DIGIMAT LEARNING MANAGEMENT PLATFORM

Mathematics (9,372 Video Lectures)

Link NPTEL Course Name NPTEL Lecture Title
Link Elementary Numerical Analysis Lecture 1 - Introduction
Link Elementary Numerical Analysis Lecture 2 - Polynomial Approximation
Link Elementary Numerical Analysis Lecture 3 - Interpolating Polynomials
Link Elementary Numerical Analysis Lecture 4 - Properties of Divided Difference
Link Elementary Numerical Analysis Lecture 5 - Error in the Interpolating polynomial
Link Elementary Numerical Analysis Lecture 6 - Cubic Hermite Interpolation
Link Elementary Numerical Analysis Lecture 7 - Piecewise Polynomial Approximation
Link Elementary Numerical Analysis Lecture 8 - Cubic Spline Interpolation
Link Elementary Numerical Analysis Lecture 9 - Tutorial 1
Link Elementary Numerical Analysis Lecture 10 - Numerical Integration: Basic Rules
Link Elementary Numerical Analysis Lecture 11 - Composite Numerical Integration
Link Elementary Numerical Analysis Lecture 12 - Gauss 2-point Rule: Construction
Link Elementary Numerical Analysis Lecture 13 - Gauss 2-point Rule: Error
Link Elementary Numerical Analysis Lecture 14 - Convergence of Gaussian Integration
Link Elementary Numerical Analysis Lecture 15 - Tutorial 2
Link Elementary Numerical Analysis Lecture 16 - Numerical Differentiation
Link Elementary Numerical Analysis Lecture 17 - Gauss Elimination
Link Elementary Numerical Analysis Lecture 18 - L U decomposition
Link Elementary Numerical Analysis Lecture 19 - Cholesky decomposition
Link Elementary Numerical Analysis Lecture 20 - Gauss Elimination with partial pivoting
Link Elementary Numerical Analysis Lecture 21 - Vector and Matrix Norms
Link Elementary Numerical Analysis Lecture 22 - Perturbed Linear Systems
Link Elementary Numerical Analysis Lecture 23 - Ill-conditioned Linear System
Link Elementary Numerical Analysis Lecture 24 - Tutorial 3
Link Elementary Numerical Analysis Lecture 25 - Effect of Small Pivots
Link Elementary Numerical Analysis Lecture 26 - Solution of Non-linear Equations
Link Elementary Numerical Analysis Lecture 27 - Quadratic Convergence of Newton's Method
Link Elementary Numerical Analysis Lecture 28 - Jacobi Method
Link Elementary Numerical Analysis Lecture 29 - Gauss-Seidel Method
Link Elementary Numerical Analysis Lecture 30 - Tutorial 4
Link Elementary Numerical Analysis Lecture 31 - Initial Value Problem
Link Elementary Numerical Analysis Lecture 32 - Multi-step Methods
Link Elementary Numerical Analysis Lecture 33 - Predictor-Corrector Formulae
Link Elementary Numerical Analysis Lecture 34 - Boundary Value Problems
Link Elementary Numerical Analysis Lecture 35 - Eigenvalues and Eigenvectors
Link Elementary Numerical Analysis Lecture 36 - Spectral Theorem
Link Elementary Numerical Analysis Lecture 37 - Power Method
Link Elementary Numerical Analysis Lecture 38 - Inverse Power Method
Link Elementary Numerical Analysis Lecture 39 - Q R Decomposition
Link Elementary Numerical Analysis Lecture 40 - Q R Method
Link Measure and Integration Lecture 1 - Introduction, Extended Real numbers
Link Measure and Integration Lecture 2 - Algebra and Sigma Algebra of a subset of a set
Link Measure and Integration Lecture 3 - Sigma Algebra generated by a class
Link Measure and Integration Lecture 4 - Monotone Class
Link Measure and Integration Lecture 5 - Set function
Link Measure and Integration Lecture 6 - The Length function and its properties
Link Measure and Integration Lecture 7 - Countably additive set functions on intervals
