NPTEL Video Course - Mathematics - Elementary Numerical Analysis

Subject Co-ordinator - Prof. Rekha P. Kulkarni

Co-ordinating Institute - IIT - Bombay

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction
Lecture 2 - Polynomial Approximation
Lecture 3 - Interpolating Polynomials
Lecture 4 - Properties of Divided Difference
Lecture 5 - Error in the Interpolating polynomial
Lecture 6 - Cubic Hermite Interpolation
Lecture 7 - Piecewise Polynomial Approximation
Lecture 8 - Cubic Spline Interpolation
Lecture 9 - Tutorial 1
Lecture 10 - Numerical Integration
Lecture 11 - Composite Numerical Integration
Lecture 12 - Gauss 2-point Rule
Lecture 13 - Gauss 2-point Rule
Lecture 14 - Convergence of Gaussian Integration
Lecture 15 - Tutorial 2
Lecture 16 - Numerical Differentiation
Lecture 17 - Gauss Elimination
Lecture 18 - L U decomposition
Lecture 19 - Cholesky decomposition
Lecture 20 - Gauss Elimination with partial pivoting
Lecture 21 - Vector and Matrix Norms
Lecture 22 - Perturbed Linear Systems
Lecture 23 - Ill-conditioned Linear System
Lecture 24 - Tutorial 3
Lecture 25 - Effect of Small Pivots
Lecture 26 - Solution of Non-linear Equations
Lecture 27 - Quadratic Convergence of Newton's Method
Lecture 28 - Jacobi Method
Lecture 29 - Gauss-Seidel Method

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
<table>
<thead>
<tr>
<th>Lecture 30</th>
<th>Tutorial 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 31</td>
<td>Initial Value Problem</td>
</tr>
<tr>
<td>Lecture 32</td>
<td>Multi-step Methods</td>
</tr>
<tr>
<td>Lecture 33</td>
<td>Predictor-Corrector Formulae</td>
</tr>
<tr>
<td>Lecture 34</td>
<td>Boundary Value Problems</td>
</tr>
<tr>
<td>Lecture 35</td>
<td>Eigenvalues and Eigenvectors</td>
</tr>
<tr>
<td>Lecture 36</td>
<td>Spectral Theorem</td>
</tr>
<tr>
<td>Lecture 37</td>
<td>Power Method</td>
</tr>
<tr>
<td>Lecture 38</td>
<td>Inverse Power Method</td>
</tr>
<tr>
<td>Lecture 39</td>
<td>Q R Decomposition</td>
</tr>
<tr>
<td>Lecture 40</td>
<td>Q R Method</td>
</tr>
</tbody>
</table>
NPTEL Video Course - Mathematics - Measure and Integration

Subject Co-ordinator - Prof. Inder K Rana

Co-ordinating Institute - IIT - Bombay

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction, Extended Real numbers
Lecture 2 - Algebra and Sigma Algebra of a subset of a set
Lecture 3 - Sigma Algebra generated by a class
Lecture 4 - Monotone Class
Lecture 5 - Set function
Lecture 6 - The Length function and its properties
Lecture 7 - Countably additive set functions on intervals
Lecture 8 - Uniqueness Problem for Measure
Lecture 9 - Extension of measure
Lecture 10 - Outer measure and its properties
Lecture 11 - Measurable sets
Lecture 12 - Lebesgue measure and its properties
Lecture 13 - Characterization of Lebesgue measurable sets
Lecture 14 - Measurable functions
Lecture 15 - Properties of measurable functions
Lecture 16 - Measurable functions on measure spaces
Lecture 17 - Integral of non negative simple measurable functions
Lecture 18 - Properties of non negative simple measurable functions
Lecture 19 - Monotone convergence theorem & Fatou's Lemma
Lecture 20 - Properties of Integral functions & Dominated Convergence Theorem
Lecture 21 - Dominated Convergence Theorem and applications
Lecture 22 - Lebesgue Integral and its properties
Lecture 23 - Denseness of continuous function
Lecture 24 - Product measures, an Introduction
Lecture 25 - Construction of Product Measure
Lecture 26 - Computation of Product Measure - I
Lecture 27 - Computation of Product Measure - II
Lecture 28 - Integration on Product spaces
Lecture 29 - Fubini's Theorems
Lecture 30 - Lebesgue Measure and integral on R^2
Lecture 31 - Properties of Lebesgue Measure and integral on R^n
Lecture 32 - Lebesgue integral on R^2
Lecture 33 - Integrating complex-valued functions
Lecture 34 - L_p - spaces
Lecture 35 - L_2(X,S,\mu)
Lecture 36 - Fundamental Theorem of calculus for Lebesgue Integral - I
Lecture 37 - Fundamental Theorem of calculus for Lebesgue Integral - II
Lecture 38 - Absolutely continuous measures
Lecture 39 - Modes of convergence
Lecture 40 - Convergence in Measure
NPTEL Video Course - Mathematics - Mathematics in India - From Vedic Period to Modern Times

Subject Co-ordinator - Prof. M.D. Srinivas, Prof. K. Ramasubramanian, Prof. M.S. Sriram

Co-ordinating Institute - Centre for Policy Studies, Chennai | IIT - Bombay | University of Madras, Chennai

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Indian Mathematics
Lecture 2 - Vedas and Sulbasutras - Part 1
Lecture 3 - Vedas and Sulbasutras - Part 2
Lecture 4 - Panini's Astadhyayi
Lecture 5 - Pingala's Chandahsastra
Lecture 6 - Decimal place value system
Lecture 7 - Aryabhatiya of Aryabhata - Part 1
Lecture 8 - Aryabhatiya of Aryabhata - Part 2
Lecture 9 - Aryabhatiya of Aryabhata - Part 3
Lecture 10 - Aryabhatiya of Aryabhata - Part 4 and Introduction to Jaina Mathematics
Lecture 11 - Brahmasphutasiddhanta of Brahmagupta - Part 1
Lecture 12 - Brahmasphutasiddhanta of Brahmagupta - Part 2
Lecture 13 - Brahmasphutasiddhanta of Brahmagupta - Part 3
Lecture 14 - Brahmasphutasiddhanta of Brahmagupta - Part 4 and The Bakhshali Manuscript
Lecture 15 - Mahaviras Ganitasarasangraha - Part 1
Lecture 16 - Mahaviras Ganitasarasangraha - Part 2
Lecture 17 - Mahaviras Ganitasarasangraha - Part 3
Lecture 18 - Development of Combinatorics - Part 1
Lecture 19 - Development of Combinatorics - Part 2
Lecture 20 - Lilavati of Bhaskaracarya - Part 1
Lecture 21 - Lilavati of Bhaskaracarya - Part 2
Lecture 22 - Lilavati of Bhaskaracarya - Part 3
Lecture 23 - Bijaganita of Bhaskaracarya - Part 1
Lecture 24 - Bijaganita of Bhaskaracarya - Part 2
Lecture 25 - Ganitakaumudi of Narayana Pandita - Part 1
Lecture 26 - Ganitakaumudi of Narayana Pandita - Part 2
Lecture 27 - Ganitakaumudi of Narayana Pandita - Part 3
Lecture 28 - Magic Squares - Part 1
Lecture 29 - Magic Squares - Part 2

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - NOC:Measure Theory

Subject Co-ordinator - Prof. Inder K Rana

Co-ordinating Institute - IIT - Bombay

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - (1A) Introduction, Extended Real Numbers
Lecture 2 - (1B) Introduction, Extended Real Numbers
Lecture 3 - (2A) Algebra and Sigma Algebra of Subsets of a Set
Lecture 4 - (2B) Algebra and Sigma Algebra of Subsets of a Set
Lecture 5 - (3A) Sigma Algebra generated by a Class
Lecture 6 - (3B) Sigma Algebra generated by a Class
Lecture 7 - (4A) Monotone Class
Lecture 8 - (4B) Monotone Class
Lecture 9 - (5A) Set Functions
Lecture 10 - (5B) Set Functions
Lecture 11 - (6A) The Length Function and its Properties
Lecture 12 - (6B) The Length Function and its Properties
Lecture 13 - (7A) Countably Additive Set Functions on Intervals
Lecture 14 - (7B) Countably Additive Set Functions on Intervals
Lecture 15 - (8A) Uniqueness Problem for Measure
Lecture 16 - (8B) Uniqueness Problem for Measure
Lecture 17 - (9A) Extension of Measure
Lecture 18 - (9B) Extension of Measure
Lecture 19 - (10A) Outer Measure and its Properties
Lecture 20 - (10B) Outer Measure and its Properties
Lecture 21 - (11A) Measurable Sets
Lecture 22 - (11B) Measurable Sets
Lecture 23 - (12A) Lebesgue Measure and its Properties
Lecture 24 - (12B) Lebesgue Measure and its Properties
Lecture 25 - (13A) Characterization of Lebesgue Measurable Sets
Lecture 26 - (13B) Characterization of Lebesgue Measurable Sets
Lecture 27 - (14A) Measurable Functions
Lecture 28 - (14B) Measurable Functions
Lecture 29 - (15A) Properties of Measurable Functions

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - NOC: Calculus for Economics, Commerce and Management

Subject Co-ordinator - Prof. Inder Kumar Rana

Co-ordinating Institute - IIT - Bombay

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to the Course
Lecture 2 - Concept of a Set, Ways of Representing Sets
Lecture 3 - Venn Diagrams, Operations on Sets
Lecture 4 - Operations on Sets, Cardinal Number, Real Numbers
Lecture 5 - Real Numbers, Sequences
Lecture 6 - Sequences, Convergent Sequences, Bounded Sequences
Lecture 7 - Limit Theorems, Sandwich Theorem, Monotone Sequences, Completeness of Real Numbers
Lecture 8 - Relations and Functions
Lecture 9 - Functions, Graph of a Functions, Function Formulas
Lecture 10 - Function Formulas, Linear Models
Lecture 11 - Linear Models, Elasticity, Linear Functions, Nonlinear Models, Quadratic Functions
Lecture 12 - Quadratic Functions, Quadratic Models, Power Function, Exponential Function
Lecture 13 - Exponential Function, Exponential Models, Logarithmic Function
Lecture 14 - Limit of a Function at a Point, Continuous Functions
Lecture 15 - Limit of a Function at a Point
Lecture 16 - Limit of a Function at a Point, Left and Right Limits
Lecture 17 - Computing Limits, Continuous Functions
Lecture 18 - Applications of Continuous Functions
Lecture 19 - Applications of Continuous Functions, Marginal of a Function
Lecture 20 - Rate of Change, Differentiation
Lecture 21 - Rules of Differentiation
Lecture 22 - Derivatives of Some Functions, Marginal, Elasticity
Lecture 23 - Elasticity, Increasing and Decreasing Functions, Optimization, Mean Value Theorem
Lecture 24 - Mean Value Theorem, Marginal Analysis, Local Maxima and Minima
Lecture 25 - Local Maxima and Minima
Lecture 26 - Local Maxima and Minima, Continuity Test, First Derivative Test, Successive Differentiation
Lecture 27 - Successive Differentiation, Second Derivative Test
Lecture 28 - Average and Marginal Product, Marginal of Revenue and Cost, Absolute Maximum and Minimum
Lecture 29 - Absolute Maximum and Minimum

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Monopoly Market, Revenue and Elasticity
Lecture 31 - Property of Marginals, Monopoly Market, Publisher v/s Author Problem
Lecture 32 - Convex and Concave Functions
Lecture 33 - Derivative Tests for Convexity, Concavity and Points of Inflection, Higher Order Derivative Conditions
Lecture 34 - Convex and Concave Functions, Asymptotes
Lecture 35 - Asymptotes, Curve Sketching
Lecture 36 - Functions of Two Variables, Visualizing Graph, Level Curves, Contour Lines
Lecture 37 - Partial Derivatives and Application to Marginal Analysis
Lecture 38 - Marginals in Cobb-Douglas model, partial derivatives and elasticity, chain rules
Lecture 39 - Chain Rules, Higher Order Partial Derivatives, Local Maxima and Minima, Critical Points
Lecture 40 - Saddle Points, Derivative Tests, Absolute Maxima and Minima
Lecture 41 - Some Examples, Constrained Maxima and Minima
NPTEL Video Course - Mathematics - NOC: Basic Linear Algebra

Subject Co-ordinator - Prof. Inder Kumar Rana

Co-ordinating Institute - IIT - Bombay

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction - I
Lecture 2 - Introduction - II
Lecture 3 - Introduction - III
Lecture 4 - Systems of Linear Equations - I
Lecture 5 - Systems of Linear Equations - II
Lecture 6 - Systems of Linear Equations - III
Lecture 7 - Reduced Row Echelon Form and Rank - I
Lecture 8 - Reduced Row Echelon Form and Rank - II
Lecture 9 - Reduced Row Echelon Form and Rank - III
Lecture 10 - Solvability of a Linear System, Linear Span, Basis - I
Lecture 11 - Solvability of a Linear System, Linear Span, Basis - II
Lecture 12 - Solvability of a Linear System, Linear Span, Basis - III
Lecture 13 - Linear Span, Linear Independence and Basis - I
Lecture 14 - Linear Span, Linear Independence and Basis - II
Lecture 15 - Linear Span, Linear Independence and Basis - III
Lecture 16 - Row Space, Column Space, Rank-Nullity Theorem - I
Lecture 17 - Row Space, Column Space, Rank-Nullity Theorem - II
Lecture 18 - Row Space, Column Space, Rank-Nullity Theorem - III
Lecture 19 - Determinants and their Properties - I
Lecture 20 - Determinants and their Properties - II
Lecture 21 - Determinants and their Properties - III
Lecture 22 - Linear Transformations - I
Lecture 23 - Linear Transformations - II
Lecture 24 - Linear Transformations - III
Lecture 25 - Orthonormal Basis, Geometry in R^2 - I
Lecture 26 - Orthonormal Basis, Geometry in R^2 - II
Lecture 27 - Orthonormal Basis, Geometry in R^2 - III
Lecture 28 - Isometries, Eigenvalues and Eigenvectors - I
Lecture 29 - Isometries, Eigenvalues and Eigenvectors - II
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - NOC:Commutative Algebra

Subject Co-ordinator - Prof. Dilip P. Patil
Co-ordinating Institute - IIT - Bombay

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Zariski Topology and K-Spectrum
Lecture 2 - Algebraic Varieties and Classical Nullstelensatz
Lecture 3 - Motivation for Krulls Dimension
Lecture 4 - Chevalleys dimension
Lecture 5 - Associated Prime Ideals of a Module
Lecture 6 - Support of a Module
Lecture 7 - Primary Decomposition
Lecture 8 - Primary Decomposition (Continued...)
Lecture 9 - Uniqueness of Primary Decomposition
Lecture 10 - Modules of Finite Length
Lecture 11 - Modules of Finite Length (Continued...)
Lecture 12 - Introduction to Krullâs Dimension
Lecture 13 - Noether Normalization Lemma (Classical Version)
Lecture 14 - Consequences of Noether Normalization Lemma
Lecture 15 - Nil Radical and Jacobson Radical of Finite type Algebras over a Field and digression of Integral Algebras
Lecture 16 - Nagataâs version of NNL
Lecture 17 - Dimensions of Polynomial ring over Noetherian rings
Lecture 18 - Dimension of Polynomial Algebra over arbitrary Rings
Lecture 19 - Dimension Inequalities
Lecture 20 - Hilbertâs Nullstelensatz
Lecture 21 - Computational rules for Poincarâ© Series
Lecture 22 - Graded Rings, Modules and Poincarâ© Series
Lecture 23 - Hilbert-Samuel Polynomials
Lecture 24 - Hilbert-Samuel Polynomials (Continued...)
Lecture 25 - Numerical Function of polynomial type
Lecture 26 - Hilbert-Samuel Polynomial of a Local ring
Lecture 27 - Filtration on a Module
Lecture 28 - Artin-Rees Lemma
Lecture 29 - Dimension Theorem

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Dimension Theorem (Continued...)
Lecture 31 - Consequences of Dimension Theorem
Lecture 32 - Generalized Krull's Principal Ideal Theorem
Lecture 33 - Second proof of Krull's Principal Ideal Theorem
Lecture 34 - The Spec Functor
Lecture 35 - Prime ideals in Polynomial rings
Lecture 36 - Characterization of Equidimensional Affine Algebra
Lecture 37 - Connection between Regular local rings and associated graded rings
Lecture 38 - Statement of the Jacobian Criterion for Regularity
Lecture 39 - Hilbert function for Affine Algebra
Lecture 40 - Hilbert Serre Theorem
Lecture 41 - Jacobian Matrix and its Rank
Lecture 42 - Jacobian Matrix and its Rank (Continued...)
Lecture 43 - Proof of Jacobian Criterion
Lecture 44 - Proof of Jacobian Criterion (Continued...)
Lecture 45 - Preparation for Homological Dimension
Lecture 46 - Complexes of Modules and Homology
Lecture 47 - Projective Modules
Lecture 48 - Homological Dimension and Projective module
Lecture 49 - Global Dimension
Lecture 50 - Homological characterization of Regular Local Rings (RLR)
Lecture 51 - Homological characterization of Regular Local Rings (Continued...)
Lecture 52 - Homological Characterization of Regular Local Rings (Continued...)
Lecture 53 - Regular Local Rings are UFD
Lecture 54 - RLR-Prime ideals of height 1
Lecture 55 - Discrete Valuation Ring
Lecture 56 - Discrete Valuation Ring (Continued...)
Lecture 57 - Dedekind Domains
Lecture 58 - Fractionary Ideals and Dedekind Domains
Lecture 59 - Characterization of Dedekind Domain
Lecture 60 - Dedekind Domains and prime factorization of ideals
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - NOC: Galois Theory

Subject Co-ordinator - Prof. Dilip P. Patil

Co-ordinating Institute - IIT - Bombay

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Historical Perspectives
Lecture 2 - Examples of Fields
Lecture 3 - Polynomials and Basic properties
Lecture 4 - Polynomial Rings
Lecture 5 - Unit and Unit Groups
Lecture 6 - Division with remainder and prime factorization
Lecture 7 - Zeroes of Polynomials
Lecture 8 - Polynomial functions
Lecture 9 - Algebraically closed Fields and statement of FTA
Lecture 10 - Gaussâ¬â¢â¬â¢s Theorem (Uniqueness of factorization)
Lecture 11 - Digression on Rings homomorphism, Algebras
Lecture 12 - Kernel of homomorphisms and ideals in K[X], Z
Lecture 13 - Algebraic elements
Lecture 14 - Examples
Lecture 15 - Minimal Polynomials
Lecture 16 - Characterization of Algebraic elements
Lecture 17 - Theorem of Kronecker
Lecture 18 - Examples
Lecture 19 - Digression on Groups
Lecture 20 - Some examples and Characteristic of a Ring
Lecture 21 - Finite subGroups of the Unit Group of a Field
Lecture 22 - Construction of Finite Fields
Lecture 23 - Digression on Group action - I
Lecture 24 - Automorphism Groups of a Field Extension
Lecture 25 - Dedekind-Artin Theorem
Lecture 26 - Galois Extension
Lecture 27 - Examples of Galois extension
Lecture 28 - Examples of Automorphism Groups
Lecture 29 - Digression on Linear Algebra

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Minimal and Characteristic Polynomials, Norms, Trace of elements
Lecture 31 - Primitive Element Theorem for Galois Extension
Lecture 32 - Fundamental Theorem of Galois Theory
Lecture 33 - Fundamental Theorem of Galois Theory (Continued...)
Lecture 34 - Cyclotomic extensions
Lecture 35 - Cyclotomic Polynomials
Lecture 36 - Irreducibility of Cyclotomic Polynomials over Q
Lecture 37 - Reducibility of Cyclotomic Polynomials over Finite Fields
Lecture 38 - Galois Group of Cyclotomic Polynomials
Lecture 39 - Extension over a fixed Field of a finite subGroup is Galois Extension
Lecture 40 - Digression on Group action - II
Lecture 41 - Correspondence of Normal SubGroups and Galois sub-extensions
Lecture 42 - Correspondence of Normal SubGroups and Galois sub-extensions (Continued...)
Lecture 43 - Inverse Galois problem for Abelian Groups
Lecture 44 - Elementary Symmetric Polynomials
Lecture 45 - Fundamental Theorem on Symmetric Polynomials
Lecture 46 - Gal (K[X1,X2,Â³â³,Xn]/K[S1,S2,...,Sn])
Lecture 47 - Digression on Symmetric and Alternating Group
Lecture 48 - Discriminant of a Polynomial
Lecture 49 - Zeroes and Embeddings
Lecture 50 - Normal Extensions
Lecture 51 - Existence of Algebraic Closure
Lecture 52 - Uniqueness of Algebraic Closure
Lecture 53 - Proof of The Fundamental Theorem of Algebra
Lecture 54 - Galois Group of a Polynomial
Lecture 55 - Perfect Fields
Lecture 56 - Embeddings
Lecture 57 - Characterization of finite Separable extension
Lecture 58 - Primitive Element Theorem
Lecture 59 - Equivalence of Galois extensions and Normal-Separable extensions
Lecture 60 - Operation of Galois Group of Polynomial on the set of zeroes
Lecture 61 - Discriminants
Lecture 62 - Examples for further study
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - Stochastic Processes

Subject Co-ordinator - Dr. S. Dharmaraja

Co-ordinating Institute - IIT - Delhi

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Stochastic Processes
Lecture 2 - Introduction to Stochastic Processes (Continued.)
Lecture 3 - Problems in Random Variables and Distributions
Lecture 4 - Problems in Sequences of Random Variables
Lecture 5 - Definition, Classification and Examples
Lecture 6 - Simple Stochastic Processes
Lecture 7 - Stationary Processes
Lecture 8 - Autoregressive Processes
Lecture 9 - Introduction, Definition and Transition Probability Matrix
Lecture 10 - Chapman-Kolmogrov Equations
Lecture 11 - Classification of States and Limiting Distributions
Lecture 12 - Limiting and Stationary Distributions
Lecture 13 - Limiting Distributions, Ergodicity and Stationary Distributions
Lecture 14 - Time Reversible Markov Chain, Application of Irreducible Markov Chain in Queueing Models
Lecture 15 - Reducible Markov Chains
Lecture 16 - Definition, Kolmogrov Differential Equations and Infinitesimal Generator Matrix
Lecture 17 - Limiting and Stationary Distributions, Birth Death Processes
Lecture 18 - Poisson Processes
Lecture 19 - M/M/1 Queueing Model
Lecture 20 - Simple Markovian Queueing Models
Lecture 21 - Queueing Networks
Lecture 22 - Communication Systems
Lecture 23 - Stochastic Petri Nets
Lecture 24 - Conditional Expectation and Filtration
Lecture 25 - Definition and Simple Examples
Lecture 26 - Definition and Properties
Lecture 27 - Processes Derived from Brownian Motion
Lecture 28 - Stochastic Differential Equations
Lecture 29 - Ito Integrals

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Ito Formula and its Variants
Lecture 31 - Some Important SDE's and Their Solutions
Lecture 32 - Renewal Function and Renewal Equation
Lecture 33 - Generalized Renewal Processes and Renewal Limit Theorems
Lecture 34 - Markov Renewal and Markov Regenerative Processes
Lecture 35 - Non Markovian Queues
Lecture 36 - Non Markovian Queues Cont,,
Lecture 37 - Application of Markov Regenerative Processes
Lecture 38 - Galton-Watson Process
Lecture 39 - Markovian Branching Process
NPTEL Video Course - Mathematics - NOC:Stochastic Processes - 1

