction for a circular aperture
Link NOC:Wave Optics Lecture 49 - Fresnel’s diffraction for a rectangular aperture
Link NOC:Wave Optics Lecture 50 - Fresnel’s diffraction for a rectangular aperture (Continued...)
Link NOC:Wave Optics Lecture 51 - Fresnel’s diffraction for semi-infinite opaque screen
Link NOC:Wave Optics Lecture 52 - Polarization of light (Basic concept)
Link NOC:Wave Optics Lecture 53 - Circularly polarized light
Link NOC:Wave Optics Lecture 54 - Matrix treatment of polarization
Link NOC:Wave Optics Lecture 55 - Jones Matrix for polarization
Link NOC:Wave Optics Lecture 56 - Jones Matrix for polarization (Continued...)
Link NOC:Wave Optics Lecture 57 - Jones Matrix for polarization (Continued...)
Link NOC:Wave Optics Lecture 58 - Jones Matrix for polarization (Continued...)
Link NOC:Wave Optics Lecture 59 - Jones matrix for polarization (Continued...)
Link NOC:Wave Optics Lecture 60 - Production of polarized light
Link NOC:Wave Optics Lecture 61 - Production of polarized light (Continued...)
Link NOC:Wave Optics Lecture 62 - Birefrigent Crystal
Link NOC:Wave Optics Lecture 63 - Birefrigent Crystal (Continued...)
Link NOC:Wave Optics Lecture 64 - Index Ellipsoid
Link NOC:Wave Optics Lecture 65 - Analyzing Polarised Light
Link NOC:Wave Optics Lecture 66 - Babinet Compensator
Link Special Topics in Atomic Physics Lecture 1 - Introductory lecture about this course
Link Special Topics in Atomic Physics Lecture 2 - Quantum Mechanics and Symmetry of the Hydrogen Atom
Link Special Topics in Atomic Physics Lecture 3 - Hydrogen atom: Rotational and Dynamical Symmetry of the 1/r Potential
Link Special Topics in Atomic Physics Lecture 4 - Hydrogen atom: Dynamical Symmetry of the 1/r Potential
Link Special Topics in Atomic Physics Lecture 5 - Degeneracy of the Hydrogen Atom: SO(4)
Link Special Topics in Atomic Physics Lecture 6 - Wavefunctions of the Hydrogen Atom
Link Special Topics in Atomic Physics Lecture 7 - Angular Momentum in Quantum Mechanics
Link Special Topics in Atomic Physics Lecture 8 - Angular Momentum in Quantum Mechanics: half-odd-integer and integer quantum numbers: SU(2) & SO(3)
Link Special Topics in Atomic Physics Lecture 9 - Angular Momentum in Quantum Mechanics: Addition Theorem for Spherical Harmonics - Coupling of Angular Momenta
Link Special Topics in Atomic Physics Lecture 10 - Angular Momentum in Quantum Mechanics Dimensionality of the Direct-Product (Composite) Vector Space CGC recursion relations
Link Special Topics in Atomic Physics Lecture 11 - Angular Momentum in Quantum Mechanics CGC matrix, Wigner D Rotation Matrix, Irreducible Tensor Operators
Link Special Topics in Atomic Physics Lecture 12 - Angular Momentum in Quantum Mechanics - more on ITO, and the Wigner-Eckart Theorem
Link Special Topics in Atomic Physics Lecture 13 - Angular Momentum in Quantum Mechanics Wigner-Eckart Theorem - 2
Link Special Topics in Atomic Physics Lecture 14 - Relativistic Quantum Mechanics of the Hydrogen Atom - 1
Link Special Topics in Atomic Physics Lecture 15 - Relativistic Quantum Mechanics of the Hydrogen Atom - 2
Link Special Topics in Atomic Physics Lecture 16 - Relativistic Quantum Mechanics of the Hydrogen Atom - PAULI Equation - Foldy - Wouthysen Transformations - 1
Link Special Topics in Atomic Physics Lecture 17 - Relativistic Quantum Mechanics of the Hydrogen Atom - Foldy - Wouthysen Transformations - 2
Link Special Topics in Atomic Physics Lecture 18 - Relativistic Quantum Mechanics of the Hydrogen Atom - Foldy - Wouthysen Transformations - 3
Link Special Topics in Atomic Physics Lecture 19 - Relativistic Quantum Mechanics of the Hydrogen Atom - Spherical Symmetry of the Coulomb Potential
Link Special Topics in Atomic Physics Lecture 20 - Hartree-Fock Self-Consistent Field formalism - 1