Link Measure and Integration Lecture 8 - Uniqueness Problem for Measure
Link Measure and Integration Lecture 9 - Extension of measure
Link Measure and Integration Lecture 10 - Outer measure and its properties
Link Measure and Integration Lecture 11 - Measurable sets
Link Measure and Integration Lecture 12 - Lebesgue measure and its properties
Link Measure and Integration Lecture 13 - Characterization of Lebesque measurable sets
Link Measure and Integration Lecture 14 - Measurable functions
Link Measure and Integration Lecture 15 - Properties of measurable functions
Link Measure and Integration Lecture 16 - Measurable functions on measure spaces
Link Measure and Integration Lecture 17 - Integral of non negative simple measurable functions
Link Measure and Integration Lecture 18 - Properties of non negative simple measurable functions
Link Measure and Integration Lecture 19 - Monotone convergence theorem & Fatou's Lemma
Link Measure and Integration Lecture 20 - Properties of Integral functions & Dominated Convergence Theorem
Link Measure and Integration Lecture 21 - Dominated Convergence Theorem and applications
Link Measure and Integration Lecture 22 - Lebesgue Integral and its properties
Link Measure and Integration Lecture 23 - Denseness of continuous function
Link Measure and Integration Lecture 24 - Product measures, an Introduction
Link Measure and Integration Lecture 25 - Construction of Product Measure
Link Measure and Integration Lecture 26 - Computation of Product Measure - I
Link Measure and Integration Lecture 27 - Computation of Product Measure - II
Link Measure and Integration Lecture 28 - Integration on Product spaces
Link Measure and Integration Lecture 29 - Fubini's Theorems
Link Measure and Integration Lecture 30 - Lebesgue Measure and integral on R2
Link Measure and Integration Lecture 31 - Properties of Lebesgue Measure and integral on Rn
Link Measure and Integration Lecture 32 - Lebesgue integral on R2
Link Measure and Integration Lecture 33 - Integrating complex-valued functions
Link Measure and Integration Lecture 34 - Lp - spaces
Link Measure and Integration Lecture 35 - L2(X,S,mue)
Link Measure and Integration Lecture 36 - Fundamental Theorem of calculas for Lebesgue Integral - I
Link Measure and Integration Lecture 37 - Fundamental Theorem of calculus for Lebesgue Integral - II
Link Measure and Integration Lecture 38 - Absolutely continuous measures
Link Measure and Integration Lecture 39 - Modes of convergence
Link Measure and Integration Lecture 40 - Convergence in Measure
Link Mathematics in India - From Vedic Period to Modern Times Lecture 1 - Indian Mathematics: An Overview
Link Mathematics in India - From Vedic Period to Modern Times Lecture 2 - Vedas and Sulbasutras - Part 1
Link Mathematics in India - From Vedic Period to Modern Times Lecture 3 - Vedas and Sulbasutras - Part 2
Link Mathematics in India - From Vedic Period to Modern Times Lecture 4 - Panini's Astadhyayi
Link Mathematics in India - From Vedic Period to Modern Times Lecture 5 - Pingala's Chandahsastra
Link Mathematics in India - From Vedic Period to Modern Times Lecture 6 - Decimal place value system
Link Mathematics in India - From Vedic Period to Modern Times Lecture 7 - Aryabhatiya of Aryabhata - Part 1
Link Mathematics in India - From Vedic Period to Modern Times Lecture 8 - Aryabhatiya of Aryabhata - Part 2
Link Mathematics in India - From Vedic Period to Modern Times Lecture 9 - Aryabhatiya of Aryabhata - Part 3
