Lecture 1 - Frequency Domain Spectroscopy: An Introduction
Lecture 2 - Schematics of Instrumentation for FD Spectroscopy
Lecture 3 - Sensitivity Light Collection and Signal to Noise Ratio
Lecture 4 - Time Domain Spectroscopy
Lecture 5 - Frequency Modulation for Fourier Transform Spectroscopy
Lecture 6 - Rigid Rotor Model for Diatomic Molecules
Lecture 7 - Recapitulation of Quantum Mechanics
Lecture 8 - Conditions for Microwave Activity - I
Lecture 9 - Conditions for Microwave Activity - II
Lecture 10 - Microwave Spectra: Diatomic Molecules
Lecture 11 - Simple Harmonic Oscillator
Lecture 12 - Selection Rule
Lecture 13 - High Resolution IR Spectra
Lecture 14 - Anharmonic Oscillator and Raman Effect
Lecture 15 - Semi Classical Treatment: Radiation-Matter
Lecture 16 - Time Dependent Perturbation Theory
Lecture 17 - Transition Moment Integral
Lecture 18 - Transition Probability and Natural Linewidth
Lecture 19 - Einstein Treatment
Lecture 20 - Relationship Between Theoretical and Experimental Quantities
Lecture 21 - Level System: Concluding Remark - I
Lecture 22 - Level System: Concluding Remark - II
Lecture 23 - Laser Basic
Lecture 24 - Applications of Laser in Spectroscopy
Lecture 25 - Laser in Spectroscopy : Ultrafast Dynamics
Lecture 26 - Snapshot of Bond Breaking
Lecture 27 - Raman Effect
Lecture 28 - Raman Spectroscopy: Quantum Theory of Raman Effect
Lecture 29 - Raman Spectroscopy and Beyond Dipole Approximation
Lecture 30 - Symmetry in Chemistry : An Introduction
Lecture 31 - Symmetry Operations : Transformation Matrices
Lecture 32 - Representations Reducible and Irreducible
Lecture 33 - Matrix Representation of Symmetry Point Group
Lecture 34 - Group Theory : Character Table
Lecture 35 - Character Table : Compendium of Irreducible Representations
Lecture 36 - Mulliken Nomenclature, 2D Irreducible Representations and Bases
Lecture 37 - Character Tables for Different Symmetry Point Groups
Lecture 38 - Wave Functions as Basis
Lecture 39 - Symmetry of Atomic and Molecular Orbitals
Lecture 40 - Polyatomic Molecules : Normal Modes of Vibration
Lecture 41 - Determination of Symmetries of Normal Modes of Vibration - I
Lecture 42 - Determination of Symmetries of Normal Modes of Vibration - II
Lecture 43 - A Shortcut to Symmetry of Normal Modes
Lecture 44 - Normal Modes : Internal Motion IR and Raman Activity
Lecture 45 - IR and Raman Activity - I
Lecture 46 - IR and Raman Activity - II
Lecture 47 - Electronic Spectroscopy : Introduction
Lecture 48 - Electronic Spectra
Lecture 49 - Rotational Fine Structure
Lecture 50 - Symmetry of Electronic States
Lecture 51 - Electronic States of Oxygen
Lecture 52 - Electronic States and Transitions of Benzene
Lecture 53 - Vibronic Coupling
Lecture 54 - Electronic Spectrum of Benzene
Lecture 55 - Basics of NMR Spectroscopy - I
Lecture 56 - Basics of NMR Spectroscopy - II
Lecture 57 - Spin Spin Coupling- AX systems
Lecture 58 - Coupling in A2 systems
Lecture 59 - Coupling in A2 systems (Continued...)
Lecture 60 - NMR: Spectra and Measurement, FT NMR 900 Pulses
Lecture 61 - FT NMR 1800 Pulses and Relaxation Phenomenon
Lecture 62 - Relaxation Phenomenon: Inversion Recovery