Link Special Topics in Atomic Physics Lecture 21 - Hartree-Fock Self-Consistent Field formalism - 2
Link Special Topics in Atomic Physics Lecture 22 - Hartree-Fock Self-Consistent Field formalism - 3
Link Special Topics in Atomic Physics Lecture 23 - Hartree-Fock Self-Consistent Field formalism - 4
Link Special Topics in Atomic Physics Lecture 24 - Hartree-Fock Self-Consistent Field formalism - 5
Link Special Topics in Atomic Physics Lecture 25 - Perturbative treatment of relativistic effects… Schrodinger's and Dirac QM
Link Special Topics in Atomic Physics Lecture 26 - Perturbative treatment of relativistic effects… Schrodinger's and Dirac QM
Link Special Topics in Atomic Physics Lecture 27 - Probing the atom - Collisions and Spectroscopy - boundary conditions - 1
Link Special Topics in Atomic Physics Lecture 28 - Atomic Probes - Collisions and Spectroscopy - boundary conditions - 2
Link Special Topics in Atomic Physics Lecture 29 - Atomic Probes - Collisions and Spectroscopy - Scattering phase shifts and boundary conditions
Link Special Topics in Atomic Physics Lecture 30 - Atomic Probes - Time reversal symmetry - applications in atomic collisions and photoionization processes
Link Special Topics in Atomic Physics Lecture 31 - Atomic Photoionization cross sections, angular distributions of photoelectrons - 1
Link Special Topics in Atomic Physics Lecture 32 - Atomic Photoionization cross sections, angular distributions of photoelectrons - 2
Link Special Topics in Atomic Physics Lecture 33 - Atomic Photoionization cross sections, angular distributions of photoelectrons - 3
Link Special Topics in Atomic Physics Lecture 34 - Atomic Photoionization cross sections, angular distributions of photoelectrons - 4
Link Special Topics in Atomic Physics Lecture 35 - Atomic Photoionization cross sections, angular distributions of photoelectrons Cooper Zare Formula
Link Special Topics in Atomic Physics Lecture 36 - Stark- Zeeman Spectroscopy - Stark effect
Link Special Topics in Atomic Physics Lecture 37 - Stark- Zeeman Spectroscopy - Stark effect on n=2 excited state of the H atom Zeeman effect
Link Special Topics in Atomic Physics Lecture 38 - Stark- Zeeman Spectroscopy - Normal, Anomalous Zeeman effect; Paschen- Back effect
Link Special Topics in Atomic Physics Lecture 39 - Stark- Zeeman Spectroscopy - Anomalous Zeeman effect
Link Special Topics in Atomic Physics Lecture 40 - Zeeman effect Fine structure, Hyperfine structure - Elemental, rudimentary introduction to Laser Cooling, BEC, Atomic Clock / Attosecond metrology
Link Classical Field Theory Lecture 1 - What is Classical Field Theory?
Link Classical Field Theory Lecture 2 - Symmetries and Invariances - I
Link Classical Field Theory Lecture 3 - Symmetries and Invariances - II
Link Classical Field Theory Lecture 4 - Group Theory in Physics - I
Link Classical Field Theory Lecture 5 - Group Theory in Physics - II
Link Classical Field Theory Lecture 6 - Finite Groups - I
Link Classical Field Theory Lecture 7 - Finite Groups - II
Link Classical Field Theory Lecture 8 - Basics of CFT - I
Link Classical Field Theory Lecture 9 - Basics of CFT - II
Link Classical Field Theory Lecture 10 - Basics of CFT - III
Link Classical Field Theory Lecture 11 - Green Functions - I
Link Classical Field Theory Lecture 12 - Green Functions - II
Link Classical Field Theory Lecture 13 - Noether's Theorem - I
Link Classical Field Theory Lecture 14 - Noether's Theorem - II
Link Classical Field Theory Lecture 15 - Kink Soliton
Link Classical Field Theory Lecture 16 - Hidden Symmetry
Link Classical Field Theory Lecture 17 - Local Symmetries
Link Classical Field Theory Lecture 18 - The Abelian Higgs model
Link Classical Field Theory Lecture 19 - Lie Algebras - I
Link Classical Field Theory Lecture 20 - Lie Algebras - II
