Lecture 1 - EFM Course Outline
Lecture 2 - Spectacular Failures
Lecture 3 - Lessons from Spectacular Failures
Lecture 4 - LEFM and EPFM
Lecture 5 - Fracture Mechanics is Holistic
Lecture 6 - Fatigue Crack Growth Model
Lecture 7 - Crack Growth and Fracture Mechanisms
Lecture 8 - Elastic Strain Energy
Lecture 9 - Fracture Strength by Griffith
Lecture 10 - Energy Release Rate
Lecture 11 - Utility of Energy Release Rate
Lecture 12 - Pop-in Phenomenon
Lecture 13 - Displacement and Stress Formulations
Lecture 14 - Forms of Stress Functions
Lecture 15 - Airy’s Stress Function for Mode-I
Lecture 16 - Westergaard Solution of Stress Field for Mode-I
Lecture 17 - Displacement Field for Mode-I
Lecture 18 - Relation between KI and GI
Lecture 19 - Stress Field in Mode-II
Lecture 20 - Generalised Westergaard Approach
Lecture 21 - William’s Eigen Function Approach
Lecture 22 - Multi-parameter Stress Field Equations
Lecture 23 - Validation of Multi-parameter Field Equations
Lecture 24 - Discussion Session - I
Lecture 25 - Evaluation of SIF for Various Geometries
Lecture 26 - SIF for Embedded Cracks
Lecture 27 - SIF for Surface Cracks
Lecture 28 - Modeling of Plastic Deformation
Lecture 29 - Irwin’s Model
Lecture 30 - Dugdale Model
Lecture 31 - Fracture Toughness Testing
Lecture 32 - Plane Strain Fracture Toughness Testing
Lecture 33 - Plane Stress Fracture Toughness Testing
Lecture 34 - Paris Law and Sigmoidal Curve
Lecture 35 - Crack Closure
Lecture 36 - Crack Growth Models
Lecture 37 - J-Integral
Lecture 38 - HRR Field and CTOD
Lecture 39 - FAD and Mixed Mode Fracture
Lecture 40 - Crack Arrest and Repair Methodologies
Lecture 41 - Discussion Session - II