Link Mathematics in India - From Vedic Period to Modern Times Lecture 10 - Aryabhatiya of Aryabhata - Part 4 and Introduction to Jaina Mathematics
Link Mathematics in India - From Vedic Period to Modern Times Lecture 11 - Brahmasphutasiddhanta of Brahmagupta - Part 1
Link Mathematics in India - From Vedic Period to Modern Times Lecture 12 - Brahmasphutasiddhanta of Brahmagupta - Part 2
Link Mathematics in India - From Vedic Period to Modern Times Lecture 13 - Brahmasphutasiddhanta of Brahmagupta - Part 3
Link Mathematics in India - From Vedic Period to Modern Times Lecture 14 - Brahmasphutasiddhanta of Brahmagupta - Part 4 and The Bakhshali Manuscript
Link Mathematics in India - From Vedic Period to Modern Times Lecture 15 - Mahaviras Ganitasarasangraha - Part 1
Link Mathematics in India - From Vedic Period to Modern Times Lecture 16 - Mahaviras Ganitasarasangraha - Part 2
Link Mathematics in India - From Vedic Period to Modern Times Lecture 17 - Mahaviras Ganitasarasangraha - Part 3
Link Mathematics in India - From Vedic Period to Modern Times Lecture 18 - Development of Combinatorics - Part 1
Link Mathematics in India - From Vedic Period to Modern Times Lecture 19 - Development of Combinatorics - Part 2
Link Mathematics in India - From Vedic Period to Modern Times Lecture 20 - Lilavati of Bhaskaracarya - Part 1
Link Mathematics in India - From Vedic Period to Modern Times Lecture 21 - Lilavati of Bhaskaracarya - Part 2
Link Mathematics in India - From Vedic Period to Modern Times Lecture 22 - Lilavati of Bhaskaracarya - Part 3
Link Mathematics in India - From Vedic Period to Modern Times Lecture 23 - Bijaganita of Bhaskaracarya - Part 1
Link Mathematics in India - From Vedic Period to Modern Times Lecture 24 - Bijaganita of Bhaskaracarya - Part 2
Link Mathematics in India - From Vedic Period to Modern Times Lecture 25 - Ganitakaumudi of Narayana Pandita - Part 1
Link Mathematics in India - From Vedic Period to Modern Times Lecture 26 - Ganitakaumudi of Narayana Pandita - Part 2
Link Mathematics in India - From Vedic Period to Modern Times Lecture 27 - Ganitakaumudi of Narayana Pandita - Part 3
Link Mathematics in India - From Vedic Period to Modern Times Lecture 28 - Magic Squares - Part 1
Link Mathematics in India - From Vedic Period to Modern Times Lecture 29 - Magic Squares - Part 2
Link Mathematics in India - From Vedic Period to Modern Times Lecture 30 - Development of Calculus in India - Part 1
Link Mathematics in India - From Vedic Period to Modern Times Lecture 31 - Development of Calculus in India - Part 2
Link Mathematics in India - From Vedic Period to Modern Times Lecture 32 - Jyanayanam: Computation of Rsines
Link Mathematics in India - From Vedic Period to Modern Times Lecture 33 - Trigonometry and Spherical Trigonometry - Part 1
Link Mathematics in India - From Vedic Period to Modern Times Lecture 34 - Trigonometry and Spherical Trigonometry - Part 2
Link Mathematics in India - From Vedic Period to Modern Times Lecture 35 - Trigonometry and Spherical Trigonometry - Part 3
Link Mathematics in India - From Vedic Period to Modern Times Lecture 36 - Proofs in Indian Mathematics - Part 1
Link Mathematics in India - From Vedic Period to Modern Times Lecture 37 - Proofs in Indian Mathematics - Part 2
Link Mathematics in India - From Vedic Period to Modern Times Lecture 38 - Proofs in Indian Mathematics - Part 3
Link Mathematics in India - From Vedic Period to Modern Times Lecture 39 - Mathematics in Modern India - Part 1
Link Mathematics in India - From Vedic Period to Modern Times Lecture 40 - Mathematics in Modern India - Part 2