Link Classical Field Theory Lecture 21 - Magnetic Vortices - I
Link Classical Field Theory Lecture 22 - Magnetic Vortices - II
Link Classical Field Theory Lecture 23 - Non-abelian gauge theories - I
Link Classical Field Theory Lecture 24 - Non-abelian gauge theories - II
Link Classical Field Theory Lecture 25 - Irreps of Lie algebras - I
Link Classical Field Theory Lecture 26 - Irreps of Lie algebras - II
Link Classical Field Theory Lecture 27 - The Standard Model - I
Link Classical Field Theory Lecture 28 - The Standard Model - II
Link Classical Field Theory Lecture 29 - Irreps of the Lorentz/Poincare algebras
Link Classical Field Theory Lecture 30 - The Dirac mononpole
Link Classical Field Theory Lecture 31 - The 't Hooft-Polaykov monopole
Link Classical Field Theory Lecture 32 - Revisiting Derrick’s Theorem
Link Classical Field Theory Lecture 33 - The Julia-Zee dyon
Link Classical Field Theory Lecture 34 - Instantons - I
Link Classical Field Theory Lecture 35 - Instantons - II
Link Classical Field Theory Lecture 36 - Instantons - III
Link Classical Field Theory Lecture 37 - Instantons - IV
Link Classical Field Theory Lecture 38 - Dualities
Link Classical Field Theory Lecture 39 - Geometrization of Field Theory
Link Topics in Nonlinear Dynamics Lecture 1 - Overview
Link Topics in Nonlinear Dynamics Lecture 2 - Critical points of a dynamical system
Link Topics in Nonlinear Dynamics Lecture 3 - Two-dimensional flows
Link Topics in Nonlinear Dynamics Lecture 4 - Stable and unstable manifolds
Link Topics in Nonlinear Dynamics Lecture 5 - Hamiltonian dynamics - Part I
Link Topics in Nonlinear Dynamics Lecture 6 - Hamiltonian dynamics - Part II
Link Topics in Nonlinear Dynamics Lecture 7 - Hamiltonian dynamics - Part III
Link Topics in Nonlinear Dynamics Lecture 8 - Hamiltonian dynamics - Part IV
Link Topics in Nonlinear Dynamics Lecture 9 - Hamiltonian dynamics - Part V
Link Topics in Nonlinear Dynamics Lecture 10 - Elementary bifurcations
Link Topics in Nonlinear Dynamics Lecture 11 - Limit cycles
Link Topics in Nonlinear Dynamics Lecture 12 - Poincar´e index
Link Topics in Nonlinear Dynamics Lecture 13 - Illustrative examples
Link Topics in Nonlinear Dynamics Lecture 14 - Quiz 1. Questions and answers
Link Topics in Nonlinear Dynamics Lecture 15 - Bead on a rotating hoop
Link Topics in Nonlinear Dynamics Lecture 16 - Types of dynamical behaviour
Link Topics in Nonlinear Dynamics Lecture 17 - Discrete time dynamics - Part I
Link Topics in Nonlinear Dynamics Lecture 18 - Discrete time dynamics - Part II
Link Topics in Nonlinear Dynamics Lecture 19 - Discrete time dynamics - Part III
Link Topics in Nonlinear Dynamics Lecture 20 - Discrete time dynamics - Part IV
Link Topics in Nonlinear Dynamics Lecture 21 - Coarse-grained dynamics in phase space - Part I
Link Topics in Nonlinear Dynamics Lecture 22 - Coarse-grained dynamics in phase space - Part II & Stochastic dynamics - Part I
Link Topics in Nonlinear Dynamics Lecture 23 - Stochastic dynamics - Part II
Link Topics in Nonlinear Dynamics Lecture 24 - Stochastic dynamics - Part III
Link Topics in Nonlinear Dynamics Lecture 25 - Coarse-grained dynamics in phase space - Part IV & Stochastic dynamics - Part IV
Link Topics in Nonlinear Dynamics Lecture 26 - Discrete time dynamics - Part V
Link Topics in Nonlinear Dynamics Lecture 27 - Quiz 2. Questions and answers
Link Topics in Nonlinear Dynamics Lecture 28 - Stochastic dynamics - Part V
Link Topics in Nonlinear Dynamics Lecture 29 - Stochastic dynamics - Part VI
Link Condensed Matter Physics Lecture 1 - Principles of Condensed Matter Physics
Link Condensed Matter Physics Lecture 2 - Symmetry in Perfect Solids
Link Condensed Matter Physics Lecture 3 - Symmetry in Perfect Solids (Continued...)
