Lecture 1 - Dynamic Programming: Introduction
Lecture 2 - Stagecoach Problem
Lecture 3 - An Investment Problem
Lecture 4 - An Investment Problem (Continued...)
Lecture 5 - Further Examples
Lecture 6 - Machine Allocation and Cargo Loading Problem
Lecture 7 - Knapsack Problem
Lecture 8 - Probabilistic Dynamic Programming
Lecture 9 - Probabilistic Dynamic Programming (Continued...)
Lecture 10 - Dijkstra's Algorithm
Lecture 11 - Integer Programming: Introduction
Lecture 12 - Integer Programming: Formulation
Lecture 13 - Integer Programming: Formulation (Continued...)
Lecture 14 - Integer Linear Programming
Lecture 15 - Cutting Plane Method
Lecture 16 - Exhaustive Enumeration and Branch and Bound Techniques
Lecture 17 - Branch and Bound Technique
Lecture 18 - Assignment and Travelling Salesman Problem
Lecture 19 - Travelling Salesman Problem (Continued...)
Lecture 20 - Heuristic Methods for Integer Programming
Lecture 21 - Non-Linear Programming: Introduction
Lecture 22 - Single-Variable Unconstrained Optimization
Lecture 23 - Multi-variable Unconstrained NLP
Lecture 24 - Solving Unconstrained NLP
Lecture 25 - Numerical Methods for Unconstrained NLP
Lecture 26 - Constrained NLP: Lagrange Multipliers
Lecture 27 - Constrained NLP: KKT Conditions
Lecture 28 - Constrained NLP: KKT Conditions (Continued...)
Lecture 29 - Quadratic Programming
Lecture 30 - Example problems on Constrained NLP
Lecture 31 - Introduction to Metaheuristics
Lecture 32 - Genetic Algorithms
Lecture 33 - Genetic Algorithm Process
Lecture 34 - Genetic Algorithm Process (Continued...)
Lecture 35 - Genetic Algorithm Examples
Lecture 36 - Simulated Annealing
Lecture 37 - Tabu Search
Lecture 38 - Particle Swarm Optimization
Lecture 39 - Multi-Objective Optimization
Lecture 40 - NSGA-II Examples