Link NOC:Measure Theory Lecture 1 - (1A) Introduction, Extended Real Numbers
Link NOC:Measure Theory Lecture 2 - (1B) Introduction, Extended Real Numbers
Link NOC:Measure Theory Lecture 3 - (2A) Algebra and Sigma Algebra of Subsets of a Set
Link NOC:Measure Theory Lecture 4 - (2B) Algebra and Sigma Algebra of Subsets of a Set
Link NOC:Measure Theory Lecture 5 - (3A) Sigma Algebra generated by a Class
Link NOC:Measure Theory Lecture 6 - (3B) Sigma Algebra generated by a Class
Link NOC:Measure Theory Lecture 7 - (4A) Monotone Class
Link NOC:Measure Theory Lecture 8 - (4B) Monotone Class
Link NOC:Measure Theory Lecture 9 - (5A) Set Functions
Link NOC:Measure Theory Lecture 10 - (5B) Set Functions
Link NOC:Measure Theory Lecture 11 - (6A) The Length Function and its Properties
Link NOC:Measure Theory Lecture 12 - (6B) The Length Function and its Properties
Link NOC:Measure Theory Lecture 13 - (7A) Countably Additive Set Functions on Intervals
Link NOC:Measure Theory Lecture 14 - (7B) Countably Additive Set Functions on Intervals
Link NOC:Measure Theory Lecture 15 - (8A) Uniqueness Problem for Measure
Link NOC:Measure Theory Lecture 16 - (8B) Uniqueness Problem for Measure
Link NOC:Measure Theory Lecture 17 - (9A) Extension of Measure
Link NOC:Measure Theory Lecture 18 - (9B) Extension of Measure
Link NOC:Measure Theory Lecture 19 - (10A) Outer Measure and its Properties
Link NOC:Measure Theory Lecture 20 - (10B) Outer Measure and its Properties
Link NOC:Measure Theory Lecture 21 - (11A) Measurable Sets
Link NOC:Measure Theory Lecture 22 - (11B) Measurable Sets
Link NOC:Measure Theory Lecture 23 - (12A) Lebesgue Measure and its Properties
Link NOC:Measure Theory Lecture 24 - (12B) Lebesgue Measure and its Properties
Link NOC:Measure Theory Lecture 25 - (13A) Characterization of Lebesgue Measurable Sets
Link NOC:Measure Theory Lecture 26 - (13B) Characterization of Lebesgue Measurable Sets
Link NOC:Measure Theory Lecture 27 - (14A) Measurable Functions
Link NOC:Measure Theory Lecture 28 - (14B) Measurable Functions
Link NOC:Measure Theory Lecture 29 - (15A) Properties of Measurable Functions
Link NOC:Measure Theory Lecture 30 - (15B) Properties of Measurable Functions
Link NOC:Measure Theory Lecture 31 - (16A) Measurable Functions on Measure Spaces
Link NOC:Measure Theory Lecture 32 - (16B) Measurable Functions on Measure Spaces
Link NOC:Measure Theory Lecture 33 - (17A) Integral of Nonnegative Simple Measurable Functions
Link NOC:Measure Theory Lecture 34 - (17B) Integral of Nonnegative Simple Measurable Functions
Link NOC:Measure Theory Lecture 35 - (18A) Properties of Nonnegative Simple Measurable Functions
Link NOC:Measure Theory Lecture 36 - (18B) Properties of Nonnegative Simple Measurable Functions
Link NOC:Measure Theory Lecture 37 - (19A) Monotone Convergence Theorem and Fatou's Lemma
Link NOC:Measure Theory Lecture 38 - (19B) Monotone Convergence Theorem and Fatou's Lemma
Link NOC:Measure Theory Lecture 39 - (20A) Properties of Integrable Functions and Dominated Convergence Theorem
Link NOC:Measure Theory Lecture 40 - (20B) Properties of Integrable Functions and Dominated Convergence Theorem
Link NOC:Measure Theory Lecture 41 - (21A) Dominated Convergence Theorem and Applications
Link NOC:Measure Theory Lecture 42 - (21B) Dominated Convergence Theorem and Applications
Link NOC:Measure Theory Lecture 43 - (22A) Lebesgue Integral and its Properties
Link NOC:Measure Theory Lecture 44 - (22B) Lebesgue Integral and its Properties