Link Condensed Matter Physics Lecture 4 - Symmetry in Perfect Solids - Worked Examples
Link Condensed Matter Physics Lecture 5 - Diffraction Methods For Crystal Structures
Link Condensed Matter Physics Lecture 6 - Diffraction Methods For Crystal Structures (Continued...)
Link Condensed Matter Physics Lecture 7 - Diffraction Methods For Crystal Structures - Worked Examples
Link Condensed Matter Physics Lecture 8 - Physical Properties of Crystals
Link Condensed Matter Physics Lecture 9 - Physical Properties of Crystals (Continued...)
Link Condensed Matter Physics Lecture 10 - Physical Properties of Crystals - Worked Examples
Link Condensed Matter Physics Lecture 11 - Cohesion in Solids
Link Condensed Matter Physics Lecture 12 - Cohesion in Solids - Worked Examples
Link Condensed Matter Physics Lecture 13 - The Free Electron Theory of Metals
Link Condensed Matter Physics Lecture 14 - The Free Electron Theory of Metals - Worked Examples
Link Condensed Matter Physics Lecture 15 - The Free Electron Theory of Metals - Electrical Conductivity
Link Condensed Matter Physics Lecture 16 - The Free Electron Theory of Metals - Electrical Conductivity - Worked Examples
Link Condensed Matter Physics Lecture 17 - Thermal Conductivity of Metals
Link Condensed Matter Physics Lecture 18 - Thermal Conductivity of Metals - Worked Examples
Link Condensed Matter Physics Lecture 19 - The Concept of Phonons
Link Condensed Matter Physics Lecture 20 - Debye Theory of Specific Heat, Lattice Vibrations
Link Condensed Matter Physics Lecture 21 - Debye Theory of Specific Heat, Lattice Vibrations - Worked Examples
Link Condensed Matter Physics Lecture 22 - Lattice Vibrations (Continued) Phonon thermal conductivity
Link Condensed Matter Physics Lecture 23 - Lattice Vibrations (Continued) Phonon Thermal Conductivity - Worked Examples
Link Condensed Matter Physics Lecture 24 - Anharmonicity and Thermal Expansion
Link Condensed Matter Physics Lecture 25 - Dielectric (Insulating) Solids
Link Condensed Matter Physics Lecture 26 - Dispersion and Absorption of Electromagnetic Waves in Dielectric Media, Ferro-and Antiferroelectrics
Link Condensed Matter Physics Lecture 27 - Optical Properties of Metals; Ionic Polarization in Alkali Halides; Piezoelectricity
Link Condensed Matter Physics Lecture 28 - Dielectric Solids - Worked Examples
Link Condensed Matter Physics Lecture 29 - Dia - and Paramagnetism
Link Condensed Matter Physics Lecture 30 - Paramagnetism of Transition Metal and Rare Earth Ions
Link Condensed Matter Physics Lecture 31 - Quenching of Orbital Angular Momentum; Ferromagnetism
Link Condensed Matter Physics Lecture 32 - Exchange Interactions, Magnetic Order, Neutron Diffraction
Link Condensed Matter Physics Lecture 33 - Hysteresis and Magnetic Domains; Spin Waves and Magnons
Link Condensed Matter Physics Lecture 34 - Magnetic Resonance
Link Condensed Matter Physics Lecture 35 - Magnetism and Magnetic Resonance - Worked Examples
Link Condensed Matter Physics Lecture 36 - Magnetism - Worked Examples (Continued...)
Link Condensed Matter Physics Lecture 37 - Pauli Paramagnetism and Landau Diamagnetism
Link Condensed Matter Physics Lecture 38 - Band Magnetism; Itinerant Electrons; Stoner Model
Link Condensed Matter Physics Lecture 39 - Superconductivity - Perfect Electrical Conductivity and Perfect Diamagnetism
Link Condensed Matter Physics Lecture 40 - Type I and Type II Superconductors
Link Condensed Matter Physics Lecture 41 - Ginsburg - Landau Theory, Flux Quantization
Link Condensed Matter Physics Lecture 42 - Cooper Pairs
Link Condensed Matter Physics Lecture 43 - Microscopic (BCS) Theory of Superconductivity
Link Condensed Matter Physics Lecture 44 - BCS Theory (Continued...): Josephson Tunneling: Quantum Interference
Link Condensed Matter Physics Lecture 45 - Josephson Effect (Continued...); High Temperature Superconductors
Link Condensed Matter Physics Lecture 46 - Superconductors - Worked Examples
Link Condensed Matter Physics Lecture 47 - Energy Bands in Solids
Link Condensed Matter Physics Lecture 48 - Electron Dynamics in a Periodic Solid
Link Condensed Matter Physics Lecture 49 - Semiconductors
Link Condensed Matter Physics Lecture 50 - Semiconductors (Continued...)