Subject Co-ordinator - Dr. S. Dharmaraja

Co-ordinating Institute - IIT - Delhi

Lecture 1 - Introduction and motivation for studying stochastic processes
Lecture 2 - Probability space and conditional probability
Lecture 3 - Random variable and cumulative distributive function
Lecture 4 - Discrete Uniform Distribution, Binomial Distribution, Geometric Distribution, Continuous Uniform Distribution, Exponential Distribution, Normal Distribution and Poisson Distribution
Lecture 5 - Joint Distribution of Random Variables
Lecture 6 - Independent Random Variables, Covariance and Correlation Coefficient and Conditional Distribution
Lecture 7 - Conditional Expectation and Covariance Matrix
Lecture 8 - Generating Functions, Law of Large Numbers and Central Limit Theorem
Lecture 9 - Problems in Random variables and Distributions
Lecture 10 - Problems in Random variables and Distributions (Continued...)
Lecture 11 - Problems in Random variables and Distributions (Continued...)
Lecture 12 - Problems in Random variables and Distributions (Continued...)
Lecture 13 - Problems in Sequences of Random Variables
Lecture 14 - Problems in Sequences of Random Variables (Continued...)
Lecture 15 - Problems in Sequences of Random Variables (Continued...)
Lecture 16 - Problems in Sequences of Random Variables (Continued...)
Lecture 17 - Definition of Stochastic Processes, Parameter and State Spaces
Lecture 18 - Classification of Stochastic Processes
Lecture 19 - Examples of Classification of Stochastic Processes
Lecture 20 - Examples of Classification of Stochastic Processes (Continued...)
Lecture 21 - Bernoulli Process
Lecture 22 - Poisson Process
Lecture 23 - Poisson Process (Continued...)
Lecture 24 - Simple Random Walk and Population Processes
Lecture 25 - Introduction to Discrete time Markov Chain
Lecture 26 - Introduction to Discrete time Markov Chain (Continued...)
Lecture 27 - Examples of Discrete time Markov Chain
Lecture 28 - Examples of Discrete time Markov Chain (Continued...)
Lecture 29 - Introduction to Chapman-Kolmogorov equations

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - State Transition Diagram and Examples
Lecture 31 - Examples
Lecture 32 - Introduction to Classification of States and Periodicity
Lecture 33 - Closed set of States and Irreducible Markov Chain
Lecture 34 - First Passage time and Mean Recurrence Time
Lecture 35 - Recurrent State and Transient State
Lecture 36 - Introduction and example of Classification of states
Lecture 37 - Example of Classification of states (Continued...)
Lecture 38 - Example of Classification of states (Continued...)
Lecture 39 - Example of Classification of states (Continued...)
Lecture 40 - Introduction and Limiting Distribution
Lecture 41 - Example of Limiting Distribution and Ergodicity
Lecture 42 - Stationary Distribution and Examples
Lecture 43 - Examples of Stationary Distributions
Lecture 44 - Time Reversible Markov Chain and Examples
Lecture 45 - Definition of Reducible Markov Chains and Types of Reducible Markov Chains
Lecture 46 - Stationary Distributions and Types of Reducible Markov chains
Lecture 47 - Type of Reducible Markov Chains (Continued...)
Lecture 48 - Gambler's Ruin Problem
Lecture 49 - Introduction to Continuous time Markov Chain
Lecture 50 - Waiting time Distribution
Lecture 51 - Chapman-Kolmogorov Equation
Lecture 52 - Infinitesimal Generator Matrix
Lecture 53 - Introduction and Example Of Continuous time Markov Chain
Lecture 54 - Limiting and Stationary Distributions
Lecture 55 - Time reversible CTMC and Birth Death Process
Lecture 56 - Steady State Distributions, Pure Birth Process and Pure Death Process
Lecture 57 - Introduction to Poisson Process
Lecture 58 - Definition of Poisson Process
Lecture 59 - Superposition and Deposition of Poisson Process
Lecture 60 - Compound Poisson Process and Examples
Lecture 61 - Introduction to Queueing Systems and Kendall Notations
Lecture 62 - M/M/1 Queueing Model
Lecture 63 - Little's Law, Distribution of Waiting Time and Response Time
Lecture 64 - Burke's Theorem and Simulation of M/M/1 queueing Model
Lecture 65 - M/M/c Queueing Model
Lecture 66 - M/M/1/N Queueing Model
Lecture 67 - M/M/c/K Model, M/M/c/c Loss System, M/M/? Self Service System
Lecture 68 - Transient Solution of Finite Birth Death Process and Finite Source Markovian Queueing Model
Lecture 69 - Queueing Networks Characteristics and Types of Queueing Networks
Lecture 70 - Tandem Queueing Networks
Lecture 71 - Stationary Distribution and Open Queueing Network
Lecture 72 - Jackson's Theorem, Closed Queueing Networks, Gordon and Newell Results
Lecture 73 - Wireless Handoff Performance Model and System Description
Lecture 74 - Description of 3G Cellular Networks and Queueing Model
Lecture 75 - Simulation of Queueing Systems
Lecture 76 - Definition and Basic Components of Petri Net and Reachability Analysis
Lecture 77 - Arc Extensions in Petri Net, Stochastic Petri Nets and examples
NPTEL Video Course - Mathematics - NOC: Stochastic Processes

Subject Co-ordinator - Dr. S. Dharmaraja

Co-ordinating Institute - IIT - Delhi

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction and motivation for studying stochastic processes
Lecture 2 - Probability space and conditional probability
Lecture 3 - Random variable and cumulative distribution function
Lecture 4 - Discrete Uniform Distribution, Binomial Distribution, Geometric Distribution, Continuous Uniform Distribution, Exponential Distribution, Normal Distribution and Poisson Distribution
Lecture 5 - Joint Distribution of Random Variables
Lecture 6 - Independent Random Variables, Covariance and Correlation Coefficient and Conditional Distribution
Lecture 7 - Conditional Expectation and Covariance Matrix
Lecture 8 - Generating Functions, Law of Large Numbers and Central Limit Theorem
Lecture 9 - Problems in Random variables and Distributions
Lecture 10 - Problems in Random variables and Distributions (Continued...)
Lecture 11 - Problems in Random variables and Distributions (Continued...)
Lecture 12 - Problems in Random variables and Distributions (Continued...)
Lecture 13 - Problems in Sequences of Random Variables
Lecture 14 - Problems in Sequences of Random Variables (Continued...)
Lecture 15 - Problems in Sequences of Random Variables (Continued...)
Lecture 16 - Problems in Sequences of Random Variables (Continued...)
Lecture 17 - Definition of Stochastic Processes, Parameter and State Spaces
Lecture 18 - Classification of Stochastic Processes
Lecture 19 - Examples of Classification of Stochastic Processes
Lecture 20 - Examples of Classification of Stochastic Processes (Continued...)
Lecture 21 - Bernoulli Process
Lecture 22 - Poisson Process
Lecture 23 - Poisson Process (Continued...)
Lecture 24 - Simple Random Walk and Population Processes
Lecture 25 - Introduction to Discrete time Markov Chain
Lecture 26 - Introduction to Discrete time Markov Chain (Continued...)
Lecture 27 - Examples of Discrete time Markov Chain
Lecture 28 - Examples of Discrete time Markov Chain (Continued...)
Lecture 29 - Introduction to Chapman-Kolmogorov equations

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - State Transition Diagram and Examples
Lecture 31 - Examples
Lecture 32 - Introduction to Classification of States and Periodicity
Lecture 33 - Closed set of States and Irreducible Markov Chain
Lecture 34 - First Passage time and Mean Recurrence Time
Lecture 35 - Recurrent State and Transient State
Lecture 36 - Introduction and example of Classification of states
Lecture 37 - Example of Classification of states (Continued...)
Lecture 38 - Example of Classification of states (Continued...)
Lecture 39 - Example of Classification of states (Continued...)
Lecture 40 - Introduction and Limiting Distribution
Lecture 41 - Example of Limiting Distribution and Ergodicity
Lecture 42 - Stationary Distribution and Examples
Lecture 43 - Examples of Stationary Distributions
Lecture 44 - Time Reversible Markov Chain and Examples
Lecture 45 - Definition of Reducible Markov Chains and Types of Reducible Markov Chains
Lecture 46 - Stationary Distributions and Types of Reducible Markov chains
Lecture 47 - Type of Reducible Markov Chains (Continued...)
Lecture 48 - Gambler's Ruin Problem
Lecture 49 - Introduction to Continuous time Markov Chain
Lecture 50 - Waiting time Distribution
Lecture 51 - Chapman-Kolmogorov Equation
Lecture 52 - Infinitesimal Generator Matrix
Lecture 53 - Introduction and Example of Continuous time Markov Chain
Lecture 54 - Limiting and Stationary Distributions
Lecture 55 - Time reversible CTMC and Birth Death Process
Lecture 56 - Steady State Distributions, Pure Birth Process and Pure Death Process
Lecture 57 - Introduction to Poisson Process
Lecture 58 - Definition of Poission Process
Lecture 59 - Superposition and Deposition of Poisson Process
Lecture 60 - Compound Poission Process and Examples
Lecture 61 - Introduction to Queueing Systems and Kendall Notations
Lecture 62 - M/M/1 Queueing Model
Lecture 63 - Little's Law, Distribution of Waiting Time and Response Time
Lecture 64 - Burke's Theorem and Simulation of M/M/1 queueing Model
Lecture 65 - M/M/c Queueing Model
Lecture 66 - M/M/1/N Queueing Model
Lecture 67 - M/M/c/K Model, M/M/c/c Loss System, M/M/? Self Service System
Lecture 68 - Transient Solution of Finite Birth Death Process and Finite Source Markovian Queueing Model
Lecture 69 - Queueing Networks Characteristics and Types of Queueing Networks
Lecture 70 - Tandem Queueing Networks
Lecture 71 - Stationary Distribution and Open Queueing Network
Lecture 72 - Jackson's Theorem, Closed Queueing Networks, Gordon and Newell Results
Lecture 73 - Wireless Handoff Performance Model and System Description
Lecture 74 - Description of 3G Cellular Networks and Queueing Model
Lecture 75 - Simulation of Queueing Systems
Lecture 76 - Definition and Basic Components of Petri Net and Reachability Analysis
Lecture 77 - Arc Extensions in Petri Net, Stochastic Petri Nets and examples
Lecture 78 - Generalized Stochastic Petri Net
Lecture 79 - Generalized Stochastic Petri Net (Continued...)
Lecture 80 - Conditional Expectation and Examples
Lecture 81 - Filtration in Discrete time
Lecture 82 - Remarks of Conditional Expectation and Adaptability
Lecture 83 - Definition and Examples of Martingale
Lecture 84 - Examples of Martingale (continued...)
Lecture 85 - Examples of Martingale (Continued...)
Lecture 86 - Doob's Martingale Process, Sub martingale and Super Martingale
Lecture 87 - Definition of Brownian Motion
Lecture 88 - Definition of Brownian Motion (Continued...)
Lecture 89 - Properties of Brownian Motion
Lecture 90 - Processes Derived from Brownian Motion
Lecture 91 - Processes Derived from Brownian Motion (Continued...)
Lecture 92 - Processes Derived from Brownian Motion (Continued...)
Lecture 93 - Stochastic Differential Equations
Lecture 94 - Stochastic Differential Equations (Continued...)
Lecture 95 - Stochastic Differential Equations (Continued...)
Lecture 96 - Ito Integrals
Lecture 97 - Ito Integrals (Continued...)
Lecture 98 - Ito Integrals (Continued...)
Lecture 99 - Renewal Function and Renewal Equation
Lecture 100 - Renewal Function and Renewal Equation (Continued...)
Lecture 101 - Renewal Function and Renewal Equation (Continued...)
Lecture 102 - Generalized Renewal Processes and Renewal Limit Theorems
Lecture 103 - Generalized Renewal Processes and Renewal Limit Theorems (Continued...)
Lecture 104 - Generalized Renewal Processes and Renewal Limit Theorems (Continued...)
Lecture 105 - Markov Renewal and Markov Regenerative Processes
Lecture 106 - Markov Renewal and Markov Regenerative Processes (Continued...)
Lecture 107 - Markov Renewal and Markov Regenerative Processes (Continued...)
Lecture 108 - Markov Renewal and Markov Regenerative Processes (Continued...)
Lecture 109 - Non Markovian Queues
Lecture 110 - Non Markovian Queues (Continued...)
Lecture 111 - Non Markovian Queues (Continued...)
Lecture 112 - Stationary Processes
Lecture 113 - Stationary Processes (Continued...)
Lecture 114 - Stationary Processes (Continued...)
Lecture 115 - Stationary Processes (Continued...) and Ergodicity
Lecture 116 - G1/M/1 queue
Lecture 117 - G1/M/1 queue (Continued...)
Lecture 118 - G1/M/1/N queue and examples
Lecture 119 - Galton-Watson Process
Lecture 120 - Examples and Theorems
Lecture 121 - Theorems and Examples (Continued...)
Lecture 122 - Markov Branching Process
Lecture 123 - Markov Branching Process Theorems and Properties
Lecture 124 - Markov Branching Process Theorems and Properties (Continued...)
Lecture 1 - The beginning
Lecture 2 - Elementary Concepts
Lecture 3 - Elementary Concepts (Continued...)
Lecture 4 - More on orbits
Lecture 5 - Periods of Periodic Points
Lecture 6 - Scrambled Sets
Lecture 7 - Sensitive Dependence on Initial Conditions
Lecture 8 - A Population Dynamics Model
Lecture 9 - Bifurcations
Lecture 10 - Nonlinear Systems
Lecture 11 - Horseshoe Attractor
Lecture 12 - Dynamics of the Horseshoe Attractor
Lecture 13 - Recurrence
Lecture 14 - Recurrence (Continued...)
Lecture 15 - Transitivity
Lecture 16 - Devaney's Chaos
Lecture 17 - Transitivity = Chaos on Intervals
Lecture 18 - Stronger forms of Transitivity
Lecture 19 - Chaotic Properties of Mixing Systems
Lecture 20 - Weakly Mixing and Chaos
Lecture 21 - Strongly Transitive Systems
Lecture 22 - Strongly Transitive Systems (Continued...)
Lecture 23 - Introduction to Symbolic Dynamics
Lecture 24 - Shift Spaces
Lecture 25 - Subshifts of Finite Type
Lecture 26 - Subshifts of Finite Type (Continued...), Chaotic Dynamical Systems
Lecture 27 - Measuring Chaos - Topological Entropy
Lecture 28 - Topological Entropy - Adler's Version
Lecture 29 - Bowen's Definition of Topological Entropy
Lecture 30 - Equivalence of the two definitions of Topological Entropy
Lecture 31 - Linear Systems in Two Dimensions
Lecture 32 - Asymptotic Properties of Orbits of Linear Transformation in IR2
Lecture 33 - Hyperbolic Toral Automorphisms
Lecture 34 - Chaos in Toral Automorphisms
Lecture 35 - Chaotic Attractors of Henon Maps
NPTEL Video Course - Mathematics - NOC: Introduction to Probability Theory and Stochastic Processes

Subject Co-ordinator - Dr. S. Dharmaraja

Co-ordinating Institute - IIT - Delhi

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Random experiment, sample space, axioms of probability, probability space
Lecture 2 - Random experiment, sample space, axioms of probability, probability space (Continued...)
Lecture 3 - Random experiment, sample space, axioms of probability, probability space (Continued...)
Lecture 4 - Conditional probability, independence of events.
Lecture 5 - Multiplication rule, total probability rule, Bayes's theorem.
Lecture 6 - Definition of Random Variable, Cumulative Distribution Function
Lecture 7 - Definition of Random Variable, Cumulative Distribution Function (Continued...)
Lecture 8 - Definition of Random Variable, Cumulative Distribution Function (Continued...)
Lecture 9 - Type of Random Variables, Probability Mass Function, Probability Density Function
Lecture 10 - Type of Random Variables, Probability Mass Function, Probability Density Function (Continued...)
Lecture 11 - Distribution of Function of Random Variables
Lecture 12 - Mean and Variance
Lecture 13 - Mean and Variance (Continued...)
Lecture 14 - Higher Order Moments and Moments Inequalities
Lecture 15 - Higher Order Moments and Moments Inequalities (Continued...)
Lecture 16 - Generating Functions
Lecture 17 - Generating Functions (Continued...)
Lecture 18 - Common Discrete Distributions
Lecture 19 - Common Discrete Distributions (Continued...)
Lecture 20 - Common Continuous Distributions
Lecture 21 - Common Continuous Distributions (Continued...)
Lecture 22 - Applications of Random Variable
Lecture 23 - Applications of Random Variable (Continued...)
Lecture 24 - Random vector and joint distribution
Lecture 25 - Joint probability mass function
Lecture 26 - Joint probability density function
Lecture 27 - Independent random variables
Lecture 28 - Independent random variables (Continued...)
Lecture 29 - Functions of several random variables
Lecture 30 - Functions of several random variables (Continued...)
Lecture 31 - Some important results
Lecture 32 - Order statistics
Lecture 33 - Conditional distributions
Lecture 34 - Random sum
Lecture 35 - Moments and Covariance
Lecture 36 - Variance Covariance matrix
Lecture 37 - Multivariate Normal distribution
Lecture 38 - Probability generating function and Moment generating function
Lecture 39 - Correlation coefficient
Lecture 40 - Conditional Expectation
Lecture 41 - Conditional Expectation (Continued...)
Lecture 42 - Modes of Convergence
Lecture 43 - Mode of Convergence (Continued...)
Lecture 44 - Law of Large Numbers
Lecture 45 - Central Limit Theorem
Lecture 46 - Central Limit Theorem (Continued...)
Lecture 47 - Motivation for Stochastic Processes
Lecture 48 - Definition of a Stochastic Process
Lecture 49 - Classification of Stochastic Processes
Lecture 50 - Examples of Stochastic Process
Lecture 51 - Examples Of Stochastic Process (Continued...)
Lecture 52 - Bernoulli Process
Lecture 53 - Poisson Process
Lecture 54 - Poisson Process (Continued...)
Lecture 55 - Simple Random Walk
Lecture 56 - Time Series and Related Definitions
Lecture 57 - Strict Sense Stationary Process
Lecture 58 - Wide Sense Stationary Process and Examples
Lecture 59 - Examples of Stationary Processes (Continued...)
Lecture 60 - Discrete Time Markov Chain (DTMC)
Lecture 61 - DTMC (Continued...)
Lecture 62 - Examples of DTMC
Lecture 63 - Examples of DTMC (Continued...)
Lecture 64 - Chapman-Kolmogorov equations and N-step transition matrix
Lecture 65 - Examples based on N-step transition matrix
Lecture 66 - Examples (Continued...)
Lecture 67 - Classification of states
Lecture 68 - Classification of states (Continued...)
<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>Calculation of N-Step - 9</td>
</tr>
<tr>
<td>70</td>
<td>Calculation of N-Step - 10</td>
</tr>
<tr>
<td>71</td>
<td>Limiting and Stationary distributions</td>
</tr>
<tr>
<td>72</td>
<td>Limiting and Stationary distributions (Continued...)</td>
</tr>
<tr>
<td>73</td>
<td>Continuous time Markov chain (CTMC)</td>
</tr>
<tr>
<td>74</td>
<td>CTMC (Continued...)</td>
</tr>
<tr>
<td>75</td>
<td>State transition diagram and Chapman-Kolmogorov equation</td>
</tr>
<tr>
<td>76</td>
<td>Infinitesimal generator and Kolmogorov differential equations</td>
</tr>
<tr>
<td>77</td>
<td>Limiting distribution</td>
</tr>
<tr>
<td>78</td>
<td>Limiting and Stationary distributions - 1</td>
</tr>
<tr>
<td>79</td>
<td>Birth death process</td>
</tr>
<tr>
<td>80</td>
<td>Birth death process (Continued...)</td>
</tr>
<tr>
<td>81</td>
<td>Poisson process - 1</td>
</tr>
<tr>
<td>82</td>
<td>Poisson process (Continued...)</td>
</tr>
<tr>
<td>83</td>
<td>Poisson process (Continued...)</td>
</tr>
<tr>
<td>84</td>
<td>Non-homogeneous and compound Poisson process</td>
</tr>
<tr>
<td>85</td>
<td>Introduction to Queueing Models and Kendall Notation</td>
</tr>
<tr>
<td>86</td>
<td>M/M/1 Queueing Model</td>
</tr>
<tr>
<td>87</td>
<td>M/M/1 Queueing Model (Continued...)</td>
</tr>
<tr>
<td>88</td>
<td>M/M/1 Queueing Model and Burke's Theorem</td>
</tr>
<tr>
<td>89</td>
<td>M/M/c Queueing Model</td>
</tr>
<tr>
<td>90</td>
<td>M/M/c (Continued...) and M/M/1/N Model</td>
</tr>
<tr>
<td>91</td>
<td>Other Markovian Queueing Models</td>
</tr>
<tr>
<td>92</td>
<td>Transient Solution of Finite Capacity Markovian Queues</td>
</tr>
</tbody>
</table>
NPTEL Video Course - Mathematics - NOC: Statistical Inference

Subject Co-ordinator - Prof. Niladri Chaterjee

Co-ordinating Institute - IIT - Delhi

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Statistical Inference - 1
Lecture 2 - Statistical Inference - 2
Lecture 3 - Statistical Inference - 3
Lecture 4 - Statistical Inference - 4
Lecture 5 - Statistical Inference - 5
Lecture 6 - Statistical Inference - 6
Lecture 7 - Statistical Inference - 7
Lecture 8 - Statistical Inference - 8
Lecture 9 - Statistical Inference - 9
Lecture 10 - Statistical Inference - 10
Lecture 11 - Statistical Inference - 11
Lecture 12 - Statistical Inference - 12
Lecture 13 - Statistical Inference - 13
Lecture 14 - Statistical Inference - 14
Lecture 15 - Statistical Inference - 15
Lecture 16 - Statistical Inference - 16
Lecture 17 - Statistical Inference - 17
Lecture 18 - Statistical Inference - 18
Lecture 19 - Statistical Inference - 19
Lecture 20 - Statistical Inference - 20
Lecture 21 - Statistical Inference - 21
Lecture 30 - Structured Grammars
Lecture 31 - Decidability
Lecture 32 - Undecidability 1
Lecture 33 - Undecidability 2
Lecture 34 - Undecidability 3
Lecture 35 - Time Bounded Turing Machines
Lecture 36 - P and NP
Lecture 37 - NP-Completeness
Lecture 38 - NP-Complete Problems 1
Lecture 39 - NP-Complete Problems 2
Lecture 40 - NP-Complete Problems 3
Lecture 41 - Chomsky Hierarchy
NPTEL Video Course - Mathematics - Complex Analysis

Subject Co-ordinator - Prof. P.A.S. Sree Krishna

Co-ordinating Institute - IIT - Guwahati

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction
Lecture 2 - Introduction to Complex Numbers
Lecture 3 - de Moivre’s Formula and Stereographic Projection
Lecture 4 - Topology of the Complex Plane - Part-I
Lecture 5 - Topology of the Complex Plane - Part-II
Lecture 6 - Topology of the Complex Plane - Part-III
Lecture 7 - Introduction to Complex Functions
Lecture 8 - Limits and Continuity
Lecture 9 - Differentiation
Lecture 10 - Cauchy-Riemann Equations and Differentiability
Lecture 11 - Analytic functions; the exponential function
Lecture 12 - Sine, Cosine and Harmonic functions
Lecture 13 - Branches of Multifunctions; Hyperbolic Functions
Lecture 14 - Problem Solving Session I
Lecture 15 - Integration and Contours
Lecture 16 - Contour Integration
Lecture 17 - Introduction to Cauchy’s Theorem
Lecture 18 - Cauchy’s Theorem for a Rectangle
Lecture 19 - Cauchy’s theorem - Part-II
Lecture 20 - Cauchy’s Theorem - Part-III
Lecture 21 - Cauchy’s integral Formula and its Consequences
Lecture 22 - The First and Second Derivatives of Analytic Functions
Lecture 23 - Morera’s Theorem and Higher Order Derivatives of Analytic Functions
Lecture 24 - Problem Solving Session II
Lecture 25 - Introduction to Complex Power Series
Lecture 26 - Analyticity of Power Series
Lecture 27 - Taylor’s Theorem
Lecture 28 - Zeroes of Analytic Functions
Lecture 29 - Counting the Zeroes of Analytic Functions

