Lecture 1 - Chain rule of differentiation
Lecture 2 - Gradient, Divergence, and Curl operators
Lecture 3 - Common theorems in vector calculus
Lecture 4 - Corollaries of these theorems
Lecture 5 - Mathematical History
Lecture 6 - Different regimes of Maxwell's equations
Lecture 7 - Different ways of solving them
Lecture 8 - Maxwell's Equations
Lecture 9 - Boundary Conditions
Lecture 10 - Uniqueness Theorem
Lecture 11 - Equivalence Theorem
Lecture 12 - Simple Numerical Integration
Lecture 13 - Interpolating a Function
Lecture 14 - Gauss Quadrature
Lecture 15 - Line Charge Problem
Lecture 16 - Solving the Integral Equation
Lecture 17 - Basis Functions
Lecture 18 - Helmholtz Equation
Lecture 19 - Solving Helmholtz Equation
Lecture 20 - Huygen's principle and the Extinction theorem
Lecture 21 - Formulating the integral equations
Lecture 22 - Conclusions of surface integral equations
Lecture 23 - Motivations for Green's functions
Lecture 24 - A one-dimensional example
Lecture 25 - 1-D example: alternate representation
Lecture 26 - 2-D wave example : finding solution
Lecture 27 - 2-D wave example : boundary conds
Lecture 28 - 2-D example : Evaluating Constants - Part 1
Lecture 29 - 2-D example : Evaluating Constants - Part 2
Lecture 30 - 3-D example
Lecture 31 - Motivation for MoM
Lecture 32 - Linear Vector Spaces
Lecture 33 - Formulating Method of Moments
Lecture 34 - Surface Integral Equations: Recap
Lecture 35 - Surface Integral Equations: Evaluating the Integrals - Part 1
Lecture 36 - Surface Integral Equations: Evaluating the Integrals - Part 2
Lecture 37 - Surface Integral Equations: Conclusion
Lecture 38 - Volume Integral Equations:Setting Up
Lecture 39 - Volume Integral Equations:Solving - Part 1
Lecture 40 - Volume Integral Equations:Solving - Part 2
Lecture 41 - Volume Integral Equations:Summary
Lecture 42 - Surface integral equations for PEC
Lecture 43 - Surface v/s volume integral equations
Lecture 44 - Definition of radar cross-section
Lecture 45 - Computational Considerations
Lecture 46 - History and Overview of the FEM
Lecture 47 - Basic framework of FEM
Lecture 48 - 1D Basis Functions
Lecture 49 - 2D Basis Functions
Lecture 50 - Weak form of 1D-FEM - Part 1
Lecture 51 - Weak form of 1D-FEM - Part 2
Lecture 52 - Generating System of Equations for 1D FEM
Lecture 53 - 1D wave equation: Formulation
Lecture 54 - 1D Wave Equation: Boundary Conditions
Lecture 55 - 1D Wave Equation: Basis and testing functions
Lecture 56 - 1D Wave Equation: Matrix assembly
Lecture 57 - 2D FEM Shape Functions
Lecture 58 - Converting to Weak Form (2D FEM)
Lecture 59 - Radiation Boundary Condition
Lecture 60 - Total field formulation
Lecture 61 - Scattered field formulation
Lecture 62 - Comparing total and scattered field formulation
Lecture 63 - Matrix assembly - Part 1
Lecture 64 - Matrix assembly - Part 2
Lecture 65 - Computing Far Field
Lecture 66 - Numerical Aspects of 2D FEM
Lecture 67 - Summary of FEM Procedure
Lecture 68 - Introduction to FDTD
Lecture 69 - 2D FDTD Formulation : Stencil
Lecture 70 - 2D FDTD Formulation : Time Stepping
Lecture 71 - 2D FDTD Formulation : Divergence Conditions
Lecture 72 - Stability Criteria - Part 1
Lecture 73 - Stability Criteria - Part 2
Lecture 74 - Stability Criteria - Higher Dimensions
Lecture 75 - Accuracy Considerations - 1D
Lecture 76 - Accuracy Considerations - Higher Dimensions
Lecture 77 - Dealing with non-dispersive dielectric media
Lecture 78 - Dealing with dispersive dielectric media
Lecture 79 - Debye Model - Part 1
Lecture 80 - Debye Model - Part 2
Lecture 81 - Absorbing Boundary Conditions - 1D
Lecture 82 - Absorbing Boundary Conditions - 2D
Lecture 83 - Implementing ABC in FDTD
Lecture 84 - Failure of ABC
Lecture 85 - Perfectly Matched Layers (PML) - Introduction
Lecture 86 - Implementing PML using Coordinate Stretching
Lecture 87 - PML - Phase Matching
Lecture 88 - PML - Tangential Boundary Conditions
Lecture 89 - Perfectly Matched Interface
Lecture 90 - PML theory - Summary
Lecture 91 - Implementing PML into FDTD - Part 1
Lecture 92 - Implementing PML into FDTD - Part 2
Lecture 93 - Sources in FDTD - Currents
Lecture 94 - Sources in FDTD - Part 2
Lecture 95 - Summary of FDTD
Lecture 96 - MEEP : FDTD in action
Lecture 97 - Inverse Problems - Introduction
Lecture 98 - Inverse Problems - Mathematical Formulation
Lecture 99 - Inverse Problems - Challenges
Lecture 100 - Inverse Problems - Non-Linearity
Lecture 101 - Inverse Problems - Summary
Lecture 102 - Antennas - Potential formulation
Lecture 103 - Antennas - Hertz Dipole - Part 1
Lecture 104 - Antennas - Hertz Dipole - Part 2
Lecture 105 - Antennas - Radiation Patterns
Lecture 106 - Antennas - Motivation for CEM
Lecture 107 - Antennas - Pocklington’s Integral Equation - Part 1
Lecture 108 - Antennas - Pocklington’s Integral Equation - Part 2
Lecture 109 - Antennas - Source Modeling
Lecture 110 - Antennas - Circuit Model
Lecture 111 - Antennas - MoM details
Lecture 112 - Antennas - Mutual Coupling - Part 1
Lecture 113 - Antennas - Mutual Coupling - Part 2
Lecture 114 - Hybrid Methods - Motivation
Lecture 115 - Finite Element-Boundary Integral - Part 1
Lecture 116 - Finite Element-Boundary Integral - Part 2
Lecture 117 - Finite Element-Boundary Integral - Part 3