Link Condensed Matter Physics Lecture 51 - Semiconductors - Worked Examples
Link Condensed Matter Physics Lecture 52 - Defects in Solids - Point Defects
Link Condensed Matter Physics Lecture 53 - Point Defects in Solids - Worked Examples
Link Condensed Matter Physics Lecture 54 - Defects in Solids - Line and Surface Defects
Link Condensed Matter Physics Lecture 55 - Dislocations in Solids - Worked Examples
Link Condensed Matter Physics Lecture 56 - Quantum Fluids and Quantum Solids
Link Condensed Matter Physics Lecture 57 - Quantum Liquids and Quantum Solids - Worked Examples
Link Condensed Matter Physics Lecture 58 - Epilogue
Link Quantum Field Theory Lecture 1 - Introduction
Link Quantum Field Theory Lecture 2 - Introduction to Classical Field Theory
Link Quantum Field Theory Lecture 3 - Quantization of Real Scalar Field - I
Link Quantum Field Theory Lecture 4 - Quantization of Real Scalar Field - II
Link Quantum Field Theory Lecture 5 - Quantization of Real Scalar Field - III
Link Quantum Field Theory Lecture 6 - Quantization of Real Scalar Field - IV
Link Quantum Field Theory Lecture 7 - Quantization of Complex Scalar Field
Link Quantum Field Theory Lecture 8 - Interacting Field Theory - I
Link Quantum Field Theory Lecture 9 - Interacting Field Theory - II
Link Quantum Field Theory Lecture 10 - Interacting Field Theory - III
Link Quantum Field Theory Lecture 11 - Interacting Field Theory - IV
Link Quantum Field Theory Lecture 12 - Interacting Field Theory - V
Link Quantum Field Theory Lecture 13 - Interacting Field Theory - VI
Link Quantum Field Theory Lecture 14 - Interacting Field Theory - VII
Link Quantum Field Theory Lecture 15 - Quantuzation of Electromagnetic Field - I
Link Quantum Field Theory Lecture 16 - Quantuzation of Electromagnetic Field - II
Link Quantum Field Theory Lecture 17 - Fermion Quantization - I
Link Quantum Field Theory Lecture 18 - Fermion Quantization - II
Link Quantum Field Theory Lecture 19 - Fermion Quantization - III
Link Quantum Field Theory Lecture 20 - Fermion Quantization - IV
Link Quantum Field Theory Lecture 21 - Fermion Quantization - V
Link Quantum Field Theory Lecture 22 - Fermion Quantization - VI
Link Quantum Field Theory Lecture 23 - The S-Matrix Expansion in QED - I
Link Quantum Field Theory Lecture 24 - The S-Matrix Expansion in QED - II
Link Quantum Field Theory Lecture 25 - Feynman Rules in QED - I
Link Quantum Field Theory Lecture 26 - Feynman Rules in QED - II
Link Quantum Field Theory Lecture 27 - Compton Scattering - I
Link Quantum Field Theory Lecture 28 - Compton Scattering - II
Link Quantum Field Theory Lecture 29 - Compton Scattering - III
Link Quantum Field Theory Lecture 30 - Moller Scattering - I
Link Quantum Field Theory Lecture 31 - Moller Scattering - II
Link Quantum Field Theory Lecture 32 - Vertex Correction - I
Link Quantum Field Theory Lecture 33 - Vertex Correction - II
Link Quantum Field Theory Lecture 34 - Vertex Correction - III
Link Quantum Field Theory Lecture 35 - Vertex Correction - IV
Link Quantum Field Theory Lecture 36 - Electron Selfenergy
Link Quantum Field Theory Lecture 37 - Photon Selfenergy - I
Link Quantum Field Theory Lecture 38 - Photon Selfenergy - II
Link Quantum Mechanics I Lecture 1 - Quantum Mechanics – An Introduction
Link Quantum Mechanics I Lecture 2 - Linear Vector Spaces - I
Link Quantum Mechanics I Lecture 3 - Linear Vector Spaces - II: The two-level atom
Link Quantum Mechanics I Lecture 4 - Linear Vector Spaces - III: The three-level atom
Link Quantum Mechanics I Lecture 5 - Postulates of Quantum Mechanics - I
Link Quantum Mechanics I Lecture 6 - Postulates of Quantum Mechanics - II
Link Quantum Mechanics I Lecture 7 - The Uncertainty Principle
Link Quantum Mechanics I Lecture 8 - The Linear Harmonic Oscillator