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Open mapping theorem - Part-I
Lecture 31 - Open mapping theorem - Part-II
Lecture 32 - Properties of Mobius Transformations - Part-I
Lecture 33 - Properties of Mobius Transformations - Part-II
Lecture 34 - Problem Solving Session III
Lecture 35 - Removable Singularities
Lecture 36 - Poles Classification of Isolated Singularities
Lecture 37 - Essential Singularity & Introduction to Laurent Series
Lecture 38 - Laurent’s Theorem
Lecture 39 - Residue Theorem and Applications
Lecture 40 - Problem Solving Session IV
NPTEL Video Course - Mathematics - Applied Multivariate Analysis

Subject Co-ordinator - Dr. Sharmishtha Mitra
Co-ordinating Institute - IIT - Kanpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Prologue
Lecture 2 - Basic concepts on multivariate distribution
Lecture 3 - Basic concepts on multivariate distribution
Lecture 4 - Multivariate normal distribution I
Lecture 5 - Multivariate normal distribution II
Lecture 6 - Multivariate normal distribution III
Lecture 7 - Some problems on multivariate distributions I
Lecture 8 - Some problems on multivariate distributions II
Lecture 9 - Random sampling from multivariate normal distribution and Wishart distribution - I
Lecture 10 - Random sampling from multivariate normal distribution and Wishart distribution - II
Lecture 11 - Random sampling from multivariate normal distribution and Wishart distribution - III
Lecture 12 - Wishart distribution and it's properties I
Lecture 13 - Wishart distribution and it's properties II
Lecture 14 - Hotelling's T2 distribution and it's applications
Lecture 15 - Hotelling's T2 distribution and various confidence intervals and regions
Lecture 16 - Hotelling's T2 distribution and Profile analysis
Lecture 17 - Profile analysis I
Lecture 18 - Profile analysis II
Lecture 19 - MANOVA I
Lecture 20 - MANOVA II
Lecture 21 - MANOVA III
Lecture 22 - MANOVA & Multiple Correlation Coefficient
Lecture 23 - Multiple Correlation Coefficient
Lecture 24 - Principal Component Analysis
Lecture 25 - Principal Component Analysis
Lecture 26 - Principal Component Analysis
Lecture 27 - Cluster Analysis
Lecture 28 - Cluster Analysis
Lecture 29 - Cluster Analysis

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimath.in
Lecture 30 - Cluster Analysis
Lecture 31 - Discriminant Analysis and Classification
Lecture 32 - Discriminant Analysis and Classification
Lecture 33 - Discriminant Analysis and Classification
Lecture 34 - Discriminant Analysis and Classification
Lecture 35 - Discriminant Analysis and Classification
Lecture 36 - Discriminant Analysis and Classification
Lecture 37 - Discriminant Analysis and Classification
Lecture 38 - Factor_Analysis
Lecture 39 - Factor_Analysis
Lecture 40 - Factor_Analysis
Lecture 41 - Cannonical Correlation Analysis
Lecture 42 - Cannonical Correlation Analysis
Lecture 43 - Cannonical Correlation Analysis
Lecture 44 - Cannonical Correlation Analysis

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Calculus of Variations and Integral Equations
Lecture 31 - Calculus of Variations and Integral Equations
Lecture 32 - Calculus of Variations and Integral Equations
Lecture 33 - Calculus of Variations and Integral Equations
Lecture 34 - Calculus of Variations and Integral Equations
Lecture 35 - Calculus of Variations and Integral Equations
Lecture 36 - Calculus of Variations and Integral Equations
Lecture 37 - Calculus of Variations and Integral Equations
Lecture 38 - Calculus of Variations and Integral Equations
Lecture 39 - Calculus of Variations and Integral Equations
Lecture 40 - Calculus of Variations and Integral Equations
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - Linear programming and Extensions

Subject Co-ordinator - Prof. Prabha Sharma
Co-ordinating Institute - IIT - Kanpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Linear Programming Problems
Lecture 2 - Vector space, Linear independence and dependence, basis
Lecture 3 - Moving from one basic feasible solution to another, optimality criteria
Lecture 4 - Basic feasible solutions, existence & derivation
Lecture 5 - Convex sets, dimension of a polyhedron, faces, Example of a polytope
Lecture 6 - Direction of a polyhedron, correspondence between bfs and extreme points
Lecture 7 - Representation theorem, LPP solution is a bfs, Assignment 1
Lecture 8 - Development of the Simplex Algorithm, Unboundedness, Simplex Tableau
Lecture 9 - Simplex Tableau & algorithm, Cycling, Bland’s anti-cycling rules, Phase I & Phase II
Lecture 10 - Big-M method, Graphical solutions, adjacent extreme pts and adjacent bfs
Lecture 11 - Assignment 2, progress of Simplex algorithm on a polytope, bounded variable LPP
Lecture 12 - LPP Bounded variable, Revised Simplex algorithm, Duality theory, weak duality theorem
Lecture 13 - Weak duality theorem, economic interpretation of dual variables, Fundamental theorem of duality
Lecture 14 - Examples of writing the dual, complementary slackness theorem
Lecture 15 - Complementary slackness conditions, Dual Simplex algorithm, Assignment 3
Lecture 16 - Primal-dual algorithm
Lecture 17 - Problem in lecture 16, starting dual feasible solution, Shortest Path Problem
Lecture 18 - Shortest Path Problem, Primal-dual method, example
Lecture 19 - Shortest Path Problem-complexity, interpretation of dual variables, post-optimality analysis-changes in b
Lecture 20 - Assignment 4, postoptimality analysis, changes in b, adding a new constraint, changes in {aij},
Lecture 21 - Parametric LPP-Right hand side vector
Lecture 22 - Parametric cost vector LPP
Lecture 23 - Parametric cost vector LPP, Introduction to Min-cost flow problem
Lecture 24 - Mini-cost flow problem-Transportation problem
Lecture 25 - Transportation problem degeneracy, cycling
Lecture 26 - Sensitivity analysis
Lecture 27 - Sensitivity analysis
Lecture 28 - Bounded variable transportation problem, min-cost flow problem
Lecture 29 - Min-cost flow problem

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Starting feasible solution, Lexicographic method for preventing cycling, strongly feasible solution
Lecture 31 - Assignment 6, Shortest path problem, Shortest Path between any two nodes, Detection of negative cycle
Lecture 32 - Min-cost-flow Sensitivity analysis Shortest path problem sensitivity analysis
Lecture 33 - Min-cost flow changes in arc capacities, Max-flow problem, assignment 7
Lecture 34 - Problem 3 (assignment 7), Min-cut Max-flow theorem, Labelling algorithm
Lecture 35 - Max-flow - Critical capacity of an arc, starting solution for min-cost flow problem
Lecture 36 - Improved Max-flow algorithm
Lecture 37 - Critical Path Method (CPM)
Lecture 38 - Programme Evaluation and Review Technique (PERT)
Lecture 39 - Simplex Algorithm is not polynomial time- An example
Lecture 40 - Interior Point Methods
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - Convex Optimization

Subject Co-ordinator - Dr. Joydeep Dutta

Co-ordinating Institute - IIT - Kanpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Convex Optimization
Lecture 2 - Convex Optimization
Lecture 3 - Convex Optimization
Lecture 4 - Convex Optimization
Lecture 5 - Convex Optimization
Lecture 6 - Convex Optimization
Lecture 7 - Convex Optimization
Lecture 8 - Convex Optimization
Lecture 9 - Convex Optimization
Lecture 10 - Convex Optimization
Lecture 11 - Convex Optimization
Lecture 12 - Convex Optimization
Lecture 13 - Convex Optimization
Lecture 14 - Convex Optimization
Lecture 15 - Convex Optimization
Lecture 16 - Convex Optimization
Lecture 17 - Convex Optimization
Lecture 18 - Convex Optimization
Lecture 19 - Convex Optimization
Lecture 20 - Convex Optimization
Lecture 21 - Convex Optimization
Lecture 22 - Convex Optimization
Lecture 23 - Convex Optimization
Lecture 24 - Convex Optimization
Lecture 25 - Convex Optimization
Lecture 26 - Convex Optimization
Lecture 27 - Convex Optimization
Lecture 28 - Convex Optimization
Lecture 29 - Convex Optimization

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Convex Optimization
Lecture 31 - Convex Optimization
Lecture 32 - Convex Optimization
Lecture 33 - Convex Optimization
Lecture 34 - Convex Optimization
Lecture 35 - Convex Optimization
Lecture 36 - Convex Optimization
Lecture 37 - Convex Optimization
Lecture 38 - Convex Optimization
Lecture 39 - Convex Optimization
Lecture 40 - Convex Optimization
Lecture 41 - Convex Optimization
Lecture 42 - Convex Optimization
NPTEL Video Course - Mathematics - Foundations of Optimization

Subject Co-ordinator - Dr. Joydeep Dutta

Co-ordinating Institute - IIT - Kanpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Optimization
Lecture 2 - Optimization
Lecture 3 - Optimization
Lecture 4 - Optimization
Lecture 5 - Optimization
Lecture 6 - Optimization
Lecture 7 - Optimization
Lecture 8 - Optimization
Lecture 9 - Optimization
Lecture 10 - Optimization
Lecture 11 - Optimization
Lecture 12 - Optimization
Lecture 13 - Optimization
Lecture 14 - Optimization
Lecture 15 - Optimization
Lecture 16 - Optimization
Lecture 17 - Optimization
Lecture 18 - Optimization
Lecture 19 - Optimization
Lecture 20 - Optimization
Lecture 21 - Optimization
Lecture 22 - Optimization
Lecture 23 - Optimization
Lecture 24 - Optimization
Lecture 25 - Optimization
Lecture 26 - Optimization
Lecture 27 - Optimization
Lecture 28 - Optimization
Lecture 29 - Optimization

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - Probability Theory and Applications

Subject Co-ordinator - Prof. Prabha Sharma
Co-ordinating Institute - IIT - Kanpur
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Basic principles of counting
Lecture 2 - Sample space, events, axioms of probability
Lecture 3 - Conditional probability, Independence of events
Lecture 4 - Random variables, cumulative density function, expected value
Lecture 5 - Discrete random variables and their distributions
Lecture 6 - Discrete random variables and their distributions
Lecture 7 - Discrete random variables and their distributions
Lecture 8 - Continuous random variables and their distributions
Lecture 9 - Continuous random variables and their distributions
Lecture 10 - Continuous random variables and their distributions
Lecture 11 - Function of random variables, Moment generating function
Lecture 12 - Jointly distributed random variables, Independent r. v. and their sums
Lecture 13 - Independent r. v. and their sums
Lecture 14 - Chi square r. v., sums of independent normal r. v., Conditional distr
Lecture 15 - Conditional disti, Joint distr. of functions of r. v., Order statistics
Lecture 16 - Order statistics, Covariance and correlation
Lecture 17 - Covariance, Correlation, Cauchy- Schwarz inequalities, Conditional expectation
Lecture 18 - Conditional expectation, Best linear predictor
Lecture 19 - Inequalities and bounds
Lecture 20 - Convergence and limit theorems
Lecture 21 - Central limit theorem
Lecture 22 - Applications of central limit theorem
Lecture 23 - Strong law of large numbers, Joint mgf
Lecture 24 - Convolutions
Lecture 25 - Stochastic processes
Lecture 26 - Transition and state probabilities
Lecture 27 - State prob., First passage and First return prob
Lecture 28 - First passage and First return prob. Classification of states
Lecture 29 - Random walk, periodic and null states

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Reducible Markov chains
Lecture 31 - Time reversible Markov chains
Lecture 32 - Poisson Processes
Lecture 33 - Inter-arrival times, Properties of Poisson processes
Lecture 34 - Queuing Models
Lecture 35 - Analysis of L, Lq, W and Wq, M/M/S model
Lecture 36 - M/M/S, M/M/I/K models
Lecture 37 - M/M/I/K and M/M/S/K models
Lecture 38 - Application to reliability theory failure law
Lecture 39 - Exponential failure law, Weibull law
Lecture 40 - Reliability of systems
NPTEL Video Course - Mathematics - NOC: Probability and Stochastics for finance

Subject Co-ordinator - Dr. Joydeep Dutta

Co-ordinating Institute - IIT - Kanpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Basic Probability
Lecture 2 - Interesting Problems In Probability
Lecture 3 - Random variables, distribution function and independence
Lecture 4 - Chebyshev inequality, Borel-Cantelli Lemmas and related issues
Lecture 5 - Law of Large Number and Central Limit Theorem
Lecture 6 - Conditional Expectation - I
Lecture 7 - Conditional Expectation - II
Lecture 8 - Martingales
Lecture 9 - Brownian Motion - I
Lecture 10 - Brownian Motion - II
Lecture 11 - Brownian Motion - III
Lecture 12 - Ito Integral - I
Lecture 13 - Ito Integral - II
Lecture 14 - Ito Calculus - I
Lecture 15 - Ito Calculus - II
Lecture 16 - Ito Integral In Higher Dimension
Lecture 17 - Application to Ito Integral - I
Lecture 18 - Application to Ito Integral - II
Lecture 19 - Black Scholes Formula - I
Lecture 20 - Black Scholes Formula - II
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - NOC:Differential Calculus in Several Variables

Subject Co-ordinator - Prof. Sudipta Dutta
Co-ordinating Institute - IIT - Kanpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Several Variables and Notion Of distance in Rn
Lecture 2 - Continuity And Compactness
Lecture 3 - Continuity And Connectedness
Lecture 4 - Derivatives
Lecture 5 - Matrix Of Linear Transformation
Lecture 6 - Examples for Differentiable function
Lecture 7 - Sufficient condition of differentiability
Lecture 8 - Chain Rule
Lecture 9 - Mean Value Theorem
Lecture 10 - Higher Order Derivatives
Lecture 11 - Taylor's Formula
Lecture 12 - Maximum And Minimum
Lecture 13 - Second derivative test for maximum, minimum and saddle point
Lecture 14 - We formalise the second derivative test discussed in Lecture 2 and do examples
Lecture 15 - Specialisation to functions of two variables
Lecture 16 - Implicit Function Theorem
Lecture 17 - Implicit Function Theorem - a
Lecture 18 - Application of IFT
Lecture 19 - Application of IFT
Lecture 20 - Application of IFT
Lecture 21 - Application of IFT

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - NOC:Curves and Surfaces

Subject Co-ordinator - Prof. Sudipta Dutta
Co-ordinating Institute - IIT - Kanpur
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Level curves and locus, definition of parametric curves, tangent, arc length, arc length parametrisation
Lecture 2 - How much a curve is curved, signed unit normal and signed curvature, rigid motions, constant curvature
Lecture 3 - Curves in R^3, principal normal and binormal, torsion
Lecture 4 - Frenet-Serret formula
Lecture 5 - Simple closed curve and isoperimetric inequality
Lecture 6 - Surfaces and parametric surfaces, examples, regular surface and non-example of regular surface, transition maps
Lecture 7 - Transition maps of smooth surfaces, smooth function between surfaces, diffeomorphism
Lecture 8 - Reparameterization
Lecture 9 - Tangent, Normal
Lecture 10 - Orientable surfaces
Lecture 11 - Examples of Surfaces
Lecture 12 - First Fundamental Form
Lecture 13 - Conformal Mapping
Lecture 14 - Curvature of Surfaces
Lecture 15 - Euler's Theorem
Lecture 16 - Regular Surfaces locally as Quadratic Surfaces
Lecture 17 - Geodesics
Lecture 18 - Existence of Geodesics, Geodesics on Surfaces of revolution
Lecture 19 - Geodesics on surfaces of revolution; Clairaut's Theorem
Lecture 20 - Pseudosphere
Lecture 21 - Classification of Quadratic Surface
Lecture 22 - Surface Area and Equiareal Map

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 1 - Basic Fundamental Concepts Of Modelling
Lecture 2 - Regression Model - A Statistical Tool
Lecture 3 - Simple Linear Regression Analysis
Lecture 4 - Estimation Of Parameters In Simple Linear Regression Model
Lecture 5 - Estimation Of Parameters In Simple Linear Regression Model (Continued...)
Lecture 6 - Estimation Of Parameters In Simple Linear Regression Model (Continued...)
Lecture 7 - Maximum Likelihood Estimation of Parameters in Simple Linear Regression Model
Lecture 8 - Testing of Hypothesis and Confidence Interval Estimation in Simple Linear Regression Model
Lecture 9 - Testing of Hypothesis and Confidence Interval Estimation in Simple Linear Regression Model (Continued...)
Lecture 10 - Software Implementation in Simple Linear Regression Model using MINITAB
Lecture 11 - Multiple Linear Regression Model
Lecture 12 - Estimation of Model Parameters in Multiple Linear Regression Model
Lecture 13 - Estimation of Model Parameters in Multiple Linear Regression Model (Continued...)
Lecture 14 - Standardized Regression Coefficients and Testing of Hypothesis
Lecture 15 - Testing of Hypothesis (Continued...) and Goodness of Fit of the Model
Lecture 16 - Diagnostics in Multiple Linear Regression Model
Lecture 17 - Diagnostics in Multiple Linear Regression Model (Continued...)
Lecture 18 - Diagnostics in Multiple Linear Regression Model (Continued...)
Lecture 19 - Software Implementation of Multiple Linear Regression Model using MINITAB
Lecture 20 - Software Implementation of Multiple Linear Regression Model using MINITAB (Continued...)
Lecture 21 - Forecasting in Multiple Linear Regression Model
Lecture 22 - Within Sample Forecasting
Lecture 23 - Outside Sample Forecasting
Lecture 24 - Software Implementation of Forecasting using MINITAB
Lecture 1 - How to Learn and Follow the Course
Lecture 2 - Why R and Installation Procedure
Lecture 3 - Introduction _Help_ Demo examples_ packages_ libraries
Lecture 4 - Introduction _Command line_ Data editor _ Rstudio
Lecture 5 - Basics in Calculations
Lecture 6 - Basics of Calculations _ Calculator _Built in Functions Assignments
Lecture 7 - Basics of Calculations _Functions _Matrices
Lecture 8 - Basics Calculations
Lecture 9 - Basics Calculations
Lecture 10 - Basics Calculations
Lecture 11 - Basics Calculations
Lecture 12 - Basics Calculations
Lecture 13 - Basics Calculations
Lecture 14 - Basics Calculations
Lecture 15 - Data management - Sequences
Lecture 16 - Data management - sequences
Lecture 17 - Data management - Repeats
Lecture 18 - Data management - Sorting and Ordering
Lecture 19 - Data management - Lists
Lecture 20 - Data management - Lists (Continued...)
Lecture 21 - Data management - Vector indexing
Lecture 22 - Data management - Vector Indexing (Continued...)
Lecture 23 - Data management - Factors
Lecture 24 - Data management - factors (Continued...)
Lecture 25 - Strings - Display and Formatting, Print and Format Functions
Lecture 26 - Strings - Display and Formatting, Print and Format with Concatenate
Lecture 27 - Strings - Display and Formatting, Paste Function
Lecture 28 - Strings - Display and Formatting, Splitting
Lecture 29 - Strings - Display and Formatting, Replacement_ Manipulations _Alphabets
Lecture 30 - Strings - Display and Formatting, Replacement and Evaluation of Strings
Lecture 31 - Data frames
Lecture 32 - Data frames (Continued...)
Lecture 33 - Data frames (Continued...)
Lecture 34 - Data Handling - Importing CSV and Tabular Data Files
Lecture 35 - Data Handling - Importing Data Files from Other Software
Lecture 36 - Statistical Functions - Frequency and Partition values
Lecture 37 - Statistical Functions - Graphics and Plots
Lecture 38 - Statistical Functions - Central Tendency and Variation
Lecture 39 - Statistical Functions - Boxplots, Skewness and Kurtosis
Lecture 40 - Statistical Functions - Bivariate three dimensional plot
Lecture 41 - Statistical Functions - Correlation and Examples of Programming
Lecture 42 - Examples of Programming
Lecture 43 - Examples of More Programming
NPTEL Video Course - Mathematics - NOC: Descriptive Statistics with R Software

Subject Co-ordinator - Prof. Shalabh

Co-ordinating Institute - IIT - Kanpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to R Software
Lecture 2 - Basics and R as a Calculator
Lecture 3 - Calculations with Data Vectors
Lecture 4 - Built-in Commands and Missing Data Handling
Lecture 5 - Operations with Matrices
Lecture 6 - Objectives, Steps and Basic Definitions
Lecture 7 - Variables and Types of Data
Lecture 8 - Absolute Frequency, Relative Frequency and Frequency Distribution
Lecture 9 - Frequency Distribution and Cumulative Distribution Function
Lecture 10 - Bar Diagrams
Lecture 11 - Subdivided Bar Plots and Pie Diagrams
Lecture 12 - 3D Pie Diagram and Histogram
Lecture 13 - Kernel Density and Stem - Leaf Plots
Lecture 14 - Arithmetic Mean
Lecture 15 - Median
Lecture 16 - Quantiles
Lecture 17 - Mode, Geometric Mean and Harmonic Mean
Lecture 18 - Range, Interquartile Range and Quartile Deviation
Lecture 19 - Absolute Deviation and Absolute Mean Deviation
Lecture 20 - Mean Squared Error, Variance and Standard Deviation
Lecture 21 - Coefficient of Variation and Boxplots
Lecture 22 - Raw and Central Moments
Lecture 23 - Sheppard's Correction, Absolute Moments and Computation of Moments
Lecture 24 - Skewness and Kurtosis
Lecture 25 - Univariate and Bivariate Scatter Plots
Lecture 26 - Smooth Scatter Plots
Lecture 27 - Quantile- Quantile and Three Dimensional Plots
Lecture 28 - Correlation Coefficient
Lecture 29 - Correlation Coefficient Using R Software

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Rank Correlation Coefficient
Lecture 31 - Measures of Association for Discrete and Counting Variables - Part 1
Lecture 32 - Measures of Association for Discrete and Counting Variables - Part 2
Lecture 33 - Least Squares Method - One Variable
Lecture 34 - Least Squares Method - R Commands and More than One Variables
Lecture 1 - Review Groups, Fields and Matrices
Lecture 2 - Vector Spaces, Subspaces, Linearly Dependent/Independent of Vectors
Lecture 3 - Basis, Dimension, Rank and Matrix Inverse
Lecture 4 - Linear Transformation, Isomorphism and Matrix Representation
Lecture 5 - System of Linear Equations, Eigenvalues and Eigenvectors
Lecture 6 - Method to Find Eigenvalues and Eigenvectors, Diagonalization of Matrices
Lecture 7 - Jordan Canonical Form, Cayley Hamilton Theorem
Lecture 8 - Inner Product Spaces, Cauchy-Schwarz Inequality
Lecture 9 - Orthogonality, Gram-Schmidt Orthogonalization Process
Lecture 10 - Spectrum of special matrices, positive/negative definite matrices
Lecture 11 - Concept of Domain, Limit, Continuity and Differentiability
Lecture 12 - Analytic Functions, C-R Equations
Lecture 13 - Harmonic Functions
Lecture 14 - Line Integral in the Complex
Lecture 15 - Cauchy Integral Theorem
Lecture 16 - Cauchy Integral Theorem (Continued.)
Lecture 17 - Cauchy Integral Formula
Lecture 18 - Power and Taylor's Series of Complex Numbers
Lecture 19 - Power and Taylor's Series of Complex Numbers (Continued.)
Lecture 20 - Taylor's, Laurent Series of f(z) and Singularities
Lecture 21 - Classification of Singularities, Residue and Residue Theorem
Lecture 22 - Laplace Transform and its Existence
Lecture 23 - Properties of Laplace Transform
Lecture 24 - Evaluation of Laplace and Inverse Laplace Transform
Lecture 25 - Applications of Laplace Transform to Integral Equations and ODEs
Lecture 26 - Applications of Laplace Transform to PDEs
Lecture 27 - Fourier Series
Lecture 28 - Fourier Series (Continued.)
Lecture 29 - Fourier Integral Representation of a Function
Lecture 30 - Introduction to Fourier Transform
Lecture 31 - Applications of Fourier Transform to PDEs
Lecture 32 - Laws of Probability - I
Lecture 33 - Laws of Probability - II
Lecture 34 - Problems in Probability
Lecture 35 - Random Variables
Lecture 36 - Special Discrete Distributions
Lecture 37 - Special Continuous Distributions
Lecture 38 - Joint Distributions and Sampling Distributions
Lecture 39 - Point Estimation
Lecture 40 - Interval Estimation
Lecture 41 - Basic Concepts of Testing of Hypothesis
Lecture 42 - Tests for Normal Populations
NPTEL Video Course - Mathematics - Functional Analysis

