Lecture 1 - Introduction, main definitions
Lecture 2 - Examples of rings
Lecture 3 - More examples
Lecture 4 - Polynomial Rings - 1
Lecture 5 - Polynomial Rings - 2
Lecture 6 - Homomorphisms
Lecture 7 - Kernels, ideals
Lecture 8 - Problems - 1
Lecture 9 - Problems - 2
Lecture 10 - Problems - 3
Lecture 11 - Quotient Rings
Lecture 12 - First isomorphism and correspondence theorems
Lecture 13 - Examples of correspondence theorem
Lecture 14 - Prime ideals
Lecture 15 - Maximal ideals, integral domains
Lecture 16 - Existence of maximal ideals
Lecture 17 - Problems - 4
Lecture 18 - Problems - 5
Lecture 19 - Problems - 6
Lecture 20 - Field of fractions, Noetherian rings - 1
Lecture 21 - Noetherian rings - 2
Lecture 22 - Hilbert Basis Theorem
Lecture 23 - Irreducible, prime elements
Lecture 24 - Irreducible, prime elements, GCD
Lecture 25 - Principal Ideal Domains
Lecture 26 - Unique Factorization Domains - 1
Lecture 27 - Unique Factorization Domains - 2
Lecture 28 - Gauss Lemma
Lecture 29 - Z[X] is a UFD
Lecture 30 - Eisenstein criterion and Problems - 7
Lecture 31 - Problems - 8
Lecture 32 - Problems - 9
Lecture 33 - Field extensions - 1
Lecture 34 - Field extensions - 2
Lecture 35 - Degree of a field extension - 1
Lecture 36 - Degree of a field extension - 2
Lecture 37 - Algebraic elements form a field
Lecture 38 - Field homomorphisms
Lecture 39 - Splitting fields
Lecture 40 - Finite fields - 1
Lecture 41 - Finite fields - 2
Lecture 42 - Finite fields - 3
Lecture 43 - Problems - 10
Lecture 44 - Problems - 11