Link Quantum Mechanics I Lecture 9 - Introducing Quantum Optics
Link Quantum Mechanics I Lecture 10 - An Interesting Quantum Superposition: The Coherent State
Link Quantum Mechanics I Lecture 11 - The Displacement and Squeezing Operators
Link Quantum Mechanics I Lecture 12 - Exercises in Finite Dimensional Linear Vector Spaces
Link Quantum Mechanics I Lecture 13 - Exercises on Angular Momentum Operators and their algebra
Link Quantum Mechanics I Lecture 14 - Exercises on Quantum Expectation Values
Link Quantum Mechanics I Lecture 15 - Composite Systems
Link Quantum Mechanics I Lecture 16 - The Quantum Beam Splitter
Link Quantum Mechanics I Lecture 17 - Addition of Angular Momenta - I
Link Quantum Mechanics I Lecture 18 - Addition of Angular Momenta - II
Link Quantum Mechanics I Lecture 19 - Addition of Angular Momenta - III
Link Quantum Mechanics I Lecture 20 - Infinite Dimensional Linear Vector Spaces
Link Quantum Mechanics I Lecture 21 - Square-Integrable Functions
Link Quantum Mechanics I Lecture 22 - Ingredients of Wave Mechanics
Link Quantum Mechanics I Lecture 23 - The Schrodinger equation
Link Quantum Mechanics I Lecture 24 - Wave Mechanics of the Simple Harmonic Oscillator
Link Quantum Mechanics I Lecture 25 - One-Dimensional Square Well Potential: The Bound State Problem
Link Quantum Mechanics I Lecture 26 - The Square Well and the Square Potential Barrier
Link Quantum Mechanics I Lecture 27 - The Particle in a one-dimensional Box
Link Quantum Mechanics I Lecture 28 - A Charged Particle in a Uniform Magnetic Field
Link Quantum Mechanics I Lecture 29 - The Wavefunction: Its Single-valuedness and its Phase
Link Quantum Mechanics I Lecture 30 - The Central Potential
Link Quantum Mechanics I Lecture 31 - The Spherical Harmonics
Link Quantum Mechanics I Lecture 32 - Central Potential: The Radial Equation
Link Quantum Mechanics I Lecture 33 - Illustrative Exercises - I
Link Quantum Mechanics I Lecture 34 - Illustrative Exercises - II
Link Quantum Mechanics I Lecture 35 - Ehrenfest's Theorem
Link Quantum Mechanics I Lecture 36 - Perturbation Theory - I
Link Quantum Mechanics I Lecture 37 - Perturbation Theory - II
Link Quantum Mechanics I Lecture 38 - Perturbation Theory - III
Link Quantum Mechanics I Lecture 39 - Perturbation Theory - IV
Link Quantum Mechanics I Lecture 40 - Time-dependent Hamiltonians
Link Quantum Mechanics I Lecture 41 - The Jaynes-Cummings model
Link Special Topics in Classical Mechanics Lecture 1 - Course Overview
Link Special Topics in Classical Mechanics Lecture 2 - Equations of Motion (i)
Link Special Topics in Classical Mechanics Lecture 3 - Equations of Motion (ii)
Link Special Topics in Classical Mechanics Lecture 4 - Equations of Motion (iii)
Link Special Topics in Classical Mechanics Lecture 5 - Equations of Motion (iv)
Link Special Topics in Classical Mechanics Lecture 6 - Equations of Motion (v)
Link Special Topics in Classical Mechanics Lecture 7 - Oscillators, Resonances, Waves (i)
Link Special Topics in Classical Mechanics Lecture 8 - Oscillators, Resonances, Waves (ii)
Link Special Topics in Classical Mechanics Lecture 9 - Oscillators, Resonances, Waves (iii)
Link Special Topics in Classical Mechanics Lecture 10 - Oscillators, Resonances, Waves (iv)
Link Special Topics in Classical Mechanics Lecture 11 - Polar Coordinates (i)
Link Special Topics in Classical Mechanics Lecture 12 - Polar Coordinates (ii)
Link Special Topics in Classical Mechanics Lecture 13 - Dynamical Symmetry in the Kepler Problem (i)
Link Special Topics in Classical Mechanics Lecture 14 - Dynamical Symmetry in the Kepler Problem (ii)
Link Special Topics in Classical Mechanics Lecture 15 - Real Effects of Pseudo-Forces (i)
Link Special Topics in Classical Mechanics Lecture 16 - Real Effects of Pseudo-Forces (ii)
