Lecture 1 - Fundamentals of R
Lecture 2 - Data cleaning
Lecture 3 - Data Visualization - Part 1
Lecture 4 - Data Visualization - Part 2
Lecture 5 - Introduction to Probability Theory
Lecture 6 - Conditional Probabilities and Bayes Theorem
Lecture 7 - Random Variables and Probability Distributions
Lecture 8 - Binomial Distribution
Lecture 9 - Continuous Random Variables and Normal Distribution
Lecture 10 - Descriptive Analytics: Measures of Central Tendency
Lecture 11 - Descriptive Analytics: Measures of Variability and Shape
Lecture 12 - Statistical Inference: Sampling
Lecture 13 - Statistical Inference: Central Limit Theorem and Confidence Intervals
Lecture 14 - Statistical Inference: Hypothesis testing
Lecture 15 - Introduction to R
Lecture 16 - Inferential statistics: R Implementation
Lecture 17 - Statistical Inference: Sampling
Lecture 18 - Hypothesis Testing: R Implementation
Lecture 19 - Regression Modelling - Part 1
Lecture 20 - Regression Modelling - Part 2
Lecture 21 - Regression Algorithm: Application - Part 1
Lecture 22 - Regression Algorithm: Application - Part 2
Lecture 23 - Classification Algorithms: Logit/Probit Regression - Part 1
Lecture 24 - Classification Algorithms: Logit/Probit Regression - Part 2
Lecture 25 - Classification Algorithms: Application - Part 1
Lecture 26 - Classification Algorithms: Application - Part 2
Lecture 27 - Advanced Data Visualization - Part 1
Lecture 28 - Advanced Data Visualization - Part 2
Lecture 29 - Introduction to Panel Data Modelling
Lecture 30 - Panel data application and implementation with R
Lecture 31 - Advanced Time-Series Models
Lecture 32 - Introduction to ARMA process
Lecture 33 - Forecasting with ARMA models
Lecture 34 - Non-stationarity, Cointegration, and Error correction Models
Lecture 35 - Return and Volatility Modelling and Forecasting
Lecture 36 - Maximum Likelihood Estimation (MLE)
Lecture 37 - Quantile Regression - Part A
Lecture 38 - Quantile Regression - Part B
Lecture 39 - Solar Panel Marketing Case Study
Lecture 40 - PCA and Clustering - Part 1
Lecture 41 - PCA and clustering - Part 2
Lecture 42 - Tutorial - HR Analytics - Part 1
Lecture 43 - Tutorial - HR Analytics - Part 2
Lecture 44 - Application of Logistic Regression - Part 1
Lecture 45 - Application of logistic regression - Part 2