Subject Co-ordinator - Prof. P.D. Srivastava
Co-ordinating Institute - IIT - Kharagpur
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Metric Spaces with Examples
Lecture 2 - Holder Inequality and Minkowski Inequality
Lecture 3 - Various Concepts in a Metric Space
Lecture 4 - Separable Metrics Spaces with Examples
Lecture 5 - Convergence, Cauchy Sequence, Completeness
Lecture 6 - Examples of Complete and Incomplete Metric Spaces
Lecture 7 - Completion of Metric Spaces + Tutorial
Lecture 8 - Vector Spaces with Examples
Lecture 9 - Normed Spaces with Examples
Lecture 10 - Banach Spaces and Schauder Basic
Lecture 11 - Finite Dimensional Normed Spaces and Subspaces
Lecture 12 - Compactness of Metric/Normed Spaces
Lecture 13 - Linear Operators-definition and Examples
Lecture 14 - Bounded Linear Operators in a Normed Space
Lecture 15 - Bounded Linear Functionals in a Normed Space
Lecture 16 - Concept of Algebraic Dual and Reflexive Space
Lecture 17 - Dual Basis & Algebraic Reflexive Space
Lecture 18 - Dual Spaces with Examples
Lecture 19 - Tutorial - I
Lecture 20 - Tutorial - II
Lecture 21 - Inner Product & Hilbert Space
Lecture 22 - Further Properties of Inner Product Spaces
Lecture 23 - Projection Theorem, Orthonormal Sets and Sequences
Lecture 24 - Representation of Functionals on a Hilbert Spaces
Lecture 25 - Hilbert Adjoint Operator
Lecture 26 - Self Adjoint, Unitary & Normal Operators
Lecture 27 - Tutorial - III
Lecture 28 - Annihilator in an IPS
Lecture 29 - Total Orthonormal Sets And Sequences

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Partially Ordered Set and Zorns Lemma
Lecture 31 - Hahn Banach Theorem for Real Vector Spaces
Lecture 32 - Hahn Banach Theorem for Complex V.S. & Normed Spaces
Lecture 33 - Baires Category & Uniform Boundedness Theorems
Lecture 34 - Open Mapping Theorem
Lecture 35 - Closed Graph Theorem
Lecture 36 - Adjoint Operator
Lecture 37 - Strong and Weak Convergence
Lecture 38 - Convergence of Sequence of Operators and Functionals
Lecture 39 - LP - Space
Lecture 40 - LP - Space (Continued.)
NPTEL Video Course - Mathematics - Numerical methods of Ordinary and Partial Differential Equations

Subject Co-ordinator - Dr. G.P. Raja Sekhar
Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Motivation with few Examples
Lecture 2 - Single - Step Methods for IVPs
Lecture 3 - Analysis of Single Step Methods
Lecture 4 - Runge - Kutta Methods for IVPs
Lecture 5 - Higher Order Methods/Equations
Lecture 6 - Error - Stability - Convergence of Single Step Methods
Lecture 7 - Tutorial - I
Lecture 8 - Tutorial - II
Lecture 9 - Multi-Step Methods (Explicit)
Lecture 10 - Multi-Step Methods (Implicit)
Lecture 11 - Convergence and Stability of multi step methods
Lecture 12 - General methods for absolute stability
Lecture 13 - Stability Analysis of Multi Step Methods
Lecture 14 - Predictor - Corrector Methods
Lecture 15 - Some Comments on Multi - Step Methods
Lecture 16 - Finite Difference Methods - Linear BVPs
Lecture 17 - Linear/Non - Linear Second Order BVPs
Lecture 18 - BVPS - Derivative Boundary Conditions
Lecture 19 - Higher Order BVPs
Lecture 20 - Shooting Method BVPs
Lecture 21 - Tutorial - III
Lecture 22 - Introduction to First Order PDE
Lecture 23 - Introduction to Second Order PDE
Lecture 24 - Finite Difference Approximations to Parabolic PDEs
Lecture 25 - Implicit Methods for Parabolic PDEs
Lecture 26 - Consistency, Stability and Convergence
Lecture 27 - Other Numerical Methods for Parabolic PDEs
Lecture 28 - Tutorial - IV
Lecture 29 - Matrix Stability Analysis of Finite Difference Scheme

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - Optimization

Subject Co-ordinator - Prof. A. Goswami, Dr. Debjani Chakraborty
Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Optimization - Introduction
Lecture 2 - Formulation of LPP
Lecture 3 - Geometry of LPP and Graphical Solution of LPP
Lecture 4 - Solution of LPP
Lecture 5 - Big - M Method
Lecture 6 - Two - Phase Method
Lecture 7 - Special Cases in Simple Applications
Lecture 8 - Introduction to Duality Theory
Lecture 9 - Dual Simplex Method
Lecture 10 - Post Optimaility Analysis
Lecture 11 - Integer Programming - I
Lecture 12 - Integer Programming - II
Lecture 13 - Introduction to Transportation Problems
Lecture 14 - Solving Various types of Transportation Problems
Lecture 15 - Assignment Problems
Lecture 16 - Project Management
Lecture 17 - Critical Path Analysis
Lecture 18 - PERT
Lecture 19 - Shortest Path Algorithm
Lecture 20 - Travelling Salesman Problem
Lecture 21 - Classical optimization techniques
Lecture 22 - Unconstrained multivariable optimization
Lecture 23 - Nonlinear programming with equality constraint
Lecture 24 - Nonlinear programming KKT conditions
Lecture 25 - Numerical optimization
Lecture 26 - Numerical optimization
Lecture 27 - Fibonacci Method
Lecture 28 - Golden Section Methods
Lecture 29 - Interpolation Methods

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Unconstarined optimization techniques
Lecture 31 - Unconstarined optimization techniques
Lecture 32 - Nonlinear programming
Lecture 33 - Interior and Exterior penalty Function Method
Lecture 34 - Separable Programming Problem
Lecture 35 - Introduction to Geometric Programming
Lecture 36 - Constrained Geometric Programming Problem
Lecture 37 - Dynamic Programming Problem
Lecture 38 - Dynamic Programming Problem (Continued.)
Lecture 39 - Multi Objective Decision Making
Lecture 40 - Multi attribute decision making
Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Generalized Linear Models
Lecture 31 - Generalized Linear Models (Continued.)
Lecture 32 - Non-Linear Estimation
Lecture 33 - Regression Models with Autocorrelated Errors
Lecture 34 - Regression Models with Autocorrelated Errors (Continued.)
Lecture 35 - Measurement Errors & Calibration Problem
Lecture 36 - Tutorial - I
Lecture 37 - Tutorial - II
Lecture 38 - Tutorial - III
Lecture 39 - Tutorial - IV
Lecture 40 - Tutorial - V
NPTEL Video Course - Mathematics - Statistical Inference

Subject Co-ordinator - Prof. Somesh Kumar
Co-ordinating Institute - IIT - Kharagpur
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction and Motivation
Lecture 2 - Basic Concepts of Point Estimations - I
Lecture 3 - Basic Concepts of Point Estimations - II
Lecture 4 - Finding Estimators - I
Lecture 5 - Finding Estimators - II
Lecture 6 - Finding Estimators - III
Lecture 7 - Properties of MLEs
Lecture 8 - Lower Bounds for Variance - I
Lecture 9 - Lower Bounds for Variance - II
Lecture 10 - Lower Bounds for Variance - III
Lecture 11 - Lower Bounds for Variance - IV
Lecture 12 - Sufficiency
Lecture 13 - Sufficiency and Information
Lecture 14 - Minimal Sufficiency, Completeness
Lecture 15 - UMVU Estimation, Ancillarity
Lecture 16 - Invariance - I
Lecture 17 - Invariance - II
Lecture 18 - Bayes and Minimax Estimation - I
Lecture 19 - Bayes and Minimax Estimation - II
Lecture 20 - Bayes and Minimax Estimation - III
Lecture 21 - Testing of Hypotheses
Lecture 22 - Neyman Pearson Fundamental Lemma
Lecture 23 - Applications of NP lemma
Lecture 24 - UMP Tests
Lecture 25 - UMP Tests (Continued.)
Lecture 26 - UMP Unbiased Tests
Lecture 27 - UMP Unbiased Tests (Continued.)
Lecture 28 - UMP Unbiased Tests
Lecture 29 - Unbiased Tests for Normal Populations

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimath.in
Lecture 30 - Unbiased Tests for Normal Populations (Continued.)
Lecture 31 - Likelihood Ratio Tests - I
Lecture 32 - Likelihood Ratio Tests - II
Lecture 33 - Likelihood Ratio Tests - III
Lecture 34 - Likelihood Ratio Tests - IV
Lecture 35 - Invariant Tests
Lecture 36 - Test for Goodness of Fit
Lecture 37 - Sequential Procedure
Lecture 38 - Sequential Procedure (Continued.)
Lecture 39 - Confidence Intervals
Lecture 40 - Confidence Intervals (Continued.)
NPTEL Video Course - Mathematics - A Basic Course in Real Analysis

Subject Co-ordinator - Prof. P.D. Srivastava

Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Rational Numbers and Rational Cuts
Lecture 2 - Irrational numbers, Dedekind's Theorem
Lecture 3 - Continuum and Exercises
Lecture 4 - Continuum and Exercises (Continued.)
Lecture 5 - Cantor's Theory of Irrational Numbers
Lecture 6 - Cantor's Theory of Irrational Numbers (Continued.)
Lecture 7 - Equivalence of Dedekind and Cantor's Theory
Lecture 8 - Finite, Infinite, Countable and Uncountable Sets of Real Numbers
Lecture 9 - Types of Sets with Examples, Metric Space
Lecture 10 - Various properties of open set, closure of a set
Lecture 11 - Ordered set, Least upper bound, greatest lower bound of a set
Lecture 12 - Compact Sets and its properties
Lecture 13 - Weiersstrass Theorem, Heine Borel Theorem, Connected set
Lecture 14 - Tutorial - II
Lecture 15 - Concept of limit of a sequence
Lecture 16 - Some Important limits, Ratio tests for sequences of Real Numbers
Lecture 17 - Cauchy theorems on limit of sequences with examples
Lecture 18 - Fundamental theorems on limits, Bolzano-Weiersstrass Theorem
Lecture 19 - Theorems on Convergent and divergent sequences
Lecture 20 - Cauchy sequence and its properties
Lecture 21 - Infinite series of real numbers
Lecture 22 - Comparison tests for series, Absolutely convergent and Conditional convergent series
Lecture 23 - Tests for absolutely convergent series
Lecture 24 - Raabe's test, limit of functions, Cluster point
Lecture 25 - Some results on limit of functions
Lecture 26 - Limit Theorems for functions
Lecture 27 - Extension of limit concept (one sided limits)
Lecture 28 - Continuity of Functions
Lecture 29 - Properties of Continuous Functions

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Boundedness Theorem, Max-Min Theorem and Bolzano's theorem
Lecture 31 - Uniform Continuity and Absolute Continuity
Lecture 32 - Types of Discontinuities, Continuity and Compactness
Lecture 33 - Continuity and Compactness (Continued.), Connectedness
Lecture 34 - Differentiability of real valued function, Mean Value Theorem
Lecture 35 - Mean Value Theorem (Continued.)
Lecture 36 - Application of MVT, Darboux Theorem, L Hospital Rule
Lecture 37 - L'Hospital Rule and Taylor's Theorem
Lecture 38 - Tutorial - III
Lecture 39 - Riemann/Riemann Stieltjes Integral
Lecture 40 - Existence of Reimann Stieltjes Integral
Lecture 41 - Properties of Reimann Stieltjes Integral
Lecture 42 - Properties of Reimann Stieltjes Integral (Continued.)
Lecture 43 - Definite and Indefinite Integral
Lecture 44 - Fundamental Theorems of Integral Calculus
Lecture 45 - Improper Integrals
Lecture 46 - Convergence Test for Improper Integrals
<table>
<thead>
<tr>
<th>Lecture</th>
<th>Nonparametric Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 30</td>
<td>III</td>
</tr>
<tr>
<td>Lecture 31</td>
<td>IV</td>
</tr>
<tr>
<td>Lecture 32</td>
<td>V</td>
</tr>
<tr>
<td>Lecture 33</td>
<td>VI</td>
</tr>
<tr>
<td>Lecture 34</td>
<td>VII</td>
</tr>
<tr>
<td>Lecture 35</td>
<td>VIII</td>
</tr>
<tr>
<td>Lecture 36</td>
<td>IX</td>
</tr>
<tr>
<td>Lecture 37</td>
<td>X</td>
</tr>
<tr>
<td>Lecture 38</td>
<td>XI</td>
</tr>
<tr>
<td>Lecture 39</td>
<td>XII</td>
</tr>
<tr>
<td>Lecture 40</td>
<td>XIII</td>
</tr>
</tbody>
</table>
NPTEL Video Course - Mathematics - NOC: Probability and Statistics

Subject Co-ordinator - Prof. Somesh Kumar

Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Sets, Classes, Collection
Lecture 2 - Sequence of Sets
Lecture 3 - Ring, Field (Algebra)
Lecture 4 - Sigma-Ring, Sigma-Field, Monotone Class
Lecture 5 - Random Experiment, Events
Lecture 6 - Definitions of Probability
Lecture 7 - Properties of Probability Function - I
Lecture 8 - Properties of Probability Function - II
Lecture 9 - Conditional Probability
Lecture 10 - Independence of Events
Lecture 11 - Problems in Probability - I
Lecture 12 - Problems in Probability - II
Lecture 13 - Random Variables
Lecture 14 - Probability Distribution of a Random Variable - I
Lecture 15 - Probability Distribution of a Random Variable - II
Lecture 16 - Moments
Lecture 17 - Characteristics of Distributions - I
Lecture 18 - Characteristics of Distributions - II
Lecture 19 - Special Discrete Distributions - I
Lecture 20 - Special Discrete Distributions - II
Lecture 21 - Special Discrete Distributions - III
Lecture 22 - Poisson Process - I
Lecture 23 - Poisson Process - II
Lecture 24 - Special Continuous Distributions - I
Lecture 25 - Special Continuous Distributions - II
Lecture 26 - Special Continuous Distributions - III
Lecture 27 - Special Continuous Distributions - IV
Lecture 28 - Special Continuous Distributions - V
Lecture 29 - Normal Distribution

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Problems on Normal Distribution
Lecture 31 - Problems on Special Distributions - I
Lecture 32 - Problems on Special Distributions - II
Lecture 33 - Function of a random variable - I
Lecture 34 - Function of a random variable - II
Lecture 35 - Joint Distributions - I
Lecture 36 - Joint Distributions - II
Lecture 37 - Independence, Product Moments
Lecture 38 - Linearity Property of Correlation and Examples
Lecture 39 - Bivariate Normal Distribution - I
Lecture 40 - Bivariate Normal Distribution - II
Lecture 41 - Additive Properties of Distributions - I
Lecture 42 - Additive Properties of Distributions - II
Lecture 43 - Transformation of Random Variables
Lecture 44 - Distribution of Order Statistics
Lecture 45 - Basic Concepts
Lecture 46 - Chi-Square Distribution
Lecture 47 - Chi-Square Distribution (Continued...), t-Distribution
Lecture 48 - F-Distribution
Lecture 49 - Descriptive Statistics - I
Lecture 50 - Descriptive Statistics - II
Lecture 51 - Descriptive Statistics - III
Lecture 52 - Descriptive Statistics - IV
Lecture 53 - Introduction to Estimation
Lecture 54 - Unbiased and Consistent Estimators
Lecture 55 - LSE, MME
Lecture 56 - Examples on MME, MLE
Lecture 57 - Examples on MLE - I
Lecture 58 - Examples on MLE - II, MSE
Lecture 59 - UMVUE, Sufficiency, Completeness
Lecture 60 - Rao - Blackwell Theorem and Its Applications
Lecture 61 - Confidence Intervals - I
Lecture 62 - Confidence Intervals - II
Lecture 63 - Confidence Intervals - III
Lecture 64 - Confidence Intervals - IV
Lecture 65 - Basic Definitions
Lecture 66 - Two Types of Errors
Lecture 67 - Neyman-Pearson Fundamental Lemma
Lecture 68 - Applications of N-P Lemma - I
Lecture 69 - Applications of N-P Lemma - II
Lecture 70 - Testing for Normal Mean
Lecture 71 - Testing for Normal Variance
Lecture 72 - Large Sample Test for Variance and Two Sample Problem
Lecture 73 - Paired t-Test
Lecture 74 - Examples
Lecture 75 - Testing Equality of Proportions
Lecture 76 - Chi-Square Test for Goodness Fit - I
Lecture 77 - Chi-Square Test for Goodness Fit - II
Lecture 78 - Testing for Independence in rxc Contingency Table - I
Lecture 79 - Testing for Independence in rxc Contingency Table - II
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - NOC: Applied Multivariate Statistical Modeling

Subject Co-ordinator - Dr. J. Maiti
Co-ordinating Institute - IIT - Kharagpur
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to multivariate statistical modeling - Part-I
Lecture 2 - Introduction to multivariate statistical modeling - Part-II
Lecture 3 - Univariate descriptive statistics
Lecture 4 - Sampling Distribution
Lecture 5 - Estimation - Part-I
Lecture 6 - Estimation - Part-II
Lecture 7 - Hypothesis Testing
Lecture 8 - Introduction to multivariate statistical modeling - Part-I
Lecture 9 - Introduction to multivariate statistical modeling - Part-II
Lecture 10 - Multivariate Normal Distribution
Lecture 11 - Multivariate Normal Distribution (Continued...)
Lecture 12 - ANOVA - Part-I
Lecture 13 - ANOVA - Part-II
Lecture 14 - Multivariate Analysis of Variance (MANOVA)
Lecture 15 - Multivariate Analysis of Variance (MANOVA) (Continued...)
Lecture 16 - Multiple Regression - Introduction
Lecture 17 - MLR Sampling Distribution of Regression Coefficients
Lecture 18 - MLR-Model Adequacy Tests
Lecture 19 - MLR - Test of Assumptions
Lecture 20 - MLR - Model Diagnostics
Lecture 21 - Principal Component Analysis (PCA)
Lecture 22 - Principal Component Analysis (PCA)
Lecture 23 - Factor Analysis
Lecture 24 - Factor Analysis - Estimation and Model Adequacy Testing
Lecture 25 - Factor Analysis - Model Adequacy, Rotation, Factor Scores and Case Study
Lecture 26 - Introduction to Structural Equation Modeling
Lecture 27 - SEM - Measurement Model
Lecture 28 - SEM - Structural Model

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Course - Mathematics - NOC: Partial Differential Equations (PDE) for Engineers: Solution by Separation of Variables

Subject Co-ordinator - Prof. S. De
Co-ordinating Institute - IIT - Kharagpur
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to PDE
Lecture 2 - Classification of PDE
Lecture 3 - Principle of Linear Superposition
Lecture 4 - Standard Eigen Value Problem and Special ODEs
Lecture 5 - Adjoint Operator
Lecture 6 - Generalized Sturm - Louiville Problem
Lecture 7 - Properties of Adjoint Operator
Lecture 8 - Separation of Variables
Lecture 9 - Solution of 3 Dimensional Parabolic Problem
Lecture 10 - Solution of 4 Dimensional Parabolic Problem
Lecture 11 - Solution of 4 Dimensional Parabolic Problem (Continued...)
Lecture 12 - Solution of Elliptical PDE
Lecture 13 - Solution of Hyperbolic PDE
Lecture 14 - Orthogonality of Bessel Function and 2 Dimensional Cylindrical Coordinate System
Lecture 15 - Cylindrical Co-ordinate System - 3 Dimensional Problem
Lecture 16 - Spherical Polar Coordinate System
Lecture 17 - Spherical Polar Coordinate System (Continued...)
Lecture 18 - Example of Generalized 3 Dimensional Problem
Lecture 19 - Example of Application Oriented Problems
Lecture 20 - Examples of Application Oriented Problems (Continued...)
NPTEL Video Course - Mathematics - NOC: Introductory Course in Real Analysis

Subject Co-ordinator - Prof. P.D. Srivastava
Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Countable and Uncountable sets
Lecture 2 - Properties of Countable and Uncountable sets
Lecture 3 - Examples of Countable and Uncountable sets
Lecture 4 - Concepts of Metric Space
Lecture 5 - Open ball, Closed ball, Limit point of a set
Lecture 6 - Tutorial-I
Lecture 7 - Some theorems on Open and Closed sets
Lecture 8 - Ordered set, Least upper bound, Greatest lower bound of a set
Lecture 9 - Ordered set, Least upper bound, Greatest lower bound of a set (Continued...)
Lecture 10 - Compact Set
Lecture 11 - Properties of Compact sets
Lecture 12 - Tutorial-II
Lecture 13 - Heine Borel Theorem
Lecture 14 - Weierstrass Theorem
Lecture 15 - Cantor set and its properties
Lecture 16 - Derived set and Dense set
Lecture 17 - Limit of a sequence and monotone sequence
Lecture 18 - Tutorial-III
Lecture 19 - Some Important limits of sequences
Lecture 20 - Ratio Test Cauchy's theorems on limits of sequences of real numbers
Lecture 21 - Fundamental theorems on limits
Lecture 22 - Some results on limits and Bolzano-Weierstrass Theorem
Lecture 23 - Criteria for convergent sequence
Lecture 24 - Tutorial-IV
Lecture 25 - Criteria for Divergent Sequence
Lecture 26 - Cauchy Sequence
Lecture 27 - Cauchy Convergence Criteria for Sequences
Lecture 28 - Infinite Series of Real Numbers
Lecture 29 - Convergence Criteria for Series of Positive Real Numbers

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Tutorial-V
Lecture 31 - Comparison Test for Series
Lecture 32 - Absolutely and Conditionally Convergent Series
Lecture 33 - Rearrangement Theorem and Test for Convergence of Series
Lecture 34 - Ratio and Integral Test for Convergence of Series
Lecture 35 - Raabe's Test for Convergence of Series
Lecture 36 - Tutorial-VI
Lecture 37 - Limit of Functions and Cluster Point
Lecture 38 - Limit of Functions (Continued...)
Lecture 39 - Divergence Criteria for Limit
Lecture 40 - Various Properties of Limit of Functions
Lecture 41 - Left and Right Hand Limits for Functions
Lecture 42 - Tutorial-VII
Lecture 43 - Limit of Functions at Infinity
Lecture 44 - Continuous Functions (Cauchy's Definition)
Lecture 45 - Continuous Functions (Heine's Definition)
Lecture 46 - Properties of Continuous Functions
Lecture 47 - Properties of Continuous Functions (Continued...)
Lecture 48 - Tutorial-VIII
Lecture 49 - Boundness Theorem and Max-Min Theorem
Lecture 50 - Location of Root and Bolzano's Theorem
Lecture 51 - Uniform Continuity and Related Theorems
Lecture 52 - Absolute Continuity and Related Theorems
Lecture 53 - Types of Discontinuities
Lecture 54 - Tutorial-IX
Lecture 55 - Types of Discontinuities (Continued...)
Lecture 56 - Relation between Continuity and Compact Sets
Lecture 57 - Differentiability of Real Valued Functions
Lecture 58 - Local Max. - Min. Cauchy's and Lagrange's Mean Value Theorem
Lecture 59 - Rolle's Mean Value Theorems and Its Applications
Lecture 60 - Tutorial-X
Lecture 61
Lecture 62
Lecture 63
Lecture 64
Lecture 65
Lecture 66
Lecture 67
Lecture 68
Lecture 69
Lecture 70
Lecture 71
Lecture 72
Lecture 73

