Lecture 1 - Statistics - Motivation
Lecture 2 - Statistics - Introduction
Lecture 3 - Statistics: Definition and Terminology - Part I
Lecture 4 - Statistics: Definition and Terminology - Part II
Lecture 5 - Data: Primary vs Secondary
Lecture 6 - Data: Quantitative vs Qualitative
Lecture 7 - Data: Presentation
Lecture 8 - Data: Static vs Dynamic
Lecture 9 - Data: Box Plot and Spyder Graphs
Lecture 10 - Data: Summarising Data
Lecture 11 - Probability: Event and Sample space
Lecture 12 - Probability: Mutually exclusive and Independent Events
Lecture 13 - Probability: Random Variables
Lecture 14 - Probability: Expectation of Random Variable
Lecture 15 - Probability: Variance of Random Variable
Lecture 16 - Probability Distribution: Binomial, Poisson, Bernoulli
Lecture 17 - Probability Distribution: Normal Distribution
Lecture 18 - Central Limit Theorem: Statement
Lecture 19 - Central Limit Theorem: Illustration
Lecture 20 - Confidence Interval
Lecture 21 - Determining Sample Size
Lecture 22 - Hypothesis Test: Introduction
Lecture 23 - Hypothesis Test: Example
Lecture 24 - Hypothesis: P value
Lecture 25 - Hypothesis: Type 2 error
Lecture 26 - Hypothesis: Chi square Distribution - Part 1
Lecture 27 - Hypothesis: Chi square Distribution - Part 2
Lecture 28 - Hypothesis: Probability Plots
Lecture 29 - Hypothesis: Contingency Table Test
Lecture 30 - Multivariate Hypothesis: Two Sample Test
Lecture 31 - Multivariate Hypothesis: Paired T test
Lecture 32 - Multivariate Hypothesis: Paired vs Unpaired Testing
Lecture 33 - Multivariate Hypothesis: Two population variances
Lecture 34 - Multivariate Hypothesis: Multiple Random Variables - Part 1
Lecture 35 - Multivariate Hypothesis: Multiple Random Variables - Part 2
Lecture 36 - Multivariate Hypothesis: Covariance and Correlation
Lecture 37 - One Way ANOVA: Motivation and Assumptions
Lecture 38 - One Way ANOVA: Fixed and Random effects Model
Lecture 39 - One Way ANOVA: Derivation and Confidence Interval
Lecture 40 - One Way ANOVA: Confidence Interval
Lecture 41 - One Way ANOVA: Unbalanced Experiment and Residuals
Lecture 42 - One Way ANOVA: Interpretation of Results
Lecture 43 - Statistical Modeling: Introduction
Lecture 44 - Statistical Modeling: Linear Regression Derivation
Lecture 45 - Statistical Modeling: Linear Regression - Assumption and Residuals
Lecture 46 - Statistical Modeling: Multi Linear Regression
Lecture 47 - Statistical Modeling: Logistic Regression
Lecture 48 - Statistical Modeling: Cross Entropy Loss
Lecture 49 - Statistical Modeling: Gradient Descent
Lecture 50 - Statistical Modeling: One Way Anova via Linear Regression
Lecture 51 - Design Of Experiments: Randomised Complete Block Design - Part 1
Lecture 52 - Design Of Experiments: Randomised Complete Block Design - Part 2
Lecture 53 - RCBD: Math Formulation and Derivation
Lecture 54 - RCBD: Necessity and Application
Lecture 55 - Latin Square: Introduction
Lecture 56 - Latin Square: Math and Formulation
Lecture 57 - Graeco - Latin Square
Lecture 58 - Interaction Among Variables
Lecture 59 - Two-Way ANOVA: Introduction - Part 1
Lecture 60 - Two-Way ANOVA: Introduction - Part 2
Lecture 61 - Two-Way ANOVA: Math and Formulation
Lecture 62 - Factorial Design: 2^2 Experiments
Lecture 63 - Factorial Design: 2^k Experiments - Part 1
Lecture 64 - Factorial Design: 2^k Experiments - Part 2
Lecture 65 - Factorial Design: Blocking
Lecture 66 - Introduction to Python Programming for Biomedical Engineers