Link Special Topics in Classical Mechanics Lecture 17 - Real Effects of Pseudo-Forces (iii)
Link Special Topics in Classical Mechanics Lecture 18 - Real Effects of Pseudo-Forces (iv)
Link Special Topics in Classical Mechanics Lecture 19 - Special Theory of Relativity (i)
Link Special Topics in Classical Mechanics Lecture 20 - Special Theory of Relativity (ii)
Link Special Topics in Classical Mechanics Lecture 21 - Special Theory of Relativity (iii)
Link Special Topics in Classical Mechanics Lecture 22 - Special Theory of Relativity (iv)
Link Special Topics in Classical Mechanics Lecture 23 - Potentials Gradients Fields (i)
Link Special Topics in Classical Mechanics Lecture 24 - Potentials Gradients Fields (ii)
Link Special Topics in Classical Mechanics Lecture 25 - Potentials Gradients Fields (iii)
Link Special Topics in Classical Mechanics Lecture 26 - Gauss Law Eq of continuity (i)
Link Special Topics in Classical Mechanics Lecture 27 - Gauss Law Eq of continuity (ii)
Link Special Topics in Classical Mechanics Lecture 28 - Gauss Law Eq of continuity (iii)
Link Special Topics in Classical Mechanics Lecture 29 - Fluid Flow Bernoulli Principle (i)
Link Special Topics in Classical Mechanics Lecture 30 - Fluid Flow Bernoulli Principle (ii)
Link Special Topics in Classical Mechanics Lecture 31 - Classical Electrodynamics (i)
Link Special Topics in Classical Mechanics Lecture 32 - Classical Electrodynamics (ii)
Link Special Topics in Classical Mechanics Lecture 33 - Classical Electrodynamics (iii)
Link Special Topics in Classical Mechanics Lecture 34 - Classical Electrodynamics (iv)
Link Special Topics in Classical Mechanics Lecture 35 - Chaotic Dynamical Systems (i)
Link Special Topics in Classical Mechanics Lecture 36 - Chaotic Dynamical Systems (ii)
Link Special Topics in Classical Mechanics Lecture 37 - Chaotic Dynamical Systems (iii)
Link Special Topics in Classical Mechanics Lecture 38 - Chaotic Dynamical Systems (iv)
Link Special Topics in Classical Mechanics Lecture 39 - Chaotic Dynamical Systems (v)
Link Special Topics in Classical Mechanics Lecture 40 - The Scope and Limitations of Classical Mechanics
Link Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy Lecture 1 - Introduction to the STiTACS course
Link Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy Lecture 2 - Quantum Theory of collisions
Link Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy Lecture 3 - Quantum Theory of collisions: optical Theorem
Link Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy Lecture 4 - Quantum Theory of collisions: Optical Theorem (Continued...)
Link Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy Lecture 5 - Quantum Theory of collisions: Differential scattering cross section
Link Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy Lecture 6 - Quantum Theory of collisions: Differential scattering cross section, Partial wave analysis
Link Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy Lecture 7 - Quantum Theory of collisions: Optical Theorem – Unitarity of the Scattering Operator
Link Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy Lecture 8 - Quantum Theory of collisions: Reciprocity Theorem, Phase shift analysis
Link Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy Lecture 9 - Quantum Theory of collisions: More on Phase shift analysis
Link Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy Lecture 10 - Quantum Theory of collisions: resonant condition in the l th partial wave.
Link Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy Lecture 11 - Quantum Theory of collisions: Levinson’s theorem
Link Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy Lecture 12 - Quantum Theory of collisions: Levinson’s theorem (Continued...)
Link Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy Lecture 13 - Many body theory, electron correlations