Lecture 1 - Introduction
Lecture 2 - Random Variable
Lecture 3 - Functions of Random Variables
Lecture 4 - Joint Distributions
Lecture 5 - Mt. Gen. Func. and CLT
Lecture 6 - Theory of Estimation
Lecture 7 - Goodness of Fit
Lecture 8 - MVFOSM
Lecture 9 - MVFOSM (Continued...)
Lecture 10 - Hasofer-Lind Rel. Index
Lecture 11 - Rackwitz's Algorithm (Continued...)
Lecture 12 - HL-RF for Non-Normal Problems
Lecture 13 - HL-RF for Correlated Problems
Lecture 14 - FORM using MATLAB
Lecture 15 - FORM using MATLAB (Continued...)
Lecture 16 - FORM Using FEM
Lecture 17 - Morgenstern Model
Lecture 18 - Nataf Model
Lecture 19 - Rosenblatt Transformation
Lecture 20 - Brietung's Model
Lecture 21 - Tvedt's Model
Lecture 22 - Monte-Carlo Simulation
Lecture 23 - Importance Sampling
Lecture 24 - Least Square Curve Fitting
Lecture 25 - Orthogonal Polinomials
Lecture 26 - RSM
Lecture 27 - Stochastic Response Surface Method
Lecture 28 - Moving Least Square Method
Lecture 29 - Adaptive-SRSM
Lecture 30 - Partial Safety Factors
Lecture 31 - Optimal Partial Safety Factors
Lecture 32 - FORM - Revisited
Lecture 33 - Subset Simulation
Lecture 34 - Applications
Lecture 35 - Applications (Continued...)
Lecture 36 - Introduction to Stochastic FEM