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - EOF near heterogeneous surface potential
Lecture 31 - Electroosmosis in hydrophobic surface
Lecture 32 - Numerical Methods for Boundary Value Problems (BVP)
Lecture 33 - Numerical Methods for nonlinear BVP
Lecture 34 - Numerical Methods for coupled set of BVP
Lecture 35 - Numerical Methods for PDEs
Lecture 36 - Numerical Methods for transport equations, Part-I
Lecture 37 - Numerical Methods for transport equations, Part-II
Lecture 38 - Electrophoresis of charged colloids, Part-I
Lecture 39 - Electrophoresis of charged colloids, Part-II
Lecture 40 - Gel Electrophoresis
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - NOC:Constrained and Unconstrained Optimization

Subject Co-ordinator - Dr. Debjani Chakraborty, Prof. A. Goswami

Co-ordinating Institute - IIT - Kharagpur

Lecture 1 - Introduction to Optimization
Lecture 2 - Assumptions and Mathematical Modeling of LPP
Lecture 3 - Geometry of LPP
Lecture 4 - Graphical Solution of LPP - I
Lecture 5 - Graphical Solution of LPP - II
Lecture 6 - Solution of LPP
Lecture 7 - Simplex Method
Lecture 8 - Introduction to BIG-M Method
Lecture 9 - Algorithm of BIG-M Method
Lecture 10 - Problems on BIG-M Method
Lecture 11 - Two Phase Method
Lecture 12 - Two Phase Method
Lecture 13 - Special Cases of LPP
Lecture 14 - Degeneracy in LPP
Lecture 15 - Sensitivity Analysis - I
Lecture 16 - Sensitivity Analysis - II
Lecture 17 - Problems on Sensitivity Analysis
Lecture 18 - Introduction to Duality Theory - I
Lecture 19 - Introduction to Duality Theory - II
Lecture 20 - Dual Simplex Method
Lecture 21 - Examples on Dual Simplex Method
Lecture 22 - Integer Linear Programming
Lecture 23 - Integer Linear Programming
Lecture 24 - IPP
Lecture 25 - Mixed Integer Programming Problem
Lecture 26
Lecture 27
Lecture 28
Lecture 29

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30
Lecture 31 - Introduction to Nonlinear programming
Lecture 32 - Graphical Solution of NLP
Lecture 33 - Types of NLP
Lecture 34 - One dimensional unconstrained optimization
Lecture 35 - Unconstrained Optimization
Lecture 36 - Region Elimination Technique - 1
Lecture 37 - Region Elimination Technique - 2
Lecture 38 - Region Elimination Technique - 3
Lecture 39 - Unconstrained Optimization
Lecture 40 - Unconstrained Optimization
Lecture 41 - Multivariate Unconstrained Optimization - 1
Lecture 42 - Multivariate Unconstrained Optimization - 2
Lecture 43 - Unconstrained Optimization
Lecture 44 - NLP with Equality Constrained - 1
Lecture 45 - NLP with Equality Constrained - 2
Lecture 46 - Constrained NLP - 1
Lecture 47 - Constrained NLP - 2
Lecture 48 - Constrained Optimization
Lecture 49 - Constrained Optimization
Lecture 50 - KKT
Lecture 51 - Constrained Optimization
Lecture 52 - Constrained Optimization
Lecture 53 - Feasible Direction
Lecture 54 - Penalty and barrier method
Lecture 55 - Penalty method
Lecture 56 - Penalty and barrier method
Lecture 57 - Penalty and barrier method
Lecture 58 - Dynamic programming
Lecture 59 - Multi-Objective decision making
Lecture 60 - Multi-Attribute decision making
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - NOC: Matrix Solver
Subject Co-ordinator - Prof. Somnath Roy
Co-ordinating Institute - IIT - Kharagpur
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Matrix Algebra - I
Lecture 2 - Introduction to Matrix Algebra - II
Lecture 3 - System of Linear Equations
Lecture 4 - Determinant of a Matrix
Lecture 5 - Determinant of a Matrix (Continued...)
Lecture 6 - Gauss Elimination
Lecture 7 - Gauss Elimination (Continued...)
Lecture 8 - LU Decomposition
Lecture 9 - Gauss-Jordon Method
Lecture 10 - Representation of Physical Systems as Matrix Equations
Lecture 11 - Tridiagonal Matrix Algorithm
Lecture 12 - Equations with Singular Matrices
Lecture 13 - Introduction to Vector Space
Lecture 14 - Vector Subspace
Lecture 15 - Column Space and Nullspace of a Matrix
Lecture 16 - Finding Null Space of a Matrix
Lecture 17 - Solving Ax=b when A is Singular
Lecture 18 - Linear Independence and Spanning of a Subspace
Lecture 19 - Basis and Dimension of a Vector Space
Lecture 20 - Four Fundamental Subspaces of a Matrix
Lecture 21 - Left and right inverse of a matrix
Lecture 22 - Orthogonality between the subspaces
Lecture 23 - Best estimate
Lecture 24 - Projection operation and linear transformation
Lecture 25 - Creating orthogonal basis vectors
Lecture 26 - Gram-Schmidt and modified Gram-Schmidt algorithms
Lecture 27 - Comparing GS and modified GS
Lecture 28 - Introduction to eigenvalues and eigenvectors
Lecture 29 - Eigenvalues and eigenvectors for real symmetric matrix

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30	Positive definiteness of a matrix
Lecture 31	Positive definiteness of a matrix (Continued...)
Lecture 32	Basic Iterative Methods
Lecture 33	Basic Iterative Methods
Lecture 34	Convergence Rate and Convergence Factor for Iterative Methods
Lecture 35	Numerical Experiments on Convergence
Lecture 36	Steepest Descent Method
Lecture 37	Steepest Descent Method
Lecture 38	Steepest Descent Method
Lecture 39	Introduction to General Projection Methods
Lecture 40	Residue Norm and Minimum Residual Algorithm
Lecture 41	Developing computer programs for basic iterative methods
Lecture 42	Developing computer programs for projection based methods
Lecture 43	Introduction to Krylov subspace methods
Lecture 44	Krylov subspace methods for linear systems
Lecture 45	Iterative methods for solving linear systems using Krylov subspace methods
Lecture 46	Conjugate gradient methods
Lecture 47	Conjugate gradient methods (Continued...)
Lecture 48	Conjugate gradient methods (Continued...) and Introduction to GMRES
Lecture 49	GMRES (Continued...)
Lecture 50	Lanczos Biorthogonalization and BCG Algorithm
Lecture 51	Numerical issues in BICG and polynomial based formulation
Lecture 52	Conjugate gradient squared and Biconjugate gradient stabilized
Lecture 53	Line relaxation method
Lecture 54	Block relaxation method
Lecture 55	Domain Decomposition and Parallel Computing
Lecture 56	Preconditioners
Lecture 57	Preconditioned conjugate gradient
Lecture 58	Preconditioned GMRES
Lecture 59	Multigrid methods - I
Lecture 60	Multigrid methods - II
Lecture 1 - Set Theory
Lecture 2 - Set Operations
Lecture 3 - Set Operations (Continued...)
Lecture 4 - Set of sets
Lecture 5 - Binary relation
Lecture 6 - Equivalence relation
Lecture 7 - Mapping
Lecture 8 - Permutation
Lecture 9 - Binary Composition
Lecture 10 - Groupoid
Lecture 11 - Group
Lecture 12 - Order of an element
Lecture 13 - Subgroup
Lecture 14 - Cyclic Group
Lecture 15 - Subgroup Operations
Lecture 16 - Left Cosets
Lecture 17 - Right Cosets
Lecture 18 - Normal Subgroup
Lecture 19 - Rings
Lecture 20 - Field
Lecture 21 - Vector Spaces
Lecture 22 - Sub-Spaces
Lecture 23 - Linear Span
Lecture 24 - Basis of a Vector Space
Lecture 25 - Dimension of a Vector space
Lecture 26 - Complement of subspace
Lecture 27 - Linear Transformation
Lecture 28 - Linear Transformation (Continued...)
Lecture 29 - More on linear mapping
Lecture 30 - Linear Space
Lecture 31 - Rank of a matrix
Lecture 32 - Rank of a matrix (Continued...)
Lecture 33 - System of linear equations
Lecture 34 - Row rank and Column rank
Lecture 35 - Eigen value of a matrix
Lecture 36 - Eigen Vector
Lecture 37 - Geometric multiplicity
Lecture 38 - More on eigen value
Lecture 39 - Similar matrices
Lecture 40 - Diagonalisable
Lecture 1 - Rolle’s Theorem
Lecture 2 - Mean Value Theorems
Lecture 3 - Indeterminate Forms - Part 1
Lecture 4 - Indeterminate Forms - Part 2
Lecture 5 - Taylor Polynomial and Taylor Series
Lecture 6 - Limit of Functions of Two Variables
Lecture 7 - Evaluation of Limit of Functions of Two Variables
Lecture 8 - Continuity of Functions of Two Variables
Lecture 9 - Partial Derivatives of Functions of Two Variables
Lecture 10 - Partial Derivatives of Higher Order
Lecture 11 - Derivative and Differentiability
Lecture 12 - Differentiability of Functions of Two Variables
Lecture 13 - Differentiability of Functions of Two Variables (Continued...)
Lecture 14 - Differentiability of Functions of Two Variables (Continued...)
Lecture 15 - Composite and Homogeneous Functions
Lecture 16 - Taylor’s Theorem for Functions of Two Variables
Lecture 17 - Maxima and Minima of Functions of Two Variables
Lecture 18 - Maxima and Minima of Functions of Two Variables (Continued...)
Lecture 19 - Maxima and Minima of Functions of Two Variables (Continued...)
Lecture 20 - Constrained Maxima and Minima
Lecture 21 - Improper Integrals
Lecture 22 - Improper Integrals (Continued...)
Lecture 23 - Improper Integrals (Continued...)
Lecture 24 - Improper Integrals (Continued...)
Lecture 25 - Beta and Gamma Function
Lecture 26 - Beta and Gamma Function (Continued...)
Lecture 27 - Differentiation Under Integral Sign
Lecture 28 - Double Integrals
Lecture 29 - Double Integrals (Continued...)
Lecture 30 - Double Integrals (Continued...)
Lecture 31 - Integral Calculus Double Integrals in Polar Form
Lecture 32 - Integral Calculus Double Integrals
Lecture 33 - Integral Calculus Double Integrals
Lecture 34 - Integral Calculus Triple Integrals
Lecture 35 - Integral Calculus Triple Integrals (Continued...)
Lecture 36 - System of Linear Equations
Lecture 37 - System of Linear Equations Gauss Elimination
Lecture 38 - System of Linear Equations Gauss Elimination (Continued...)
Lecture 39 - Linear Algebra - Vector Spaces
Lecture 40 - Linear Independence of Vectors
Lecture 41 - Vector Spaces Spanning Set
Lecture 42 - Vector Spaces Basis and Dimension
Lecture 43 - Rank of a Matrix
Lecture 44 - Linear Transformations
Lecture 45 - Linear Transformations (Continued....)
Lecture 46 - Eigenvalues and Eigenvectors
Lecture 47 - Eigenvalues and Eigenvectors (Continued...)
Lecture 48 - Eigenvalues and Eigenvectors (Continued...)
Lecture 49 - Eigenvalues and Eigenvectors (Continued...)
Lecture 50 - Eigenvalues and Eigenvectors
Lecture 51 - Differential Equations - Introduction
Lecture 52 - First Order Differential Equations
Lecture 53 - Exact Differential Equations
Lecture 54 - Exact Differential Equations (Continued...)
Lecture 55 - First Order Linear Differential Equations
Lecture 56 - Higher Order Linear Differential Equations
Lecture 57 - Solution of Higher Order Homogeneous Linear Equations
Lecture 58 - Solution of Higher Order Non-Homogeneous Linear Equations
Lecture 59 - Solution of Higher Order Non-Homogeneous Linear Equations (Continued...)
Lecture 60 - Cauchy-Euler Equations
NPTEL Video Course - Mathematics - NOC: Integral and Vector Calculus

Subject Co-ordinator - Prof. Hari Shankar Mahato
Co-ordinating Institute - IIT - Kharagpur
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Partition, Riemann intergrability and One example
Lecture 2 - Partition, Riemann intergrability and One example (Continued...)
Lecture 3 - Condition of integrability
Lecture 4 - Theorems on Riemann integrations
Lecture 5 - Examples
Lecture 6 - Examples (Continued...)
Lecture 7 - Reduction formula
Lecture 8 - Reduction formula (Continued...)
Lecture 9 - Improper Integral
Lecture 10 - Improper Integral (Continued...)
Lecture 11 - Improper Integral (Continued...)
Lecture 12 - Improper Integral (Continued...)
Lecture 13 - Introduction to Beta and Gamma Function
Lecture 14 - Beta and Gamma Function
Lecture 15 - Differentiation under Integral Sign
Lecture 16 - Differentiation under Integral Sign (Continued...)
Lecture 17 - Double Integral
Lecture 18 - Double Integral over a Region E
Lecture 19 - Examples of Integral over a Region E
Lecture 20 - Change of variables in a Double Integral
Lecture 21 - Change of order of Integration
Lecture 22 - Triple Integral
Lecture 23 - Triple Integral (Continued...)
Lecture 24 - Area of Plane Region
Lecture 25 - Area of Plane Region (Continued...)
Lecture 26 - Rectification
Lecture 27 - Rectification (Continued...)
Lecture 28 - Surface Integral
Lecture 29 - Surface Integral (Continued...)
NPTEL Video Course - Mathematics - NOC: Transform Calculus and its applications in Differential Equations

Subject Co-ordinator - Prof. A. Goswami

Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Integral Transform and Laplace Transform
Lecture 2 - Existence of Laplace Transform
Lecture 3 - Shifting Properties of Laplace Transform
Lecture 4 - Laplace Transform of Derivatives and Integration of a Function - I
Lecture 5 - Laplace Transform of Derivatives and Integration of a Function - II
Lecture 6 - Explanation of properties of Laplace Transform using Examples
Lecture 7 - Laplace Transform of Periodic Function
Lecture 8 - Laplace Transform of some special Functions
Lecture 9 - Error Function, Dirac Delta Function and their Laplace Transform
Lecture 10 - Bessel Function and its Laplace Transform
Lecture 11 - Introduction to Inverse Laplace Transform
Lecture 12 - Properties of Inverse Laplace Transform
Lecture 13 - Convolutions and its Applications
Lecture 14 - Evaluation of Integrals using Laplace Transform
Lecture 15 - Solution of Ordinary Differential Equations with constant coefficients using Laplace Transform
Lecture 16 - Solution of Ordinary Differential Equations with variable coefficients using Laplace Transform
Lecture 17 - Solution of Simultaneous Ordinary Differential Equations using Laplace Transform
Lecture 18 - Introduction to Integral Equation and its Solution Process
Lecture 19 - Introduction to Fourier Series
Lecture 20 - Fourier Series for Even and Odd Functions
Lecture 21 - Fourier Series of Functions having arbitrary period - I
Lecture 22 - Fourier Series of Functions having arbitrary period - II
Lecture 23 - Half Range Fourier Series
Lecture 24 - Parseval's Theorem and its Applications
Lecture 25 - Complex form of Fourier Series
Lecture 26 - Fourier Integral Representation
Lecture 27 - Introduction to Fourier Transform
Lecture 28 - Derivation of Fourier Cosine Transform and Fourier Sine Transform of Functions
Lecture 29 - Evaluation of Fourier Transform of various functions
Lecture 30 - Linearity Property and Shifting Properties of Fourier Transform
Lecture 31 - Change of Scale and Modulation Properties of Fourier Transform
Lecture 32 - Fourier Transform of Derivative and Integral of a Function
Lecture 33 - Applications of Properties of Fourier Transform - I
Lecture 34 - Applications of Properties of Fourier Transform - II
Lecture 35 - Fourier Transform of Convolution of two functions
Lecture 36 - Parseval's Identity and its Application
Lecture 37 - Evaluation of Definite Integrals using Properties of Fourier Transform
Lecture 38 - Fourier Transform of Dirac Delta Function
Lecture 39 - Representation of a function as Fourier Integral
Lecture 40 - Applications of Fourier Transform to Ordinary Differential Equations - I
Lecture 41 - Applications of Fourier Transform to Ordinary Differential Equations - II
Lecture 42 - Solution of Integral Equations using Fourier Transform
Lecture 43 - Introduction to Partial Differential Equations
Lecture 44 - Solution of Partial Differential Equations using Laplace Transform
Lecture 45 - Solution of Heat Equation and Wave Equation using Laplace Transform
Lecture 46 - Criteria for choosing Fourier Transform, Fourier Sine Transform, Fourier Cosine Transform in solving Partial Differential Equations
Lecture 47 - Solution of Partial Differential Equations using Fourier Transform and Fourier Sine Transform
Lecture 48 - Solution of Partial Differential Equations using Fourier Transform - I
Lecture 49 - Solution of Partial Differential Equations using Fourier Transform - II
Lecture 50 - Solving problems on Partial Differential Equations using Transform Techniques
Lecture 51 - Introduction to Finite Fourier Transform
Lecture 52 - Solution of Boundary Value Problems using Finite Fourier Transform - I
Lecture 53 - Solution of Boundary Value Problems using Finite Fourier Transform - II
Lecture 54 - Introduction to Mellin Transform
Lecture 55 - Properties of Mellin Transform
Lecture 56 - Examples of Mellin Transform - I
Lecture 57 - Examples of Mellin Transform - II
Lecture 58 - Introduction to Z-Transform
Lecture 59 - Properties of Z-Transform
Lecture 60 - Evaluation of Z-Transform of some functions
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

Subject Co-ordinator - Prof. Somesh Kumar

Co-ordinating Institute - IIT - Kharagpur

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction and Motivation - I
Lecture 2 - Introduction and Motivation - II
Lecture 3 - Basic Concepts of Point Estimations - I
Lecture 4 - Basic Concepts of Point Estimations - II
Lecture 5 - Basic Concepts of Point Estimations - III
Lecture 6 - Basic Concepts of Point Estimations - IV
Lecture 7 - Finding Estimators - I
Lecture 8 - Finding Estimators - II
Lecture 9 - Finding Estimators - III
Lecture 10 - Finding Estimators - IV
Lecture 11 - Finding Estimators - V
Lecture 12 - Finding Estimators - VI
Lecture 13 - Properties of MLEs - I
Lecture 14 - Properties of MLEs - II
Lecture 15 - Lower Bounds for Variance - I
Lecture 16 - Lower Bounds for Variance - II
Lecture 17 - Lower Bounds for Variance - III
Lecture 18 - Lower Bounds for Variance - IV
Lecture 19 - Lower Bounds for Variance - V
Lecture 20 - Lower Bounds for Variance - VI
Lecture 21 - Lower Bounds for Variance - VII
Lecture 22 - Lower Bounds for Variance - VIII
Lecture 23 - Sufficiency - I
Lecture 24 - Sufficiency - II
Lecture 25 - Sufficiency and Information - I
Lecture 26 - Sufficiency and Information - II
Lecture 27 - Minimal Sufficiency, Completeness - I
Lecture 28 - Minimal Sufficiency, Completeness - II
Lecture 29 - UMVU Estimation, Ancillarity - I

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - UMVU Estimation, Ancillarity - II
Lecture 31 - Testing of Hypotheses
Lecture 32 - Testing of Hypotheses
Lecture 33 - Neyman Pearson Fundamental Lemma - I
Lecture 34 - Neyman Pearson Fundamental Lemma - II
Lecture 35 - Application of NP-Lemma - I
Lecture 36 - Application of NP-Lemma - II
Lecture 37 - UMP Tests - I
Lecture 38 - UMP Tests - II
Lecture 39 - UMP Tests - III
Lecture 40 - UMP Tests - IV
Lecture 41 - UMP Unbiased Tests - I
Lecture 42 - UMP Unbiased Tests - II
Lecture 43 - UMP Unbiased Tests - III
Lecture 44 - UMP Unbiased Tests - IV
Lecture 45 - Applications of UMP Unbiased Tests - I
Lecture 46 - Applications of UMP Unbiased Tests - II
Lecture 47 - Unbiased Test for Normal Populations - I
Lecture 48 - Unbiased Test for Normal Populations - II
Lecture 49 - Unbiased Test for Normal Populations - III
Lecture 50 - Unbiased Test for Normal Populations - IV
Lecture 51 - Likelihood Ratio Tests - I
Lecture 52 - Likelihood Ratio Tests - II
Lecture 53 - Likelihood Ratio Tests - III
Lecture 54 - Likelihood Ratio Tests - IV
Lecture 55 - Likelihood Ratio Tests - V
Lecture 56 - Likelihood Ratio Tests - VI
Lecture 57 - Likelihood Ratio Tests - VII
Lecture 58 - Likelihood Ratio Tests - VIII
Lecture 59 - Test for Goodness of Fit - I
Lecture 60 - Test for Goodness of Fit - II
Lecture 61 - Interval Estimation - I
Lecture 62 - Interval Estimation - II
Lecture 63 - Interval Estimation - III
Lecture 64 - Interval Estimation - IV
Lecture 28 - Quotients by Kleinian Subgroups give rise to Riemann Surfaces
Lecture 29 - The Unimodular Group is Kleinian
Lecture 30 - The Necessity of Elliptic Functions for the Classification of Complex Tori
Lecture 31 - The Uniqueness Property of the Weierstrass Phe-function associated to a Lattice in the Plane
Lecture 32 - The First Order Degree Two Cubic Ordinary Differential Equation satisfied by the Weierstrass Phe-function
Lecture 33 - The Values of the Weierstrass Phe-function at the Zeros of its Derivative are nonvanishing Analytic Functions on the Upper Half-Plane
Lecture 34 - The Construction of a Modular Form of Weight Two on the Upper Half-Plane
Lecture 35 - The Fundamental Functional Equations satisfied by the Modular Form of Weight Two on the Upper Half-Plane
Lecture 36 - The Weight Two Modular Form assumes Real Values on the Imaginary Axis in the Upper Half-plane
Lecture 37 - The Weight Two Modular Form Vanishes at Infinity
Lecture 38 - The Weight Two Modular Form Decays Exponentially in a Neighbourhood of Infinity
Lecture 39 - A Suitable Restriction of the Weight Two Modular Form is a Holomorphic Conformal Isomorphism onto the Upper Half-Plane
Lecture 40 - The J-Invariant of a Complex Torus (or) of an Algebraic Elliptic Curve
Lecture 41 - A Fundamental Region in the Upper Half-Plane for the Elliptic Modular J-Invariant
Lecture 42 - The Fundamental Region in the Upper Half-Plane for the Unimodular Group
Lecture 43 - A Region in the Upper Half-Plane Meeting Each Unimodular Orbit Exactly Once
Lecture 44 - Moduli of Elliptic Curves
Lecture 45 - Punctured Complex Tori are Elliptic Algebraic Affine Plane Cubic Curves in Complex 2-Space
Lecture 46 - The Natural Riemann Surface Structure on an Algebraic Affine Nonsingular Plane Curve
Lecture 47 - Complex Projective 2-Space as a Compact Complex Manifold of Dimension Two
Lecture 48 - Complex Tori are the same as Elliptic Algebraic Projective Curves

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
NPTEL Video Course - Mathematics - Linear Algebra

