Lecture 1 - Simple Linear Regression
Lecture 2 - Simple Linear Regression (Continued...1)
Lecture 3 - Simple Linear Regression (Continued...2)
Lecture 4 - Simple Linear Regression (Continued...3)
Lecture 5 - Simple Linear Regression (Continued...4)
Lecture 6 - Multiple Linear Regression
Lecture 7 - Multiple Linear Regression (Continued...1)
Lecture 8 - Multiple Linear Regression (Continued...2)
Lecture 9 - Multiple Linear Regression (Continued...3)
Lecture 10 - Selecting the BEST Regression model
Lecture 11 - Selecting the BEST Regression model (Continued...1)
Lecture 12 - Selecting the BEST Regression model (Continued...2)
Lecture 13 - Selecting the BEST Regression model (Continued...3)
Lecture 14 - Multicollinearity
Lecture 15 - Multicollinearity (Continued...1)
Lecture 16 - Multicollinearity (Continued...2)
Lecture 17 - Model Adequacy Checking
Lecture 18 - Model Adequacy Checking (Continued...1)
Lecture 19 - Model Adequacy Checking (Continued...2)
Lecture 20 - Test for Influential Observations
Lecture 21 - Transformations and Weighting to correct model inadequacies
Lecture 22 - Transformations and Weighting to correct model inadequacies (Continued...1)
Lecture 23 - Transformations and Weighting to correct model inadequacies (Continued...2)
Lecture 24 - Dummy Variables
Lecture 25 - Dummy Variables (Continued...1)
Lecture 26 - Dummy Variables (Continued...2)
Lecture 27 - Polynomial Regression Models
Lecture 28 - Polynomial Regression Models (Continued...1)
Lecture 29 - Polynomial Regression Models (Continued...2)
Lecture 30 - Generalized Linear Models
Lecture 31 - Generalized Linear Models (Continued.)
Lecture 32 - Non-Linear Estimation
Lecture 33 - Regression Models with Autocorrelated Errors
Lecture 34 - Regression Models with Autocorrelated Errors (Continued.)
Lecture 35 - Measurement Errors & Calibration Problem
Lecture 36 - Tutorial - I
Lecture 37 - Tutorial - II
Lecture 38 - Tutorial - III
Lecture 39 - Tutorial - IV
Lecture 40 - Tutorial - V