Link NOC:Measure Theory Lecture 45 - (23A) Product Measure, an Introduction
Link NOC:Measure Theory Lecture 46 - (23B) Product Measure, an Introduction
Link NOC:Measure Theory Lecture 47 - (24A) Construction of Product Measures
Link NOC:Measure Theory Lecture 48 - (24B) Construction of Product Measures
Link NOC:Measure Theory Lecture 49 - (25A) Computation of Product Measure - I
Link NOC:Measure Theory Lecture 50 - (25B) Computation of Product Measure - I
Link NOC:Measure Theory Lecture 51 - (26A) Computation of Product Measure - II
Link NOC:Measure Theory Lecture 52 - (26B) Computation of Product Measure - II
Link NOC:Measure Theory Lecture 53 - (27A) Integration on Product Spaces
Link NOC:Measure Theory Lecture 54 - (27B) Integration on Product Spaces
Link NOC:Measure Theory Lecture 55 - (28A) Fubini's Theorems
Link NOC:Measure Theory Lecture 56 - (28B) Fubini's Theorems
Link NOC:Measure Theory Lecture 57 - (29A) Lebesgue Measure and Integral on R2
Link NOC:Measure Theory Lecture 58 - (29B) Lebesgue Measure and Integral on R2
Link NOC:Measure Theory Lecture 59 - (30A) Properties of Lebesgue Measure on R2
Link NOC:Measure Theory Lecture 60 - (30B) Properties of Lebesgue Measure on R2
Link NOC:Measure Theory Lecture 61 - (31A) Lebesgue Integral on R2
Link NOC:Measure Theory Lecture 62 - (31B) Lebesgue Integral on R2
Link NOC:Calculus for Economics, Commerce and Management Lecture 1 - Introduction to the Course
Link NOC:Calculus for Economics, Commerce and Management Lecture 2 - Concept of a Set, Ways of Representing Sets
Link NOC:Calculus for Economics, Commerce and Management Lecture 3 - Venn Diagrams, Operations on Sets
Link NOC:Calculus for Economics, Commerce and Management Lecture 4 - Operations on Sets, Cardinal Number, Real Numbers
Link NOC:Calculus for Economics, Commerce and Management Lecture 5 - Real Numbers, Sequences
Link NOC:Calculus for Economics, Commerce and Management Lecture 6 - Sequences, Convergent Sequences, Bounded Sequences
Link NOC:Calculus for Economics, Commerce and Management Lecture 7 - Limit Theorems, Sandwich Theorem, Monotone Sequences, Completeness of Real Numbers
Link NOC:Calculus for Economics, Commerce and Management Lecture 8 - Relations and Functions
Link NOC:Calculus for Economics, Commerce and Management Lecture 9 - Functions, Graph of a Functions, Function Formulas
Link NOC:Calculus for Economics, Commerce and Management Lecture 10 - Function Formulas, Linear Models
Link NOC:Calculus for Economics, Commerce and Management Lecture 11 - Linear Models, Elasticity, Linear Functions, Nonlinear Models, Quadratic Functions
Link NOC:Calculus for Economics, Commerce and Management Lecture 12 - Quadratic Functions, Quadratic Models, Power Function, Exponential Function
Link NOC:Calculus for Economics, Commerce and Management Lecture 13 - Exponential Function, Exponential Models, Logarithmic Function
Link NOC:Calculus for Economics, Commerce and Management Lecture 14 - Limit of a Function at a Point, Continuous Functions
Link NOC:Calculus for Economics, Commerce and Management Lecture 15 - Limit of a Function at a Point
Link NOC:Calculus for Economics, Commerce and Management Lecture 16 - Limit of a Function at a Point, Left and Right Limits
Link NOC:Calculus for Economics, Commerce and Management Lecture 17 - Computing Limits, Continuous Functions
Link NOC:Calculus for Economics, Commerce and Management Lecture 18 - Applications of Continuous Functions