Subject Co-ordinator - Dr. K.C. Sivakumar

Co-ordinating Institute - IIT - Madras

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to the Course Contents
Lecture 2 - Linear Equations
Lecture 3a - Equivalent Systems of Linear Equations I
Lecture 3b - Equivalent Systems of Linear Equations II
Lecture 4 - Row-reduced Echelon Matrices
Lecture 5 - Row-reduced Echelon Matrices and Non-homogeneous Equations
Lecture 6 - Elementary Matrices, Homogeneous Equations and Non-homogeneous Equations
Lecture 7 - Invertible matrices, Homogeneous Equations Non-homogeneous Equations
Lecture 8 - Vector spaces
Lecture 9 - Elementary Properties in Vector Spaces. Subspaces
Lecture 10 - Subspaces (Continued...), Spanning Sets, Linear Independence, Dependence
Lecture 11 - Basis for a vector space
Lecture 12 - Dimension of a vector space
Lecture 13 - Dimensions of Sums of Subspaces
Lecture 14 - Linear Transformations
Lecture 15 - The Null Space and the Range Space of a Linear Transformation
Lecture 16 - The Rank-Nullity-Dimension Theorem. Isomorphisms Between Vector Spaces
Lecture 17 - Isomorphic Vector Spaces, Equality of the Row-rank and the Column-rank - I
Lecture 18 - Equality of the Row-rank and the Column-rank - II
Lecture 19 - The Matrix of a Linear Transformation
Lecture 20 - Matrix for the Composition and the Inverse. Similarity Transformation
Lecture 21 - Linear Functionals. The Dual Space. Dual Basis - I
Lecture 22 - Dual Basis II. Subspace Annihilators - I
Lecture 23 - Subspace Annihilators - II
Lecture 24 - The Double Dual. The Double Annihilator
Lecture 26 - Eigenvalues and Eigenvectors of Linear Operators
Lecture 27 - Diagonalization of Linear Operators. A Characterization
Lecture 28 - The Minimal Polynomial

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 29 - The Cayley-Hamilton Theorem
Lecture 30 - Invariant Subspaces
Lecture 31 - Triangulability, Diagonalization in Terms of the Minimal Polynomial
Lecture 32 - Independent Subspaces and Projection Operators
Lecture 33 - Direct Sum Decompositions and Projection Operators - I
Lecture 34 - Direct Sum Decompositions and Projection Operators - II
Lecture 35 - The Primary Decomposition Theorem and Jordan Decomposition
Lecture 36 - Cyclic Subspaces and Annihilators
Lecture 37 - The Cyclic Decomposition Theorem - I
Lecture 38 - The Cyclic Decomposition Theorem - II. The Rational Form
Lecture 39 - Inner Product Spaces
Lecture 40 - Norms on Vector spaces. The Gram-Schmidt Procedure I
Lecture 41 - The Gram-Schmidt Procedure II. The QR Decomposition
Lecture 42 - Bessel's Inequality, Parseval's Identity, Best Approximation
Lecture 43 - Best Approximation
Lecture 44 - Orthogonal Complementary Subspaces, Orthogonal Projections
Lecture 45 - Projection Theorem. Linear Functionals
Lecture 46 - The Adjoint Operator
Lecture 47 - Properties of the Adjoint Operation. Inner Product Space Isomorphism
Lecture 48 - Unitary Operators
Lecture 49 - Unitary operators - II. Self-Adjoint Operators - I.
Lecture 50 - Self-Adjoint Operators - II - Spectral Theorem
Lecture 51 - Normal Operators - Spectral Theorem
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - Mathematical Logic

Subject Co-ordinator - Prof. Arindama Singh

Co-ordinating Institute - IIT - Madras

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Sets and Strings
Lecture 2 - Syntax of Propositional Logic
Lecture 3 - Unique Parsing
Lecture 4 - Semantics of PL
Lecture 5 - Consequences and Equivalences
Lecture 6 - Five results about PL
Lecture 7 - Calculations and Informal Proofs
Lecture 8 - More Informal Proofs
Lecture 9 - Normal forms
Lecture 10 - SAT and 3SAT
Lecture 11 - Horn-SAT and Resolution
Lecture 12 - Resolution
Lecture 13 - Adequacy of Resolution
Lecture 14 - Adequacy and Resolution Strategies
Lecture 15 - Propositional Calculus (PC)
Lecture 16 - Some Results about PC
Lecture 17 - Arguing with Proofs
Lecture 18 - Adequacy of PC
Lecture 19 - Compactness & Analytic Tableau
Lecture 20 - Examples of Tableau Proofs
Lecture 21 - Adequacy of Tableaux
Lecture 22 - Syntax of First order Logic (FL)
Lecture 23 - Symbolization & Scope of Quantifiers
Lecture 24 - Hurdles in giving Meaning
Lecture 25 - Semantics of FL
Lecture 26 - Relevance Lemma
Lecture 27 - Validity, Satisfiability & Equivalence
Lecture 28 - Six Results about FL
Lecture 29 - Laws, Calculation & Informal Proof

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 1 - Introduction
Lecture 2 - Functions and Relations
Lecture 3 - Finite and Infinite Sets
Lecture 4 - Countable Sets
Lecture 5 - Uncountable Sets, Cardinal Number
Lecture 6 - Real Number System
Lecture 7 - LUB Axiom
Lecture 8 - Sequences of Real Numbers
Lecture 9 - Sequences of Real Numbers - (Continued.)
Lecture 10 - Sequences of Real Numbers - (Continued.)
Lecture 11 - Infinite Series of Real Numbers
Lecture 12 - Series of nonnegative Real Numbers
Lecture 13 - Conditional Convergence
Lecture 14 - Metric Spaces
Lecture 15 - Metric Spaces
Lecture 16 - Balls and Spheres
Lecture 17 - Open Sets
Lecture 18 - Closure Points, Limit Points and isolated Points
Lecture 19 - Closed sets
Lecture 20 - Sequences in Metric Spaces
Lecture 21 - Completeness
Lecture 22 - Baire Category Theorem
Lecture 23 - Limit and Continuity of a Function defined on a Metric space
Lecture 24 - Continuous Functions on a Metric Space
Lecture 25 - Uniform Continuity
Lecture 26 - Connectedness
Lecture 27 - Connected Sets
Lecture 28 - Compactness
Lecture 29 - Compactness (Continued.)
Lecture 30 - Characterizations of Compact Sets
Lecture 31 - Continuous Functions on Compact Sets
Lecture 32 - Types of Discontinuity
Lecture 33 - Differentiation
Lecture 34 - Mean Value Theorems
Lecture 35 - Mean Value Theorems (Continued.)
Lecture 36 - Taylor's Theorem
Lecture 37 - Differentiation of Vector Valued Functions
Lecture 38 - Integration
Lecture 39 - Integrability
Lecture 40 - Integrable Functions
Lecture 41 - Integrable Functions (Continued.)
Lecture 42 - Integration as a Limit of Sum
Lecture 43 - Integration and Differentiation
Lecture 44 - Integration of Vector Valued Functions
Lecture 45 - More Theorems on Integrals
Lecture 46 - Sequences and Series of Functions
Lecture 47 - Uniform Convergence
Lecture 48 - Uniform Convergence and Integration
Lecture 49 - Uniform Convergence and Differentiation
Lecture 50 - Construction of Everywhere Continuous Nowhere Differentiable Function
Lecture 51 - Approximation of a Continuous Function by Polynomials
Lecture 52 - Equicontinuous family of Functions
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - Dynamic Data Assimilation: An Introduction

Subject Co-ordinator - Prof. S. Lakshmivarahan
Co-ordinating Institute - IIT - Madras
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - An Overview
Lecture 2 - Data Mining, Data assimilation and prediction
Lecture 3 - A classification of forecast errors
Lecture 4 - Finite Dimensional Vector Space
Lecture 5 - Matrices
Lecture 6 - Matrices (Continued...)
Lecture 7 - Multi-variate Calculus
Lecture 8 - Optimization in Finite Dimensional Vector spaces
Lecture 9 - Deterministic, Static, linear Inverse (well-posed) Problems
Lecture 10 - Deterministic, Static, Linear Inverse (Ill-posed) Problems
Lecture 11 - A Geometric View Â□ Projections
Lecture 12 - Deterministic, Static, nonlinear Inverse Problems
Lecture 13 - On-line Least Squares
Lecture 14 - Examples of static inverse problems
Lecture 15 - Interlude and a Way Forward
Lecture 16 - Matrix Decomposition Algorithms
Lecture 17 - Matrix Decomposition Algorithms (Continued...)
Lecture 18 - Minimization algorithms
Lecture 19 - Minimization algorithms (Continued...)
Lecture 20 - Inverse problems in deterministic
Lecture 21 - Inverse problems in deterministic (Continued...)
Lecture 22 - Forward sensitivity method
Lecture 23 - Relation between FSM and 4DVAR
Lecture 24 - Statistical Estimation
Lecture 25 - Statistical Least Squares
Lecture 26 - Maximum Likelihood Method
Lecture 27 - Bayesian Estimation
Lecture 28 - From Gauss to Kalman-Lineal Minimum Variance Estimation
Lecture 29 - Initialization Classical Method

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Optimal interpolations
Lecture 31 - A Bayesian Formation-3D-VAR methods
Lecture 32 - Linear Stochastic Dynamics - Kalman Filter
Lecture 33 - Linear Stochastic Dynamics - Kalman Filter (Continued...)
Lecture 34 - Linear Stochastic Dynamics - Kalman Filter (Continued...)
Lecture 35 - Covariance Square Root Filter
Lecture 36 - Nonlinear Filtering
Lecture 37 - Ensemble Reduced Rank Filter
Lecture 38 - Basic nudging methods
Lecture 39 - Deterministic predictability
Lecture 40 - Predictability A stochastic view and Summary
NPTEL Video Course - Mathematics - NOC:An Invitation to Mathematics

Subject Co-ordinator - Prof. Sankaran Vishwanath

Co-ordinating Institute - Institute of Mathematical Sciences

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction
Lecture 2 - Long division
Lecture 3 - Applications of Long division
Lecture 4 - Lagrange interpolation
Lecture 5 - The 0-1 idea in other contexts - dot and cross product
Lecture 6 - Taylors formula
Lecture 7 - The Chebyshev polynomials
Lecture 8 - Counting number of monomials - several variables
Lecture 9 - Permutations, combinations and the binomial theorem
Lecture 10 - Combinations with repetition, and counting monomials
Lecture 11 - Combinations with restrictions, recurrence relations
Lecture 12 - Fibonacci numbers; an identity and a bijective proof
Lecture 13 - Permutations and cycle type
Lecture 14 - The sign of a permutation, composition of permutations
Lecture 15 - Rules for drawing tangle diagrams
Lecture 16 - Signs and cycle decompositions
Lecture 17 - Sorting lists of numbers, and crossings in tangle diagrams
Lecture 18 - Real and integer valued polynomials
Lecture 19 - Integer valued polynomials revisited
Lecture 20 - Functions on the real line, continuity
Lecture 21 - The intermediate value property
Lecture 22 - Visualizing functions
Lecture 23 - Functions on the plane, Rigid motions
Lecture 24 - More examples of functions on the plane, dilations
Lecture 25 - Composition of functions
Lecture 26 - Affine and Linear transformations
Lecture 27 - Length and Area dilation, the derivative
Lecture 28 - Examples-I
Lecture 29 - Examples-II
Lecture 30 - Linear equations, Lagrange interpolation revisited
Lecture 31 - Completed Matrices in combinatorics
Lecture 32 - Polynomials acting on matrices
Lecture 33 - Divisibility, prime numbers
Lecture 34 - Congruences, Modular arithmetic
Lecture 35 - The Chinese remainder theorem
Lecture 36 - The Euclidean algorithm, the 0-1 idea and the Chinese remainder theorem
Lecture 30 - The Mean-Value Property, Harmonic Functions and the Maximum Principle
Lecture 31 - Proofs of Maximum Principles and Introduction to Schwarz Lemma
Lecture 32 - Proof of Schwarz Lemma and Uniqueness of Riemann Mappings
Lecture 33 - Reducing Existence of Riemann Mappings to Hyperbolic Geometry of Sub-domains of the Unit Disc
Lecture 34 - Differential or Infinitesimal Schwarz Lemma, Picks Lemma, Hyperbolic Arclengths, Metric and Geodesics on the Unit Disc
Lecture 35 - Differential or Infinitesimal Schwarz Lemma, Picks Lemma, Hyperbolic Arclengths, Metric and Geodesics on the Unit Disc
Lecture 36 - Hyperbolic Geodesics for the Hyperbolic Metric on the Unit Disc
Lecture 37 - Schwarz-Pick Lemma for the Hyperbolic Metric on the Unit Disc
Lecture 38 - Arzela-Ascoli Theorem
Lecture 39 - Completion of the Proof of the Arzela-Ascoli Theorem and Introduction to Montel's Theorem
Lecture 40 - The Proof of Montel's Theorem
Lecture 41 - The Candidate for a Riemann Mapping
Lecture 42 - Completion of Proof of The Riemann Mapping Theorem
Lecture 43 - Completion of Proof of The Riemann Mapping Theorem
NPTEL Video Course - Mathematics - NOC: Discrete Mathematics

Subject Co-ordinator - Prof. Sourav Chakraborty
Co-ordinating Institute - IIT - Madras
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Course Introduction
Lecture 2 - Sets, Relations and Functions
Lecture 3 - Propositional Logic and Predicate Logic
Lecture 4 - Propositional Logic and Predicate Logic (Part 2)
Lecture 5 - Elementary Number Theory
Lecture 6 - Formal Proofs
Lecture 7 - Direct Proofs
Lecture 8 - Case Study
Lecture 9 - Case Study (Part 2)
Lecture 10 - Sets, Relations, Function and Logic
Lecture 11 - Proof by Contradiction (Part 1)
Lecture 12 - Proof by Contradiction (Part 2)
Lecture 13 - Proof by Contraposition
Lecture 14 - Proof by Counter Example
Lecture 15 - Mathematical Induction (Part 1)
Lecture 16 - Mathematical Induction (Part 2)
Lecture 17 - Mathematical Induction (Part 3)
Lecture 18 - Mathematical Induction (Part 4)
Lecture 19 - Mathematical Induction (Part 5)
Lecture 20 - Mathematical Induction (Part 6)
Lecture 21 - Mathematical Induction (Part 7)
Lecture 22 - Mathematical Induction (Part 8)
Lecture 23 - Introduction to Graph Theory
Lecture 24 - Handshake Problem
Lecture 25 - Tournament Problem
Lecture 26 - Tournament Problem (Part 2)
Lecture 27 - Ramsey Problem
Lecture 28 - Ramsey Problem (Part 2)
Lecture 29 - Properties of Graphs

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Problem 1
Lecture 31 - Problem 2
Lecture 32 - Problem 3 & 4
Lecture 33 - Counting for Selection
Lecture 34 - Counting for Distribution
Lecture 35 - Counting for Distribution (Part 2)
Lecture 36 - Some Counting Problems
Lecture 37 - Counting using Recurrence Relations
Lecture 38 - Counting using Recurrence Relations (Part 2)
Lecture 39 - Solving Recurrence Relations (Part 1)
Lecture 40 - Solving Recurrence Relations (Part 2)
Lecture 41 - Asymptotic Relations (Part 1)
Lecture 42 - Asymptotic Relations (Part 2)
Lecture 43 - Asymptotic Relations (Part 3)
Lecture 44 - Asymptotic Relations (Part 4)
Lecture 45 - Generating Functions (Part 1)
Lecture 46 - Generating Functions (Part 2)
Lecture 47 - Generating Functions (Part 3)
Lecture 48 - Generating Functions (Part 4)
Lecture 49 - Proof Techniques
Lecture 50 - Modeling
Lecture 51 - Combinatorics
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - Advanced Complex Analysis - Part 2

Subject Co-ordinator - Dr. T.E. Venkata Balaji
Co-ordinating Institute - IIT - Madras
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Properties of the Image of an Analytic Function - Introduction to the Picard Theorems
Lecture 2 - Recalling Singularities of Analytic Functions - Non-isolated and Isolated Removable, Pole and Essential
Lecture 3 - Recalling Riemann's Theorem on Removable Singularities
Lecture 4 - Casorati-Weierstrass Theorem; Dealing with the Point at Infinity -- Riemann Sphere and Riemann
Lecture 5 - Neighborhood of Infinity, Limit at Infinity and Infinity as an Isolated Singularity
Lecture 6 - Studying Infinity - Formulating Epsilon-Delta Definitions for Infinite Limits and Limits at Infinity
Lecture 7 - When is a function analytic at infinity?
Lecture 8 - Laurent Expansion at Infinity and Riemann's Removable Singularities Theorem for the Point at Infinity
Lecture 9 - The Generalized Liouville Theorem - Little Brother of Little Picard and Analogue of Casorati-Weierstrass
Lecture 10 - Morera's Theorem at Infinity, Infinity as a Pole and Behaviour at Infinity of Rational and Meromorphic Functions
Lecture 11 - Residue at Infinity and Introduction to the Residue Theorem for the Extended Complex Plane - Residues
Lecture 12 - Proofs of Two Avatars of the Residue Theorem for the Extended Complex Plane and Applications of
Lecture 13 - Infinity as an Essential Singularity and Transcendental Entire Functions
Lecture 14 - Meromorphic Functions on the Extended Complex Plane are Precisely Quotients of Polynomials
Lecture 15 - The Ubiquity of Meromorphic Functions - The Nerves of the Geometric Network Bridging Algebra, Analysis
Lecture 16 - Continuity of Meromorphic Functions at Poles and Topologies of Spaces of Functions
Lecture 17 - Why Normal Convergence, but Not Globally Uniform Convergence, is the Inevitable in Complex Analysis
Lecture 18 - Measuring Distances to Infinity, the Function Infinity and Normal Convergence of Holomorphic Functions
Lecture 19 - The Invariance Under Inversion of the Spherical Metric on the Extended Complex Plane
Lecture 20 - Introduction to Hurwitz's Theorem for Normal Convergence of Holomorphic Functions in the Spherical
Lecture 21 - Completion of Proof of Hurwitz's Theorem for Normal Limits of Analytic Functions in the Spherical
Lecture 22 - Hurwitz's Theorem for Normal Limits of Meromorphic Functions in the Spherical Metric
Lecture 23 - What could the Derivative of a Meromorphic Function Relative to the Spherical Metric Possibly Be?
Lecture 24 - Defining the Spherical Derivative of a Meromorphic Function
Lecture 25 - Well-definedness of the Spherical Derivative of a Meromorphic Function at a Pole and Inversion-in-
Lecture 26 - Topological Preliminaries - Translating Compactness into Boundedness
Lecture 27 - Introduction to the Arzela-Ascoli Theorem - Passing from abstract Compactness to verifiable Equi-
Lecture 28 - Proof of the Arzela-Ascoli Theorem for Functions - Abstract Compactness Implies Equicontinuity
Lecture 29 - Proof of the Arzela-Ascoli Theorem for Functions - Equicontinuity Implies Compactness

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - NOC: Introduction to Commutative Algebra

Subject Co-ordinator - Prof. A.V. Jayanthan
Co-ordinating Institute - IIT - Madras
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Review of Ring Theory
Lecture 2 - Review of Ring Theory (Continued...)
Lecture 3 - Ideals in commutative rings
Lecture 4 - Operations on ideals
Lecture 5 - Properties of prime ideals
Lecture 6 - Colon and Radical of ideals
Lecture 7 - Radicals, extension and contraction of ideals
Lecture 8 - Modules and homomorphisms
Lecture 9 - Isomorphism theorems and Operations on modules
Lecture 10 - Operations on modules (Continued...)
Lecture 11 - Module homomorphism and determinant trick
Lecture 12 - Nakayama’s lemma and exact sequences
Lecture 13 - Exact sequences (Continued...)
Lecture 14 - Homomorphisms and Tensor products
Lecture 15 - Properties of tensor products
Lecture 16 - Properties of tensor products (Continued...)
Lecture 17 - Tensor product of Algebras
Lecture 18 - Localization
Lecture 19 - Localization (Continued...)
Lecture 20 - Local properties
Lecture 21 - Further properties of localization
Lecture 22 - Intergral dependence
Lecture 23 - Integral extensions
Lecture 24 - Lying over and Going-up theorems
Lecture 25 - Going-down theorem
Lecture 26 - Going-down theorem (Continued...)
Lecture 27 - Chain conditions
Lecture 28 - Noetherian and Artinian modules
Lecture 29 - Properties of Noetherian and Artinian modules, Composition Series

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
Lecture 30 - Further properties of Noetherian and Artinian modules and rings
Lecture 31 - Hilbert basis theorem and Primary decomposition
Lecture 32 - Primary decomposition (Continued...)
Lecture 33 - Uniqueness of primary decomposition
Lecture 34 - 2nd Uniqueness theorem, Artinian rings
Lecture 35 - Properties of Artinian rings
Lecture 36 - Structure Theorem of Artinian rings
Lecture 37 - Noether Normalization
Lecture 38 - Hilberts Nullstellensatz
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - NOC:Differential Equations

Subject Co-ordinator - Prof. Srinivasa Manam

Co-ordinating Institute - IIT - Madras

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Ordinary Differential Equations (ODE)
Lecture 2 - Methods for First Order ODE's - Homogeneous Equations
Lecture 3 - Methods for First order ODE's - Exact Equations
Lecture 4 - Methods for First Order ODE's - Exact Equations (Continued...)
Lecture 5 - Methods for First order ODE's - Reducible to Exact Equations
Lecture 6 - Methods for First order ODE's - Reducible to Exact Equations (Continued...)
Lecture 7 - Non-Exact Equations - Finding Integrating Factors
Lecture 8 - Linear First Order ODE and Bernoulli's Equation
Lecture 9 - Introduction to Second order ODE's
Lecture 10 - Properties of solutions of second order homogeneous ODE's
Lecture 11 - Abel's formula to find the other solution
Lecture 12 - Abel's formula - Demonstration
Lecture 13 - Second Order ODE's with constant coefficients
Lecture 14 - Euler - Cauchy equation
Lecture 15 - Non homogeneous ODEs Variation of Parameters
Lecture 16 - Method of undetermined coefficients
Lecture 17 - Demonstration of Method of undetermined coefficients
Lecture 18 - Power Series and its properties
Lecture 19 - Power Series Solutions to Second Order ODE's
Lecture 20 - Power Series Solutions (Continued...)
Lecture 21 - Legendre Differential Equation
Lecture 22 - Legendre Polynomials
Lecture 23 - Properties of Legendre Polynomials
Lecture 24 - Power series solutions around a regular singular point
Lecture 25 - Frobenius method of solutions
Lecture 26 - Frobenius method of solutions (Continued...)
Lecture 27 - Examples on Frobenius method
Lecture 28 - Bessel differential equation
Lecture 29 - Frobenius solutions for Bessel Equation

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Properties of Bessel functions
Lecture 31 - Properties of Bessel functions (Continued...)
Lecture 32 - Introduction to Sturm-Liouville theory
Lecture 33 - Sturm-Liouville Problems
Lecture 34 - Regular Sturm-Liouville problem
Lecture 35 - Periodic and singular Sturm-Liouville Problems
Lecture 36 - Generalized Fourier series
Lecture 37 - Examples of Sturm-Liouville systems
Lecture 38 - Examples of Sturm-Liouville systems (Continued...)
Lecture 39 - Examples of regular Sturm-Liouville systems
Lecture 40 - Second order linear PDEs
Lecture 41 - Classification of second order linear PDEs
Lecture 42 - Reduction to canonical form for equations with constant coefficients
Lecture 43 - Reduction to canonical form for equations with variable coefficients
Lecture 44 - Reduction to Normal form-More examples
Lecture 45 - D'Alembert solution for wave equation
Lecture 46 - Uniqueness of solutions for wave equation
Lecture 47 - Vibration of a semi-infinite string
Lecture 48 - Vibration of a finite string
Lecture 49 - Finite length string vibrations
Lecture 50 - Finite length string vibrations (Continued...)
Lecture 51 - Non-homogeneous wave equation
Lecture 52 - Vibration of a circular drum
Lecture 53 - Solutions of heat equation-Properties
Lecture 54 - Temperature in an infinite rod
Lecture 55 - Temperature in a semi-infinite rod
Lecture 56 - Non-homogeneous heat equation
Lecture 57 - Temperature in a finite rod
Lecture 58 - Temperature in a finite rod with insulated ends
Lecture 59 - Laplace equation over a rectangle
Lecture 60 - Laplace equation over a rectangle with flux boundary conditions
Lecture 61 - Laplace equation over circular domains
Lecture 62 - Laplace equation over circular Sectors
Lecture 63 - Uniqueness of the boundary value problems for Laplace equation
Lecture 64 - Conclusions

