Lecture 1 - Introduction to vector space
Lecture 2 - Introduction to vector space (Continued...)
Lecture 3 - Onto, into, one to one function
Lecture 4 - Vectors
Lecture 5 - Vectors (Continued...)
Lecture 6 - Contraction Mapping
Lecture 7 - Contraction Mapping (Continued...)
Lecture 8 - Matrix, Determinant
Lecture 9 - Eigenvalue Problem in Discrete Domain
Lecture 10 - Eigenvalue Problem in Discrete Domain (Continued...)
Lecture 11 - Eigenvalue Problem in Discrete Domain (Continued...)
Lecture 12 - Eigenvalue Problem in Discrete Domain (Continued...)
Lecture 13 - Stability Analysis
Lecture 14 - Stability Analysis (Continued...)
Lecture 15 - Stability Analysis (Continued...)
Lecture 16 - More Examples
Lecture 17 - Partial Differential Equations
Lecture 18 - Partial Differential Equations (Continued...)
Lecture 19 - Eigenvalue Problem in Continuous Domain
Lecture 20 - Special ODEs
Lecture 21 - Adjoint Operator
Lecture 22 - Theorems of Eigenvalues and Eigenfunction
Lecture 23 - Solution PDE : Separation of Variables Method
Lecture 24 - Solution of Parabolic PDE : Separation of variables method
Lecture 25 - Solution of Parabolic PDE : Separation of Variables Method (Continued...)
Lecture 26 - Solution of Higher Dimensional PDEs
Lecture 27 - Solution of Higher Dimensional PDEs (Continued...)
Lecture 28 - Four Dimensional Parabolic PDE
Lecture 29 - Solution of Elliptic and Hyperbolic PDE
Lecture 30 - Solution of Elliptic and Hyperbolic PDE (Continued...)
Lecture 31 - PDE in Cylindrical and Spherical Coordinate
Lecture 32 - Solution of non-homogeneous PDE
Lecture 33 - Solution of non-homogeneous PDE (Continued...)
Lecture 34 - Solution of non-homogeneous Parabolic PDE
Lecture 35 - Solution of non-homogeneous Elliptic PDE
Lecture 36 - Solution of non-homogeneous Elliptic PDE (Continued...)
Lecture 37 - Similarity Solution
Lecture 38 - Similarity Solution (Continued...)
Lecture 39 - Integral Method
Lecture 40 - Laplace Transform
Lecture 41 - Fourier Transform