Link NOC:Calculus for Economics, Commerce and Management Lecture 19 - Applications of Continuous Functions, Marginal of a Function
Link NOC:Calculus for Economics, Commerce and Management Lecture 20 - Rate of Change, Differentiation
Link NOC:Calculus for Economics, Commerce and Management Lecture 21 - Rules of Differentiation
Link NOC:Calculus for Economics, Commerce and Management Lecture 22 - Derivatives of Some Functions, Marginal, Elasticity
Link NOC:Calculus for Economics, Commerce and Management Lecture 23 - Elasticity, Increasing and Decreasing Functions, Optimization, Mean Value Theorem
Link NOC:Calculus for Economics, Commerce and Management Lecture 24 - Mean Value Theorem, Marginal Analysis, Local Maxima and Minima
Link NOC:Calculus for Economics, Commerce and Management Lecture 25 - Local Maxima and Minima
Link NOC:Calculus for Economics, Commerce and Management Lecture 26 - Local Maxima and Minima, Continuity Test, First Derivative Test, Successive Differentiation
Link NOC:Calculus for Economics, Commerce and Management Lecture 27 - Successive Differentiation, Second Derivative Test
Link NOC:Calculus for Economics, Commerce and Management Lecture 28 - Average and Marginal Product, Marginal of Revenue and Cost, Absolute Maximum and Minimum
Link NOC:Calculus for Economics, Commerce and Management Lecture 29 - Absolute Maximum and Minimum
Link NOC:Calculus for Economics, Commerce and Management Lecture 30 - Monopoly Market, Revenue and Elasticity
Link NOC:Calculus for Economics, Commerce and Management Lecture 31 - Property of Marginals, Monopoly Market, Publisher v/s Author Problem
Link NOC:Calculus for Economics, Commerce and Management Lecture 32 - Convex and Concave Functions
Link NOC:Calculus for Economics, Commerce and Management Lecture 33 - Derivative Tests for Convexity, Concavity and Points of Inflection, Higher Order Derivative Conditions
Link NOC:Calculus for Economics, Commerce and Management Lecture 34 - Convex and Concave Functions, Asymptotes
Link NOC:Calculus for Economics, Commerce and Management Lecture 35 - Asymptotes, Curve Sketching
Link NOC:Calculus for Economics, Commerce and Management Lecture 36 - Functions of Two Variables, Visualizing Graph, Level Curves, Contour Lines
Link NOC:Calculus for Economics, Commerce and Management Lecture 37 - Partial Derivatives and Application to Marginal Analysis
Link NOC:Calculus for Economics, Commerce and Management Lecture 38 - Marginals in Cobb-Douglas model, partial derivatives and elasticity, chain rules
Link NOC:Calculus for Economics, Commerce and Management Lecture 39 - Chain Rules, Higher Order Partial Derivatives, Local Maxima and Minima, Critical Points
Link NOC:Calculus for Economics, Commerce and Management Lecture 40 - Saddle Points, Derivative Tests, Absolute Maxima and Minima
Link NOC:Calculus for Economics, Commerce and Management Lecture 41 - Some Examples, Constrained Maxima and Minima
Link NOC:Basic Linear Algebra Lecture 1 - Introduction - I
Link NOC:Basic Linear Algebra Lecture 2 - Introduction - II
Link NOC:Basic Linear Algebra Lecture 3 - Introduction - III
Link NOC:Basic Linear Algebra Lecture 4 - Systems of Linear Equations - I
Link NOC:Basic Linear Algebra Lecture 5 - Systems of Linear Equations - II
Link NOC:Basic Linear Algebra Lecture 6 - Systems of Linear Equations - III
Link NOC:Basic Linear Algebra Lecture 7 - Reduced Row Echelon Form and Rank - I
Link NOC:Basic Linear Algebra Lecture 8 - Reduced Row Echelon Form and Rank - II
Link NOC:Basic Linear Algebra Lecture 9 - Reduced Row Echelon Form and Rank - III
