Lecture 1 - Introduction to the course
Lecture 2 - Continuum hypothesis, distribution function and stress-viscosity relation
Lecture 3 - Continuum hypothesis, distribution function and stress-viscosity relation - Recap
Lecture 4 - Fluid Kinematics
Lecture 5 - Fluid Kinematics - Recap
Lecture 6 - Conservation laws: Mass conservation and incomprehensibility
Lecture 7 - Conservation laws: Momentum conservation and Euler equation
Lecture 8 - Conservation laws - Recap
Lecture 9 - Potential flows
Lecture 10 - Bernoulli constant, its applications and voracity equation
Lecture 11 - Recap - Potential flows, Bernoulli constant and its applications
Lecture 12 - Voracity dynamics -- Kelvin's voracity theorem and Magus effect
Lecture 13 - Navier-Stokes equation
Lecture 14 - Navier-Stokes equation (Continued....) and energy equation
Lecture 15 - Energy equation in a conservative form
Lecture 16 - Boundary conditions in Navier-Stokes equation, d'Alembert's paradox
Lecture 17 - Poiseuille flow, deriving viscosity from microscopics
Lecture 18 - Dimensionless numbers -- Mach number, Reynolds number
Lecture 19 - DimDimensionless numbers (Continued...) -- plasma beta, magnetic Reynolds number, Alfven Mach number, Prandl numberensionless numbers -- Mach number, Reynolds number
Lecture 20 - Reynolds number and dynamic similarity
Lecture 21 - Reynolds number recap, Low Re flows, and drag on a sphere (Stokes law)
Lecture 22 - High Re flows -- turbulent drag law, vortex shedding and drag crisis
Lecture 23 - Lift on a body, introduction to compressible flows
Lecture 24 - Compressible flows -- derivation of sound speed and dispersion relation
Lecture 25 - Subsonic and supersonic flows
Lecture 26 - Propagation of sonic information, shock tube problem and piston problem
Lecture 27 - Criterion for neglect of compressibility, method of characteristics
Lecture 28 - Shock thickness
Lecture 29 - Shock thickness recap, shock jump conditions
Lecture 30 - Shock jump conditions (Continued...), transonic 1D flows, converging/diverging channels
Lecture 31 - Coverging/diverging channels, de Laval nozzle and its application to astrophysical jets
Lecture 32 - Spherically symmetric transonic flows
Lecture 33 - Spherically symmetric transonic flows (Continued...)
Lecture 34 - Solar wind : Parker's solution
Lecture 35 - Solar wind : Modifications in Parker's solution
Lecture 36 - Spherical accretion onto a compact object : Eddington luminosity and accretion rate
Lecture 37 - Spherical accretion onto a compact object : Solutions for flow properties
Lecture 38 - Spherical accretion (Continued...), disk accretion--Roche lobe overflow
Lecture 39 - Disk accretion : Mass conservation and vertical hydrostatic equilibrium
Lecture 40 - Disk accretion : Removal of angular momentum, Shakura-Sunyaev viscosity parameter
Lecture 41 - Disk accretion : Viscous dissipation and the energy equation, two-temperature criterion
Lecture 42 - Particle acceleration in astrophysical settings : Shocks and non-thermal energy distribution
Lecture 43 - Particle acceleration in astrophysical settings : Diffusive shock acceleration
Lecture 44 - Spherical blast waves : Bomb explosion and supernova explosion
Lecture 45 - Spherical blast waves : Sedov-Taylor solution
Lecture 46 - Spherical blast waves : Sedov-Taylor solution (Continued....)
Lecture 47 - Magnetohydrodynamics (MHD) : Introduction
Lecture 48 - Magnetohydrodynamics (MHD) : The induction equation
Lecture 49 - Magnetohydrodynamics (MHD) : Currents in MHD, momentum equation and magnetic stress tensor
Lecture 50 - Magnetohydrodynamics (MHD) : Magnetic stresses and magnetic buoyancy
Lecture 51 - Magnetohydrodynamics (MHD) : Plasma beta, force-free fields and potential configurations
Lecture 52 - Magnetohydrodynamics (MHD) : Magnetic flux-freezing
Lecture 53 - Magnetohydrodynamics (MHD) : Magnetic flux-freezing (Continued....), magnetic dynamos
Lecture 54 - Magnetohydrodynamics (MHD) : Dynamo theory
Lecture 55 - Magnetohydrodynamics (MHD) : Waves in MHD - Alfven waves
Lecture 56 - Magnetohydrodynamics (MHD) : Waves in MHD - Alfven waves and magnetosonic waves
Lecture 57 - Magnetohydrodynamics (MHD) : Waves in MHD - Magnetosonic waves
Lecture 58 - Magnetohydrodynamics (MHD) : Shocks in MHD
Lecture 59 - Magnetohydrodynamics (MHD) : Shocks in MHD - Shock jump conditions
Lecture 60 - Non-ideal MHD : Introduction to magnetic reconnection
Lecture 61 - Non-ideal MHD : Magnetic reconnection - The Sweet-Parker model
Lecture 62 - Non-ideal MHD : Magnetic reconnection - The Petscheck model
Lecture 63 - Sun's atmosphere : Solar corona and the coronal heating problem
Lecture 64 - Solar eruptions : Coronal Mass Ejections (CMEs) and solar flares