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
NPTEL Video Course - Mathematics - NOC: Numerical Analysis

Subject Co-ordinator - Prof. R. Usha

Co-ordinating Institute - IIT - Madras

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Lesson 1 - Introduction, Motivation
Lecture 2 - Lesson 2 - Part 1 - Mathematical Preliminaries, Polynomial Interpolation - 1
Lecture 3 - Lesson 2 - Part 2 - Mathematical Preliminaries, Polynomial Interpolation - 1
Lecture 4 - Lesson 3 - Part 1 - Polynomial Interpolation - 2
Lecture 5 - Lesson 3 - Part 2 - Polynomial Interpolation - 2
Lecture 6 - Lesson 4 - Polynomial Interpolation - 3
Lecture 7 - Lagrange Interpolation Polynomial, Error In Interpolation - 1
Lecture 8 - Lagrange Interpolation Polynomial, Error In Interpolation - 1
Lecture 9 - Error In Interpolation - 2
Lecture 10 - Error In Interpolation - 2
Lecture 11 - Divide Difference Interpolation Polynomial
Lecture 12 - Properties Of Divided Difference, Introduction To Inverse Interpolation
Lecture 13 - Properties Of Divided Difference, Introduction To Inverse Interpolation
Lecture 14 - Inverse Interpolation, Remarks on Polynomial Interpolation
Lecture 15 - Numerical Differentiation - 1 Taylor Series Method
Lecture 16 - Numerical Differentiation - 2 Method Of Undetermined Coefficients
Lecture 17 - Numerical Differentiation - 2 Polynomial Interpolation Method
Lecture 18 - Numerical Differentiation - 3 Operator Method Numerical Integration - 1
Lecture 19 - Numerical Integration - 2 Error in Trapezoidal Rule Simpson's Rule
Lecture 20 - Numerical Integration - 3 Error in Simpson's Rule Composite in Trapezoidal Rule, Error
Lecture 21 - Numerical Integration - 4 Composite Simpsons Rule , Error Method of Undetermined Coefficients
Lecture 22 - Numerical Integration - 5 Gaussian Quadrature (Two-Point Method)
Lecture 23 - Numerical Integrature - 5 Gaussian Quadrature (Three-Point Method) Adaptive Quadrature
Lecture 24 - Numerical Solution of Ordinary Differential Equation (ODE) - 1
Lecture 26 - Numerical Solution Of ODE-3 Examples of Taylor Series Method Euler's Method
Lecture 27 - Numerical Solution Of ODE-4 Runge-Kutta Methods
Lecture 28 - Numerical Solution Of ODE-5 Example For RK-Method Of Order 2 Modified Euler's Method
Lecture 29 - Numerical Solution Of Ordinary Differential Equations - 6 Predictor-Corrector Methods (Adam-Moul

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
<table>
<thead>
<tr>
<th>Lecture</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Numerical Solution Of Ordinary Differential Equations - 7</td>
</tr>
<tr>
<td>31</td>
<td>Numerical Solution Of Ordinary Differential Equations - 8</td>
</tr>
<tr>
<td>32</td>
<td>Numerical Solution Of Ordinary Differential Equations - 9</td>
</tr>
<tr>
<td>33</td>
<td>Numerical Solution Of Ordinary Differential Equations - 10</td>
</tr>
<tr>
<td>34</td>
<td>Numerical Solution Of Ordinary Differential Equations - 11</td>
</tr>
<tr>
<td>35</td>
<td>Root Finding Methods - 1 The Bisection Method - 1</td>
</tr>
<tr>
<td>36</td>
<td>Root Finding Methods - 2 The Bisection Method - 2</td>
</tr>
<tr>
<td>37</td>
<td>Root Finding Methods - 3 Newton-Raphson Method - 1</td>
</tr>
<tr>
<td>38</td>
<td>Root Finding Methods - 4 Newton-Raphson Method - 2</td>
</tr>
<tr>
<td>39</td>
<td>Root Finding Methods - 5 Secant Method, Method Of false Position</td>
</tr>
<tr>
<td>40</td>
<td>Root Finding Methods - 6 Fixed Point Methods - 1</td>
</tr>
<tr>
<td>41</td>
<td>Root Finding Methods - 7 Fixed Point Methods - 2</td>
</tr>
<tr>
<td>42</td>
<td>Root Finding Methods - 8 Fixed Point Iteration Methods - 3</td>
</tr>
<tr>
<td>43</td>
<td>Root Finding Methods - 9 Practice Problems</td>
</tr>
<tr>
<td>44</td>
<td>Solution Of Linear Systems Of Equations - 1</td>
</tr>
<tr>
<td>45</td>
<td>Solution Of Linear Systems Of Equations - 2</td>
</tr>
<tr>
<td>46</td>
<td>Solution Of Linear Systems Of Equations - 3</td>
</tr>
<tr>
<td>47</td>
<td>Solution Of Linear Systems Of Equations - 4</td>
</tr>
<tr>
<td>48</td>
<td>Solution Of Linear Systems Of Equations - 5</td>
</tr>
<tr>
<td>49</td>
<td>Solution Of Linear Systems Of Equations - 6</td>
</tr>
<tr>
<td>50</td>
<td>Solution Of Linear Systems Of Equations - 7</td>
</tr>
<tr>
<td>51</td>
<td>Solution Of Linear Systems Of Equations - 8 Iterative Method - 1</td>
</tr>
<tr>
<td>52</td>
<td>Solution Of Linear Systems Of Equations - 8 Iterative Method - 2</td>
</tr>
<tr>
<td>53</td>
<td>Matrix Eigenvalue Problems - 2 Power Method - 2</td>
</tr>
<tr>
<td>54</td>
<td>Practice Problems</td>
</tr>
</tbody>
</table>

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Course - Mathematics - NOC: Graph Theory

Subject Co-ordinator - Dr. Soumen Maity

Co-ordinating Institute - IISER - Pune

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Basic Concepts
Lecture 2 - Basic Concepts - 1
Lecture 3 - Eulerian and Hamiltonian Graph
Lecture 4 - Eulerian and Hamiltonian Graph - 1
Lecture 5 - Bipartite Graph
Lecture 6 - Bipartite Graph
Lecture 7 - Diameter of a graph; Isomorphic graphs
Lecture 8 - Diameter of a graph; Isomorphic graphs
Lecture 9 - Minimum Spanning Tree
Lecture 10 - Minimum Spanning Trees (Continued...)
Lecture 11 - Minimum Spanning Trees (Continued...)
Lecture 12 - Minimum Spanning Trees (Continued...)
Lecture 13 - Maximum Matching in Bipartite Graph
Lecture 14 - Maximum Matching in Bipartite Graph - 1
Lecture 15 - Hall's Theorem and Konig's Theorem
Lecture 16 - Hall's Theorem and Konig's Theorem - 1
Lecture 17 - Independent Set and Edge Cover
Lecture 18 - Independent Set and Edge Cover - 1
Lecture 19 - Matching in General Graphs
Lecture 20 - Proof of Halls Theorem
Lecture 21 - Stable Matching
Lecture 22 - Gale-Shapley Algorithm
Lecture 23 - Graph Connectivity
Lecture 24 - Graph Connectivity - 1
Lecture 25 - 2-Connected Graphs
Lecture 26 - 2-Connected Graphs - 1
Lecture 27 - Subdivision of an edge; 2-edge-connected graphs
Lecture 28 - Problems Related to Graphs Connectivity
Lecture 29 - Flow Network
Lecture 30 - Residual Network and Augmenting Path
Lecture 31 - Augmenting Path Algorithm
Lecture 32 - Max-Flow and Min-Cut
Lecture 33 - Max-Flow and Min-Cut Theorem
Lecture 34 - Vertex Colouring
Lecture 35 - Chromatic Number and Max. Degree
Lecture 36 - Edge Colouring
Lecture 37 - Planar Graphs and Euler's Formula
Lecture 38 - Characterization Of Planar Graphs
Lecture 39 - Colouring of Planar Graphs
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - NOC: Transform Techniques for Engineers

Subject Co-ordinator - Prof. Srinivasa Manam
Co-ordinating Institute - IIT - Madras
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Fourier series
Lecture 2 - Fourier series - Examples
Lecture 3 - Complex Fourier series
Lecture 4 - Conditions for the Convergence of Fourier Series
Lecture 5 - Conditions for the Convergence of Fourier Series (Continued...)
Lecture 6 - Use of Delta function in the Fourier series convergence
Lecture 7 - More Examples on Fourier Series of a Periodic Signal
Lecture 8 - Gibb's Phenomenon in the Computation of Fourier Series
Lecture 9 - Properties of Fourier Transform of a Periodic Signal
Lecture 10 - Properties of Fourier transform (Continued...)
Lecture 11 - Parseval's Identity and Recap of Fourier series
Lecture 12 - Fourier integral theorem - an informal proof
Lecture 13 - Definition of Fourier transforms
Lecture 14 - Fourier transform of a Heavyside function
Lecture 15 - Use of Fourier transforms to evaluate some integrals
Lecture 16 - Evaluation of an integral - Recall of complex function theory
Lecture 17 - Properties of Fourier transforms of non-periodic signals
Lecture 18 - More properties of Fourier transforms
Lecture 19 - Fourier integral theorem - proof
Lecture 20 - Application of Fourier transform to ODE's
Lecture 21 - Application of Fourier transforms to differential and integral equations
Lecture 22 - Evaluation of integrals by Fourier transforms
Lecture 23 - D'Alembert's solution by Fourier transform
Lecture 24 - Solution of Heat equation by Fourier transform
Lecture 25 - Solution of Heat and Laplace equations by Fourier transform
Lecture 26 - Introduction to Laplace transform
Lecture 27 - Laplace transform of elementary functions
Lecture 28 - Properties of Laplace transforms
Lecture 29 - Properties of Laplace transforms (Continued...)

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Methods of finding inverse Laplace transform
Lecture 31 - Heavyside expansion theorem
Lecture 32 - Review of complex function theory
Lecture 33 - Inverse Laplace transform by contour integration
Lecture 34 - Application of Laplace transforms - ODEs'
Lecture 35 - Solutions of initial or boundary value problems for ODEs'
Lecture 36 - Solving first order PDE's by Laplace transform
Lecture 37 - Solution of wave equation by Laplace transform
Lecture 38 - Solving hyperbolic equations by Laplace transform
Lecture 39 - Solving heat equation by Laplace transform
Lecture 40 - Initial boundary value problems for heat equations
Lecture 41 - Solution of Integral Equations by Laplace Transform
Lecture 42 - Evaluation of Integrals by Laplace Transform
Lecture 43 - Introduction to Z-Transforms
Lecture 44 - Properties of Z-Transforms
Lecture 45 - Inverse Z-transforms
Lecture 46 - Solution of difference equations by Z-transforms
Lecture 47 - Evaluation of infinite sums by Z-transforms
Lecture 48 - conclusions
NPTEL Video Course - Mathematics - NOC: Introduction to Probability and Statistics

Subject Co-ordinator - Prof. G. Srinivasan

Co-ordinating Institute - IIT - Madras

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to probability and Statistics
Lecture 2 - Types of data
Lecture 3 - Categorical data
Lecture 4 - Describing Categorical data
Lecture 5 - Describing Categorical data (Continued...)
Lecture 6 - Describing numerical data
Lecture 7 - Describing numerical data (Continued...)
Lecture 8 - Exercises, Association between categorical variables
Lecture 9 - Association between categorical variables (Continued...)
Lecture 10 - Association between numerical variables
Lecture 11 - Association between numerical variables (Continued...)
Lecture 12 - Probability
Lecture 13 - Rules of Probability
Lecture 14 - Rules of Probability (Continued...)
Lecture 15 - Conditional Probability
Lecture 16 - Random variables
Lecture 17 - Random variables - concepts and exercises
Lecture 18 - Association between Random variables
Lecture 19 - Binomial Distribution
Lecture 20 - Normal distribution
Lecture 21 - Additional Examples
Lecture 30 - Odd and even permutations - I
Lecture 31 - Odd and even permutations - II
Lecture 32 - Alternating groups
Lecture 33 - Group actions
Lecture 34 - Examples of group actions
Lecture 35 - Orbits and stabilizers
Lecture 36 - Counting formula
Lecture 37 - Cayley's theorem
Lecture 38 - Problems - 7
Lecture 39 - Problems - 8 and Class equation
Lecture 40 - Group actions on subsets
Lecture 41 - Sylow Theorem - I
Lecture 42 - Sylow Theorem - II
Lecture 43 - Sylow Theorem - III
Lecture 44 - Problems - 9
Lecture 45 - Problems - 10
NPTEL Video Course - Mathematics - NOC: Groups: Motion, Symmetry and Puzzles

Subject Co-ordinator - Prof. Amit Kulshrestha

Co-ordinating Institute - IIT - Madras

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Permutation, symmetry and groups
Lecture 2 - Groups acting on a set/an object
Lecture 3 - More on group actions
Lecture 4 - Groups and parity
Lecture 5 - Parity and puzzles
Lecture 6 - Generators and relations
Lecture 7 - Cosets, quotients and homomorphisms
Lecture 8 - Cayley graphs of groups
Lecture 9 - Platonic solids
Lecture 10 - Symmetries of plane and wallpapers
Lecture 11 - Introduction to GAP
Lecture 12 - GAP through Rubik's cube
Lecture 13 - Representing abstract groups
Lecture 14 - A quick introduction to group representations
Lecture 15 - Rotations and quaternions
Lecture 16 - Rotational symmetries of platonic solids
Lecture 17 - Finite subgroups of SO(3)
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - Discrete Mathematics

Subject Co-ordinator - Dr. Aditi Gangopadhyay, Dr. Sugata Gangopadhyay, Dr. Tanuja Srivastava

Co-ordinating Institute - IIT - Roorkee

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to the theory of sets
Lecture 2 - Set operation and laws of set operation
Lecture 3 - The principle of inclusion and exclusion
Lecture 4 - Application of the principle of inclusion and exclusion
Lecture 5 - Fundamentals of logic
Lecture 6 - Logical Inferences
Lecture 7 - Methods of proof of an implication
Lecture 8 - First order logic (1)
Lecture 9 - First order logic (2)
Lecture 10 - Rules of influence for quantified propositions
Lecture 11 - Mathematical Induction (1)
Lecture 12 - Mathematical Induction (2)
Lecture 13 - Sample space, events
Lecture 14 - Probability, conditional probability
Lecture 15 - Independent events, Bayes theorem
Lecture 16 - Information and mutual information
Lecture 17 - Basic definition
Lecture 18 - Isomorphism and sub graphs
Lecture 19 - Walks, paths and circuits operations on graphs
Lecture 20 - Euler graphs, Hamiltonian circuits
Lecture 21 - Shortest path problem
Lecture 22 - Planar graphs
Lecture 23 - Basic definition
Lecture 24 - Properties of relations
Lecture 25 - Graph of relations
Lecture 26 - Matrix of relation
Lecture 27 - Closure of relation (1)
Lecture 28 - Closure of relation (2)
Lecture 29 - Warshall's algorithm

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - NOC: Mathematical Methods and its Applications

Subject Co-ordinator - Prof. P.N. Agarwal, S. K. Gupta

Co-ordinating Institute - IIT - Roorkee

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to linear differential equations
Lecture 2 - Linear dependence, independence and Wronskian of functions
Lecture 3 - Solution of second-order homogenous linear differential equations with constant coefficients - I
Lecture 4 - Solution of second-order homogenous linear differential equations with constant coefficients - II
Lecture 5 - Method of undetermined coefficients
Lecture 6 - Methods for finding Particular Integral for second-order linear differential equations with constant coefficients - I
Lecture 7 - Methods for finding Particular Integral for second-order linear differential equations with constant coefficients - II
Lecture 8 - Methods for finding Particular Integral for second-order linear differential equations with constant coefficients - III
Lecture 9 - Euler-Cauchy equations
Lecture 10 - Method of reduction for second-order linear differential equations
Lecture 11 - Method of variation of parameters
Lecture 12 - Solution of second order differential equations by changing dependent variable
Lecture 13 - Solution of second order differential equations by changing independent variable
Lecture 14 - Solution of higher-order homogenous linear differential equations with constant coefficients
Lecture 15 - Methods for finding Particular Integral for higher-order linear differential equations
Lecture 16 - Formulation of Partial differential equations
Lecture 17 - Solution of Lagrange's equation - I
Lecture 18 - Solution of Lagrange's equation - II
Lecture 19 - Solution of first order nonlinear equations - I
Lecture 20 - Solution of first order nonlinear equations - II
Lecture 21 - Solution of first order nonlinear equations - III
Lecture 22 - Solution of first order nonlinear equations - IV
Lecture 23 - Introduction to Laplace transforms
Lecture 24 - Laplace transforms of some standard functions
Lecture 25 - Existence theorem for Laplace transforms
Lecture 26 - Properties of Laplace transforms - I
Lecture 27 - Properties of Laplace transforms - II
Lecture 28 - Properties of Laplace transforms - III
Lecture 29 - Properties of Laplace transforms - IV

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimatin
Lecture 30 - Convolution theorem for Laplace transforms - I
Lecture 31 - Convolution theorem for Laplace transforms - II
Lecture 32 - Initial and final value theorems for Laplace transforms
Lecture 33 - Laplace transforms of periodic functions
Lecture 34 - Laplace transforms of Heaviside unit step function
Lecture 35 - Laplace transforms of Dirac delta function
Lecture 36 - Applications of Laplace transforms - I
Lecture 37 - Applications of Laplace transforms - II
Lecture 38 - Applications of Laplace transforms - III
Lecture 39 - Z transform and inverse Z-transform of elementary functions
Lecture 40 - Properties of Z-transforms - I
Lecture 41 - Properties of Z-transforms - II
Lecture 42 - Initial and final value theorem for Z-transforms
Lecture 43 - Convolution theorem for Z-transforms
Lecture 44 - Applications of Z-transforms - I
Lecture 45 - Applications of Z-transforms - II
Lecture 46 - Applications of Z-transforms - III
Lecture 47 - Fourier series and its convergence - I
Lecture 48 - Fourier series and its convergence - II
Lecture 49 - Fourier series of even and odd functions
Lecture 50 - Fourier half-range series
Lecture 51 - Parseval's Identity
Lecture 52 - Complex form of Fourier series
Lecture 53 - Fourier integrals
Lecture 54 - Fourier sine and cosine integrals
Lecture 55 - Fourier transforms
Lecture 56 - Fourier sine and cosine transforms
Lecture 57 - Convolution theorem for Fourier transforms
Lecture 58 - Applications of Fourier transforms to BVP - I
Lecture 59 - Applications of Fourier transforms to BVP - II
Lecture 60 - Applications of Fourier transforms to BVP - III
Lecture 1 - Definition and classification of linear integral equations
Lecture 2 - Conversion of IVP into integral equations
Lecture 3 - Conversion of BVP into an integral equations
Lecture 4 - Conversion of integral equations into differential equations
Lecture 5 - Integro-differential equations
Lecture 6 - Fredholm integral equation with separable kernel
Lecture 7 - Fredholm integral equation with separable kernel
Lecture 8 - Solution of integral equations by successive substitutions
Lecture 9 - Solution of integral equations by successive approximations
Lecture 10 - Solution of integral equations by successive approximations
Lecture 11 - Fredholm integral equations with symmetric kernels
Lecture 12 - Fredholm integral equations with symmetric kernels
Lecture 13 - Fredholm integral equations with symmetric kernels
Lecture 14 - Construction of Green function - I
Lecture 15 - Construction of Green function - II
Lecture 16 - Green function for self-adjoint linear differential equations
Lecture 17 - Green function for non-homogeneous boundary value problem
Lecture 18 - Fredholm alternative theorem - I
Lecture 19 - Fredholm alternative theorem - II
Lecture 20 - Fredholm method of solutions
Lecture 21 - Classical Fredholm theory
Lecture 22 - Classical Fredholm theory
Lecture 23 - Classical Fredholm theory
Lecture 24 - Method of successive approximations
Lecture 25 - Neumann series and resolvent kernels - I
Lecture 26 - Neumann series and resolvent kernels - II
Lecture 27 - Equations with convolution type kernels - I
Lecture 28 - Equations with convolution type kernels - II
Lecture 29 - Singular integral equations - I
Lecture 30 - Singular integral equations - II
Lecture 31 - Cauchy type integral equations - I
Lecture 32 - Cauchy type integral equations - II
Lecture 33 - Cauchy type integral equations - III
Lecture 34 - Cauchy type integral equations - IV
Lecture 35 - Cauchy type integral equations - V
Lecture 36 - Solution of integral equations using Fourier transform
Lecture 37 - Solution of integral equations using Hilbert transform - I
Lecture 38 - Solution of integral equations using Hilbert transform - II
Lecture 39 - Calculus of variations
Lecture 40 - Calculus of variations
Lecture 41 - Calculus of variations
Lecture 42 - Calculus of variations
Lecture 43 - Euler equation
Lecture 44 - Euler equation
Lecture 45 - Brachistochrone problem and Euler equation - I
Lecture 46 - Euler's equation - II
Lecture 47 - Functions of several independent variables
Lecture 48 - Variational problems in parametric form
Lecture 49 - Variational problems of general type
Lecture 50 - Variational derivative and invariance of Euler's equation
Lecture 51 - Invariance of Euler's equation and isoperimetric problem - I
Lecture 52 - Isoperimetric problem - II
Lecture 53 - Variational problem involving a conditional extremum - I
Lecture 54 - Variational problem involving a conditional extremum - II
Lecture 55 - Variational problems with moving boundaries - I
Lecture 56 - Variational problems with moving boundaries - II
Lecture 57 - Variational problems with moving boundaries - III
Lecture 58 - Variational problems with moving boundaries; One sided variation
Lecture 59 - Variational problem with a movable boundary for a functional dependent on two functions
Lecture 60 - Hamilton's principle
NPTEL Video Course - Mathematics - NOC:Nonlinear Programming

Subject Co-ordinator - S. K. Gupta

Co-ordinating Institute - IIT - Roorkee

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Convex Sets and Functions
Lecture 2 - Properties of Convex Functions - I
Lecture 3 - Properties of Convex Functions - II
Lecture 4 - Properties of Convex Functions - III
Lecture 5 - Convex Programming Problems
Lecture 6 - KKT optimality conditions
Lecture 7 - Quadratic Programming Problems - I
Lecture 8 - Quadratic Programming Problems - II
Lecture 9 - Separable Programming - I
Lecture 10 - Separable Programming - II
Lecture 11 - Geometric Programming - I
Lecture 12 - Geometric Programming - II
Lecture 13 - Geometric Programming - III
Lecture 14 - Dynamic Programming - I
Lecture 15 - Dynamic Programming - II
Lecture 16 - Dynamic programming approach to find shortest path in any network
Lecture 17 - Dynamic Programming - IV
Lecture 18 - Search Techniques - I
Lecture 19 - Search Techniques - II
Lecture 20 - Search Techniques - III
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - NOC: Numerical Methods

Subject Co-ordinator - Prof. Sanjeev Kumar, Prof. Ameeya Kumar Nayak
Co-ordinating Institute - IIT - Roorkee