Link NOC:Basic Linear Algebra Lecture 10 - Solvability of a Linear System, Linear Span, Basis - I
Link NOC:Basic Linear Algebra Lecture 11 - Solvability of a Linear System, Linear Span, Basis - II
Link NOC:Basic Linear Algebra Lecture 12 - Solvability of a Linear System, Linear Span, Basis - III
Link NOC:Basic Linear Algebra Lecture 13 - Linear Span, Linear Independence and Basis - I
Link NOC:Basic Linear Algebra Lecture 14 - Linear Span, Linear Independence and Basis - II
Link NOC:Basic Linear Algebra Lecture 15 - Linear Span, Linear Independence and Basis - III
Link NOC:Basic Linear Algebra Lecture 16 - Row Space, Column Space, Rank-Nullity Theorem - I
Link NOC:Basic Linear Algebra Lecture 17 - Row Space, Column Space, Rank-Nullity Theorem - II
Link NOC:Basic Linear Algebra Lecture 18 - Row Space, Column Space, Rank-Nullity Theorem - III
Link NOC:Basic Linear Algebra Lecture 19 - Determinants and their Properties - I
Link NOC:Basic Linear Algebra Lecture 20 - Determinants and their Properties - II
Link NOC:Basic Linear Algebra Lecture 21 - Determinants and their Properties - III
Link NOC:Basic Linear Algebra Lecture 22 - Linear Transformations - I
Link NOC:Basic Linear Algebra Lecture 23 - Linear Transformations - II
Link NOC:Basic Linear Algebra Lecture 24 - Linear Transformations - III
Link NOC:Basic Linear Algebra Lecture 25 - Orthonormal Basis, Geometry in R^2 - I
Link NOC:Basic Linear Algebra Lecture 26 - Orthonormal Basis, Geometry in R^2 - II
Link NOC:Basic Linear Algebra Lecture 27 - Orthonormal Basis, Geometry in R^2 - III
Link NOC:Basic Linear Algebra Lecture 28 - Isometries, Eigenvalues and Eigenvectors - I
Link NOC:Basic Linear Algebra Lecture 29 - Isometries, Eigenvalues and Eigenvectors - II
Link NOC:Basic Linear Algebra Lecture 30 - Isometries, Eigenvalues and Eigenvectors - III
Link NOC:Basic Linear Algebra Lecture 31 - Diagonalization and Real Symmetric Matrices - I
Link NOC:Basic Linear Algebra Lecture 32 - Diagonalization and Real Symmetric Matrices - II
Link NOC:Basic Linear Algebra Lecture 33 - Diagonalization and Real Symmetric Matrices - III
Link NOC:Basic Linear Algebra Lecture 34 - Diagonalization and its Applications - I
Link NOC:Basic Linear Algebra Lecture 35 - Diagonalization and its Applications - II
Link NOC:Basic Linear Algebra Lecture 36 - Diagonalization and its Applications - III
Link NOC:Basic Linear Algebra Lecture 37 - Abstract Vector Spaces - I
Link NOC:Basic Linear Algebra Lecture 38 - Abstract Vector Spaces - II
Link NOC:Basic Linear Algebra Lecture 39 - Abstract Vector Spaces - III
Link NOC:Basic Linear Algebra Lecture 40 - Inner Product Spaces - I
Link NOC:Basic Linear Algebra Lecture 41 - Inner Product Spaces - II
Link NOC:Commutative Algebra Lecture 1 - Zariski Topology and K-Spectrum
Link NOC:Commutative Algebra Lecture 2 - Algebraic Varieties and Classical Nullstelensatz
Link NOC:Commutative Algebra Lecture 3 - Motivation for Krulls Dimension
Link NOC:Commutative Algebra Lecture 4 - Chevalleys dimension
Link NOC:Commutative Algebra Lecture 5 - Associated Prime Ideals of a Module
Link NOC:Commutative Algebra Lecture 6 - Support of a Module
Link NOC:Commutative Algebra Lecture 7 - Primary Decomposition
Link NOC:Commutative Algebra Lecture 8 - Primary Decomposition (Continued...)
Link NOC:Commutative Algebra Lecture 9 - Uniqueness of Primary Decomposition
Link NOC:Commutative Algebra Lecture 10 - Modules of Finite Length
Link NOC:Commutative Algebra Lecture 11 - Modules of Finite Length (Continued...)
