Lecture 1 - Quantum Theory Fundamental Quantisation - I
Lecture 2 - Quantum Theory Fundamental Quantisation - II
Lecture 3 - Path Integral Formulation - I
Lecture 4 - Path Integral Formulation - II
Lecture 5 - Path Integral Formulation - III
Lecture 6 - Path Integral Formulation - IV
Lecture 7 - Correlation Functions - I
Lecture 8 - Correlation Functions - II
Lecture 9 - Generating Functional, Forced Harmonic Oscillator - I
Lecture 10 - Generating Functional, Forced Harmonic Oscillator - II
Lecture 11 - Generating Function in Field Theory - I
Lecture 12 - Generating Function in Field Theory - II
Lecture 13 - Effective Potential - I
Lecture 14 - Effective Potential - II
Lecture 15 - Effective Potential - III
Lecture 16 - Effective Potential - IV
Lecture 17 - Asymptotic Theory - I
Lecture 18 - Asymptotic Theory - II
Lecture 19 - Asymptotic Condition Kallen-Lehmann representation - I
Lecture 20 - Asymptotic Condition Kallen-Lehmann representation - II
Lecture 21 - Gauge Invariance - Minimal Coupling
Lecture 22 - Gauge Invariance - Geometric Picture
Lecture 23 - Gauge Invariance - Abelian Case
Lecture 24 - Gauge Invariance - Non-abelian case
Lecture 25 - Yang Mills Theory - Coupling to Matter
Lecture 26 - Yang Mills Theory - Physical Content
Lecture 27 - Yang Mills Theory Constraint Dynamics - I
Lecture 28 - Yang Mills Theory Constraint Dynamics - II
Lecture 29 - Gauge Fixing and Faddeev Popov Ghosts - I
Lecture 30 - Gauge Fixing and Faddeev Popov Ghosts - II
Lecture 31 - Topological Vacuum of Yang Mills Theories - I
Lecture 32 - Topological Vacuum of Yang Mills Theories - II