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to error analysis and linear systems
Lecture 2 - Gaussian elimination with Partial pivoting
Lecture 3 - LU decomposition
Lecture 4 - Jacobi and Gauss Seidel methods
Lecture 5 - Iterative methods-II
Lecture 6 - Introduction to Non-linear equations and Bisection method
Lecture 7 - Regula Falsi and Secant methods
Lecture 8 - Newton-Raphson method
Lecture 9 - Fixed point iteration method
Lecture 10 - System of Nonlinear equations
Lecture 11 - Introduction to Eigenvalues and Eigenvectors
Lecture 12 - Similarity Transformations and Gershgorin Theorem
Lecture 13 - Jacobi's Method for Computing Eigenvalues
Lecture 14 - Power Method
Lecture 15 - Inverse Power Method
Lecture 16 - Interpolation - Part I (Introduction to Interpolation)
Lecture 17 - Interpolation - Part II (Some basic operators and their properties)
Lecture 18 - Interpolation - Part III (Newton’s Forward/ Backward difference and derivation of general error)
Lecture 19 - Interpolation - Part IV (Error in approximating a function by a polynomial using Newton’s Forward and Backward difference formulas)
Lecture 20 - Interpolation - Part V (Solving problems using Newton's Forward and Backward difference formulas)
Lecture 21 - Interpolation - Part VI (Central difference formula)
Lecture 22 - Interpolation - Part VII (Lagrange interpolation formula with examples)
Lecture 23 - Interpolation - Part VIII (Divided difference interpolation with examples)
Lecture 24 - Interpolation - Part IX (Hermite's interpolation with examples)
Lecture 25 - Numerical differentiation - Part I (Introduction to numerical differentiation by interpolation formulas)
Lecture 26 - Numerical differentiation - Part II (Numerical differentiation based on Lagrange’s interpolation formulas)
Lecture 27 - Numerical differentiation - Part III (Numerical differentiation based on Divided difference formulas)
Lecture 28 - Numerical differentiation - Part IV (Maxima and minima of a tabulated function and differentiation formula)
Lecture 29 - Numerical differentiation - Part V (Differentiation based on finite difference operators)

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Numerical differentiation - Part VI (Method of undetermined coefficients and Derivatives with unequal intervals)
Lecture 31 - Numerical Integration - Part I (Methodology of Numerical Integration and Rectangular rule)
Lecture 32 - Numerical Integration - Part II (Quadrature formula and Trapezoidal rule with associated errors)
Lecture 33 - Numerical Integration - Part III (Simpsons 1/3rd rule with associated errors)
Lecture 34 - Numerical Integration - Part IV (Composite Simpsons 1/3rd rule and Simpsons 3/8th rule with examples)
Lecture 35 - Numerical Integration - Part V (Gauss Legendre 2-point and 3-point formula with examples)
Lecture 36 - Introduction to Ordinary Differential equations
Lecture 37 - Numerical methods for ODE-1
Lecture 38 - Numerical Methods - II
Lecture 39 - R-K Methods for solving ODEs
Lecture 40 - Multi-step Method for solving ODEs
NPTEL Video Course - Mathematics - NOC: Numerical Linear Algebra

Subject Co-ordinator - Prof. D. N Pandey, Prof. P. N. Agrawal

Co-ordinating Institute - IIT - Roorkee

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Matrix Operations and Types of Matrices
Lecture 2 - Determinant of a Matrix
Lecture 3 - Rank of a Matrix
Lecture 4 - Vector Space - I
Lecture 5 - Vector Space - II
Lecture 6 - Linear dependence and independence
Lecture 7 - Bases and Dimension - I
Lecture 8 - Bases and Dimension - II
Lecture 9 - Linear Transformation - I
Lecture 10 - Linear Transformation - II
Lecture 11 - Orthogonal Subspaces
Lecture 12 - Row Space, Column Space and Null Space
Lecture 13 - Eigen Values and Eigen Vectors - I
Lecture 14 - Eigen Values and Eigen Vectors - II
Lecture 15 - Diagonalizable Matrices
Lecture 16 - Orthogonal Sets
Lecture 17 - Gram Schmidt orthogonalization and orthogonal bases
Lecture 18 - Introduction to Matlab
Lecture 19 - Sign Integer Representation
Lecture 20 - Computer Representation of Numbers
Lecture 21 - Floating Point Representation
Lecture 22 - Round-off Error
Lecture 23 - Error Propagation in Computer Arithmetic
Lecture 24 - Addition and Multiplication of Floating Point Numbers
Lecture 25 - Conditioning and Condition Numbers - I
Lecture 26 - Conditioning and Condition Numbers - II
Lecture 27 - Stability of Numerical Algorithms - I
Lecture 28 - Stability of Numerical Algorithms - II
Lecture 29 - Vector Norms - I

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimath.in
Lecture 30 - Vector Norms - II
Lecture 31 - Matrix Norms - I
Lecture 32 - Matrix Norms - II
Lecture 33 - Convergent Matrices - I
Lecture 34 - Convergent Matrices - II
Lecture 35 - Stability of non linear system
Lecture 36 - Condition number of a matrix
Lecture 37 - Sensitivity Analysis - I
Lecture 38 - Sensitivity Analysis - II
Lecture 39 - Residual Theorem
Lecture 40 - Nearness to Singularity
Lecture 41 - Estimation of the Condition Number
Lecture 42 - Singular value decomposition of a matrix - I
Lecture 43 - Singular value decomposition of a matrix - II
Lecture 44 - Orthonormal Projections
Lecture 45 - Algebraic and geometric properties of SVD
Lecture 46 - SVD and their applications
Lecture 47 - Perturbation theorem for singular values
Lecture 48 - Outer product expansion of a matrix
Lecture 49 - Least square solutions - I
Lecture 50 - Least square solutions - II
Lecture 51 - Householder matrices
Lecture 52 - Householder matrices and their applications
Lecture 53 - Householder QR factorization - I
Lecture 54 - Householder QR factorization - II
Lecture 55 - Basic theorems on eigenvalues and QR method
Lecture 56 - Power Method
Lecture 57 - Rate of Convergence of Power Method
Lecture 58 - Applications of Power Method with Shift
Lecture 59 - Jacobi Method - I
Lecture 60 - Jacobi Method - II
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - NOC: Numerical Methods - Finite Difference Approach

Subject Co-ordinator - Prof. Ameeya Kumar Nayak
Co-ordinating Institute - IIT - Roorkee
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Numerical solutions
Lecture 2 - Numerical Solution of ODE
Lecture 3 - Numerical solution of PDE
Lecture 4 - Finite difference approximation
Lecture 5 - Polynomial fitting and one-sided approximation
Lecture 6 - Solution of parabolic equation
Lecture 7 - Implicit and C-N scheme for solving 1D parabolic equation
Lecture 8 - Stability analysis of Explicit scheme for solving parabolic equation
Lecture 9 - Stability of Crank-Nicoloson's scheme
Lecture 10 - Approximation of derivative boundary conditions
Lecture 11 - Solution of two-dimensional parabolic equation
Lecture 12 - Solution of 2D parabolic equation using ADI scheme
Lecture 13 - Solution of Elliptic Equation
Lecture 14 - Solution of Elliptic equation using SOR method
Lecture 15 - Solution of Elliptic equation using ADI scheme
Lecture 16 - Solution of Hyperbolic equation
Lecture 17 - Stability analysis for Hyperbolic equations
Lecture 18 - Characteristics of PDE
Lecture 19 - Lax-Wendroff's method
Lecture 20 - Wendroff's method
NPTEL Video Course - Mathematics - NOC: Multivariable Calculus

Subject Co-ordinator - Dr. Sanjeev Kumar, S. K. Gupta

Co-ordinating Institute - IIT - Roorkee

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Functions of several variables
Lecture 2 - Limits for multivariable functions - I
Lecture 3 - Limits for multivariable functions - II
Lecture 4 - Continuity of multivariable functions
Lecture 5 - Partial Derivatives - I
Lecture 6 - Partial Derivatives - II
Lecture 7 - Differentiability - I
Lecture 8 - Differentiability - II
Lecture 9 - Chain rule - I
Lecture 10 - Chain rule - II
Lecture 11 - Change of variables
Lecture 12 - Euler's theorem for homogeneous functions
Lecture 13 - Tangent planes and Normal lines
Lecture 14 - Extreme values - I
Lecture 15 - Extreme values - II
Lecture 16 - Lagrange multipliers
Lecture 17 - Taylor's theorem
Lecture 18 - Error approximation
Lecture 19 - Polar-curves
Lecture 20 - Multiple Integrals
Lecture 21 - Change Of Order Of Integration
Lecture 22 - Change of Variables in Multiple Integral
Lecture 23 - Introduction to Gamma Function
Lecture 24 - Introduction to Beta Function
Lecture 25 - Properties of Beta and Gamma Functions - I
Lecture 26 - Properties of Beta and Gamma Functions - II
Lecture 27 - Dirichlet's Integral
Lecture 28 - Applications of Multiple Integrals
Lecture 29 - Vector Differentiation

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Gradient of a Scalar Field and Directional Derivative
Lecture 31 - Normal Vector and Potential field
Lecture 32 - Gradient (Identities), Divergence and Curl (Identities)
Lecture 33 - Some Identities on Divergence and Curl
Lecture 34 - Line Integral (I)
Lecture 35 - Applications of Line Integrals
Lecture 36 - Green's Theorem
Lecture 37 - Surface Area
Lecture 38 - Surface Integral
Lecture 39 - Divergence Theorem of Gauss
Lecture 40 - Stoke's Theorem
Lecture 1 - Introduction to differential equations - I
Lecture 2 - Introduction to differential equations - II
Lecture 3 - Existence and uniqueness of solutions of differential equations - I
Lecture 4 - Existence and uniqueness of solutions of differential equations - II
Lecture 5 - Existence and uniqueness of solutions of differential equations - III
Lecture 6 - Existence and uniqueness of solutions of a system of differential equations
Lecture 7 - Linear System
Lecture 8 - Properties of Homogeneous Systems
Lecture 9 - Solution of Homogeneous Linear System with Constant Coefficients - I
Lecture 10 - Solution of Homogeneous Linear System with Constant Coefficients - II
Lecture 11 - Solution of Homogeneous Linear System with Constant Coefficients - III
Lecture 12 - Solution of Non-Homogeneous Linear System with Constant Coefficients
Lecture 13 - Power Series
Lecture 14 - Uniform Convergence of Power Series
Lecture 15 - Power Series Solution of Second Order Homogeneous Equations
Lecture 16 - Regular singular points - I
Lecture 17 - Regular singular points - II
Lecture 18 - Regular singular points - III
Lecture 19 - Regular singular points - IV
Lecture 20 - Regular singular points - V
Lecture 21 - Critical points
Lecture 22 - Stability of Linear Systems - I
Lecture 23 - Stability of Linear Systems - II
Lecture 24 - Stability of Linear Systems - III
Lecture 25 - Critical Points and Paths of Non-linear Systems
Lecture 26 - Boundary value problems for second order differential equations
Lecture 27 - Self - adjoint Forms
Lecture 28 - Sturm - Liouville problem and its properties
Lecture 29 - Sturm - Liouville problem and its applications
Lecture 30 - Green's function and its applications - I
Lecture 31 - Green's function and its applications - II
Lecture 32 - Origins and Classification of First Order PDE
Lecture 33 - Initial Value Problem for Quasi-linear First Order Equations
Lecture 34 - Existence and Uniqueness of Solutions
Lecture 35 - Surfaces orthogonal to a given system of surfaces
Lecture 36 - Nonlinear PDE of first order
Lecture 37 - Cauchy method of characteristics - I
Lecture 38 - Cauchy method of characteristics - II
Lecture 39 - Compatible systems of first order equations
Lecture 40 - Charpit's method - I
Lecture 41 - Charpit's method - II
Lecture 42 - Second Order PDE with Variable Coefficients
Lecture 43 - Classification and Canonical Form of Second Order PDE - I
Lecture 44 - Classification and Canonical Form of Second Order PDE - II
Lecture 45 - Classification and Characteristic Curves of Second Order PDEs
Lecture 46 - Review of Integral Transforms - I
Lecture 47 - Review of Integral Transforms - II
Lecture 48 - Review of Integral Transforms - III
Lecture 49 - Review of Integral Transforms - III
Lecture 50 - Laplace Equation - I
Lecture 51 - Laplace Equation - II
Lecture 52 - Laplace and Poisson Equations
Lecture 53 - One dimensional wave equation and its solution - I
Lecture 54 - One dimensional wave equation and its solution - II
Lecture 55 - One dimensional wave equation and its solution - III
Lecture 56 - Two dimensional wave equation and its solution - I
Lecture 57 - Solution of non-homogeneous wave equation
Lecture 58 - Solution of homogeneous diffusion equation - I
Lecture 59 - Solution of homogeneous diffusion equation - II
Lecture 60 - Duhamel's principle
NPTEL Video Course - Mathematics - NOC: Matrix Analysis with Applications

Subject Co-ordinator - Dr. Sanjeev Kumar, S. K. Gupta
Co-ordinating Institute - IIT - Roorkee

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Elementary row operations
Lecture 2 - Echelon form of a matrix
Lecture 3 - Rank of a matrix
Lecture 4 - System of Linear Equations - I
Lecture 5 - System of Linear Equations - II
Lecture 6 - Introduction to Vector Spaces
Lecture 7 - Subspaces
Lecture 8 - Basis and Dimension
Lecture 9 - Linear Transformations
Lecture 10 - Rank and Nullity
Lecture 11 - Inverse of a Linear Transformation
Lecture 12 - Matrix Associated with a LT
Lecture 13 - Eigenvalues and Eigenvectors
Lecture 14 - Cayley-Hamilton Theorem and Minimal Polynomial
Lecture 15 - Diagonalization
Lecture 16 - Special Matrices
Lecture 17 - More on Special Matrices and Gerschgorin Theorem
Lecture 18 - Inner Product Spaces
Lecture 19 - Vector and Matrix Norms
Lecture 20 - Gram Schmidt Process
Lecture 21 - Normal Matrices
Lecture 22 - Positive Definite Matrices
Lecture 23 - Positive Definite and Quadratic Forms
Lecture 24 - Gram Matrix and Minimization of Quadratic Forms
Lecture 25 - Generalized Eigenvectors and Jordan Canonical Form
Lecture 26 - Evaluation of Matrix Functions
Lecture 27 - Least Square Approximation
Lecture 28 - Singular Value Decomposition
Lecture 29 - Pseudo-Inverse and SVD

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Introduction to Ill-Conditioned Systems
Lecture 31 - Regularization of Ill-Conditioned Systems
Lecture 32 - Linear Systems
Lecture 33 - Linear Systems
Lecture 34 - Non-Stationary Iterative Methods
Lecture 35 - Non-Stationary Iterative Methods
Lecture 36 - Krylov Subspace Iterative Methods (Conjugate Gradient Method)
Lecture 37 - Krylov Subspace Iterative Methods (CG and Pre-Conditioning)
Lecture 38 - Introduction to Positive Matrices
Lecture 39 - Positive Matrices, Positive Eigenpair, Perron Root and vector, Example
Lecture 40 - Polar Decomposition

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in
NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

NPTEL Video Course - Mathematics - NOC:Mathematical Modelling: Analysis and Applications

Subject Co-ordinator - Prof. Ameeya Kumar Nayak

Co-ordinating Institute - IIT - Roorkee

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Mathematical Modeling
Lecture 2 - Discrete Time Linear Models in Population Dynamics - I
Lecture 3 - Discrete Time Linear Models in Population Dynamics - II
Lecture 4 - Discrete Time Linear Age Structured Models
Lecture 5 - Numerical Methods to Compute Eigen Values
Lecture 6 - Discrete Time Non-Linear Models in Population Dynamics - II
Lecture 7 - Analysis on Logistic Difference Equation
Lecture 8 - Classifications of Bifurcation
Lecture 9 - Discrete Time Non-Linear Models in Population Dynamics - II
Lecture 10 - Discrete Time Prey - Predator Model
Lecture 11 - Introduction to Continuous Time Models
Lecture 12 - Solution of First Order First Degree Differential Equations
Lecture 13 - Continuous Time Models in Population Dynamics - I
Lecture 14 - Continuous Time Models in Population Dynamics - II
Lecture 15 - Stability and Linearization of System of Ordinary Differential Equations
Lecture 16 - Continuous Time Single Species Models
Lecture 17 - Qualitative Solution of Differential Equations - Phase Diagrams - I
Lecture 18 - Qualitative Solution of Differential Equations - Phase Diagrams - II
Lecture 19 - Continuous Time Lotka - Volterra Competition Model
Lecture 20 - Continuous Time Prey - Predator Model

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Lyapunov Stability - II
Lecture 31 - Introduction to Control Systems - I
Lecture 32 - Introduction to Control Systems - II
Lecture 33 - Controllability of Autonomous Systems
Lecture 34 - Controllability of Non-autonomous Systems
Lecture 35 - Observability - I
Lecture 36 - Observability - II
Lecture 37 - Results on Controllability and Observability
Lecture 38 - Companion Form
Lecture 39 - Feedback Control - I
Lecture 40 - Feedback Control - II
Lecture 41 - Feedback Control - III
Lecture 42 - Feedback Control - IV
Lecture 43 - State Observer
Lecture 44 - Stabilizability
Lecture 45 - Introduction to Discrete Systems - I
Lecture 46 - Introduction to Discrete Systems - II
Lecture 47 - Lyapunov Stability Theory - I
Lecture 48 - Lyapunov Stability Theory - II
Lecture 49 - Lyapunov Stability Theory - III
Lecture 50 - Optimal Control - I
Lecture 51 - Optimal Control - II
Lecture 52 - Optimal Control - III
Lecture 53 - Optimal Control - IV
Lecture 54 - Optimal Control for Discrete Systems - I
Lecture 55 - Optimal Control for Discrete Systems - II
Lecture 56 - Controllability of Discrete Systems
Lecture 57 - Observability of Discrete Systems
Lecture 58 - Stability for Discrete Systems
Lecture 59 - Relation between Continuous and Discrete Systems - I
Lecture 60 - Relation between Continuous and Discrete Systems - II
NPTEL Video Course - Mathematics - NOC: Advanced Engineering Mathematics

Subject Co-ordinator - Prof. P.N. Agarwal

Co-ordinating Institute - IIT - Roorkee

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1	Analytic Function
Lecture 2	Cauchy-Riemann Equations
Lecture 3	Harmonic Functions, Harmonic Conjugates and Milne's Method
Lecture 4	Applications to the Problems of Potential Flow - I
Lecture 5	Applications to the Problems of Potential Flow - II
Lecture 6	Complex Integration
Lecture 7	Cauchy's Theorem - I
Lecture 8	Cauchy's Theorem - II
Lecture 9	Cauchy's Integral Formula for the Derivatives of Analytic Function
Lecture 10	Morera's Theorem, Liouville's Theorem and Fundamental Theorem of Algebra
Lecture 11	Winding Number and Maximum Modulus Principle
Lecture 12	Sequences and Series
Lecture 13	Uniform Convergence of Series
Lecture 14	Power Series
Lecture 15	Taylor Series
Lecture 16	Laurent Series
Lecture 17	Zeros and Singularities of an Analytic Function
Lecture 18	Residue at a Singularity
Lecture 19	Residue Theorem
Lecture 20	Meromorphic Functions
Lecture 21	Evaluation of real integrals using residues - I
Lecture 22	Evaluation of real integrals using residues - II
Lecture 23	Evaluation of real integrals using residues - III
Lecture 24	Evaluation of real integrals using residues - IV
Lecture 25	Evaluation of real integrals using residues - V
Lecture 26	Bilinear Transformations
Lecture 27	Cross Ratio
Lecture 28	Conformal Mapping - I
Lecture 29	Conformal Mapping - II

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
NPTEL Video Course - Mathematics - Advanced Matrix Theory and Linear Algebra for Engineers

Subject Co-ordinator - Prof. Vittal Rao

Co-ordinating Institute - IISc - Bangalore

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Prologue - Part 1
Lecture 2 - Prologue - Part 2
Lecture 3 - Prologue - Part 3
Lecture 4 - Linear Systems - Part 1
Lecture 5 - Linear Systems - Part 2
Lecture 6 - Linear Systems - Part 3
Lecture 7 - Linear Systems - Part 4
Lecture 8 - Vector Spaces - Part 1
Lecture 9 - Vector Spaces - Part 2
Lecture 10 - Linear Independence and Subspaces - Part 1
Lecture 11 - Linear Independence and Subspaces - Part 2
Lecture 12 - Linear Independence and Subspaces - Part 3
Lecture 13 - Linear Independence and Subspaces - Part 4
Lecture 14 - Basis - Part 1
Lecture 15 - Basis - Part 2
Lecture 16 - Basis - Part 3
Lecture 17 - Linear Transformations - Part 1
Lecture 18 - Linear Transformations - Part 2
Lecture 19 - Linear Transformations - Part 3
Lecture 20 - Linear Transformations - Part 4
Lecture 21 - Linear Transformations - Part 5
Lecture 22 - Inner Product and Orthogonality - Part 1
Lecture 23 - Inner Product and Orthogonality - Part 2
Lecture 24 - Inner Product and Orthogonality - Part 3
Lecture 25 - Inner Product and Orthogonality - Part 4
Lecture 26 - Inner Product and Orthogonality - Part 5
Lecture 27 - Inner Product and Orthogonality - Part 6
Lecture 28 - Diagonalization - Part 1
Lecture 29 - Diagonalization - Part 2

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN

www.digimat.in
Lecture 30 - Stability Equilibrium Points
Lecture 31 - Stability Equilibrium Points (Continued - I)
Lecture 32 - Stability Equilibrium Points (Continued - II)
Lecture 33 - Second Order Linear Equations (Continued - III)
Lecture 34 - Lyapunov Function
Lecture 35 - Lyapunov Function (Continued...)
Lecture 36 - Periodic Orbits and Poincare Bendixon Theory
Lecture 37 - Periodic Orbits and Poincare Bendixon Theory (Continued...)
Lecture 38 - Linear Second Order Equations
Lecture 39 - General Second Order Equations
Lecture 40 - General Second Order Equations (Continued...)
NPTEL Video Course - Mathematics - NOC: Linear Algebra

Subject Co-ordinator - Prof. Dilip P. Patil
Co-ordinating Institute - IISc - Bangalore

Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable

Lecture 1 - Introduction to Algebraic Structures - Rings and Fields
Lecture 2 - Definition of Vector Spaces
Lecture 3 - Examples of Vector Spaces
Lecture 4 - Definition of subspaces
Lecture 5 - Examples of subspaces
Lecture 6 - Examples of subspaces (Continued...)
Lecture 7 - Sum of subspaces
Lecture 8 - System of linear equations
Lecture 9 - Gauss elimination
Lecture 10 - Generating system, linear independence and bases
Lecture 11 - Examples of a basis of a vector space
Lecture 12 - Review of univariate polynomials
Lecture 13 - Examples of univariate polynomials and rational functions
Lecture 14 - More examples of a basis of vector spaces
Lecture 15 - Vector spaces with finite generating system
Lecture 16 - Steinitz exchange theorem and examples
Lecture 17 - Examples of finite dimensional vector spaces
Lecture 18 - Dimension formula and its examples
Lecture 19 - Existence of a basis
Lecture 20 - Existence of a basis (Continued...)
Lecture 21 - Existence of a basis (Continued...)
Lecture 22 - Introduction to Linear Maps
Lecture 23 - Examples of Linear Maps
Lecture 24 - Linear Maps and Bases
Lecture 25 - Pigeonhole principle in Linear Algebra
Lecture 26 - Interpolation and the rank theorem
Lecture 27 - Examples
Lecture 28 - Direct sums of vector spaces
Lecture 29 - Projections

Get Digi-MAT (Digital Media Access Terminal) For High-Speed Video Streaming of NPTEL and Educational Video Courses in LAN
www.digimat.in