Lecture 1 - Linear Algebra and Introduction
Lecture 2 - Computational Difficulties
Lecture 3 - Computational Error
Lecture 4 - Stability
Lecture 5 - Gaussian Elimination
Lecture 6 - LU Factorization
Lecture 7 - Iterative refinement
Lecture 8 - QR Factorization
Lecture 9 - Gram-Schmidt Orthogonalization
Lecture 10 - Cholesky Decomposition
Lecture 11 - Projections
Lecture 12 - House-Holder Reflectors
Lecture 13 - Image Compression
Lecture 14 - Singular Value Decomposition
Lecture 15 - Least Square Solutions
Lecture 16 - Pseudo-Inverse
Lecture 17 - Normal Equations
Lecture 18 - Eigenvalue problems
Lecture 19 - Gershgorin Theorem
Lecture 20 - Similarity Transforms
Lecture 21 - Eigenvalues
Lecture 22 - Sensitivity Vectors
Lecture 23 - Power method
Lecture 24 - Schur Decomposition
Lecture 25 - Jordan Canonical form
Lecture 26 - QR Iteration
Lecture 27 - Heisenberg transformation
Lecture 28 - Rayleigh Quotient
Lecture 29 - Symmetric eigenvalue problem
Lecture 30 - Jacobi Method
Lecture 31 - Divide and Conquer
Lecture 32 - Computing the Singular Value Decomposition
Lecture 33 - Golub-Kahan-Reinsch Algorithm
Lecture 34 - Chan SVD Algorithm
Lecture 35 - Generalized SVD
Lecture 36 - Generalized and Quadratic Eigenvalue Problems
Lecture 37 - Generalized Schur Decomposition (QZ Decomposition)
Lecture 38 - Iterative Methods for Large Linear Systems: Jacobi
Lecture 39 - Iterative methods for large linear systems: Gauss-Seidel Method
Lecture 40 - Iterative methods for large linear systems: SOR method
Lecture 41 - Convergence of iterative algorithms
Lecture 42 - Krylov subspace methods
Lecture 43 - Lanczos
Lecture 44 - Arnoldi
Lecture 45 - Stability of the Cholesky QR Algorithm
Lecture 46 - Conditioning of the eigenvalues
Lecture 47 - Symmetric definite pencil
Lecture 48 - AI applications
Lecture 49 - Sensitive systems
Lecture 50 - Real Life Systems
Lecture 51 - Transient thermal systems
Lecture 52 - Left Inverse
Lecture 53 - Right Inverse
Lecture 54 - Generalized Inverse
Lecture 55 - Applications
Lecture 56 - Applications (Continued...)
Lecture 57 - Applications (Continued...)
Lecture 58 - Applications (Continued...)
Lecture 59 - Applications (Continued...)
Lecture 60 - Applications of the Matrices in Real Life Systems
Lecture 61 - Matrices and Its Fundamentals: Recalling Examples
Lecture 62 - Properties of Matrices: Recalling and Revision, Examples
Lecture 63 - Matrices: Finite Digit Arithmetic: recalling and Examples