Link NOC:Commutative Algebra Lecture 12 - Introduction to Krull’s Dimension
Link NOC:Commutative Algebra Lecture 13 - Noether Normalization Lemma (Classical Version)
Link NOC:Commutative Algebra Lecture 14 - Consequences of Noether Normalization Lemma
Link NOC:Commutative Algebra Lecture 15 - Nil Radical and Jacobson Radical of Finite type Algebras over a Field and digression of Integral Extension
Link NOC:Commutative Algebra Lecture 16 - Nagata’s version of NNL
Link NOC:Commutative Algebra Lecture 17 - Dimensions of Polynomial ring over Noetherian rings
Link NOC:Commutative Algebra Lecture 18 - Dimension of Polynomial Algebra over arbitrary Rings
Link NOC:Commutative Algebra Lecture 19 - Dimension Inequalities
Link NOC:Commutative Algebra Lecture 20 - Hilbert’s Nullstelensatz
Link NOC:Commutative Algebra Lecture 21 - Computational rules for Poincaré Series
Link NOC:Commutative Algebra Lecture 22 - Graded Rings, Modules and Poincaré Series
Link NOC:Commutative Algebra Lecture 23 - Hilbert-Samuel Polynomials
Link NOC:Commutative Algebra Lecture 24 - Hilbert-Samuel Polynomials (Continued...)
Link NOC:Commutative Algebra Lecture 25 - Numerical Function of polynomial type
Link NOC:Commutative Algebra Lecture 26 - Hilbert-Samuel Polynomial of a Local ring
Link NOC:Commutative Algebra Lecture 27 - Filtration on a Module
Link NOC:Commutative Algebra Lecture 28 - Artin-Rees Lemma
Link NOC:Commutative Algebra Lecture 29 - Dimension Theorem
Link NOC:Commutative Algebra Lecture 30 - Dimension Theorem (Continued...)
Link NOC:Commutative Algebra Lecture 31 - Consequences of Dimension Theorem
Link NOC:Commutative Algebra Lecture 32 - Generalized Krull’s Principal Ideal Theorem
Link NOC:Commutative Algebra Lecture 33 - Second proof of Krull’s Principal Ideal Theorem
Link NOC:Commutative Algebra Lecture 34 - The Spec Functor
Link NOC:Commutative Algebra Lecture 35 - Prime ideals in Polynomial rings
Link NOC:Commutative Algebra Lecture 36 - Characterization of Equidimensional Affine Algebra
Link NOC:Commutative Algebra Lecture 37 - Connection between Regular local rings and associated graded rings
Link NOC:Commutative Algebra Lecture 38 - Statement of the Jacobian Criterion for Regularity
Link NOC:Commutative Algebra Lecture 39 - Hilbert function for Affine Algebra
Link NOC:Commutative Algebra Lecture 40 - Hilbert Serre Theorem
Link NOC:Commutative Algebra Lecture 41 - Jacobian Matrix and its Rank
Link NOC:Commutative Algebra Lecture 42 - Jacobian Matrix and its Rank (Continued...)
Link NOC:Commutative Algebra Lecture 43 - Proof of Jacobian Critrerion
Link NOC:Commutative Algebra Lecture 44 - Proof of Jacobian Critrerion (Continued...)
Link NOC:Commutative Algebra Lecture 45 - Preparation for Homological Dimension
Link NOC:Commutative Algebra Lecture 46 - Complexes of Modules and Homology
Link NOC:Commutative Algebra Lecture 47 - Projective Modules
Link NOC:Commutative Algebra Lecture 48 - Homological Dimension and Projective module
Link NOC:Commutative Algebra Lecture 49 - Global Dimension
Link NOC:Commutative Algebra Lecture 50 - Homological characterization of Regular Local Rings (RLR)
Link NOC:Commutative Algebra Lecture 51 - Homological characterization of Regular Local Rings (Continued...)
Link NOC:Commutative Algebra Lecture 52 - Homological Characterization of Regular Local Rings (Continued...)
Link NOC:Commutative Algebra Lecture 53 - Regular Local Rings are UFD
Link NOC:Commutative Algebra Lecture 54 - RLR-Prime ideals of height 1
Link NOC:Commutative Algebra Lecture 55 - Discrete Valuation Ring
Link NOC:Commutative Algebra Lecture 56 - Discrete Valuation Ring (Continued...)
Link NOC:Commutative Algebra Lecture 57 - Dedekind Domains
Link NOC:Commutative Algebra Lecture 58 - Fractionary Ideals and Dedekind Domains
Link NOC:Commutative Algebra Lecture 59 - Characterization of Dedekind Domain
Link NOC:Commutative Algebra Lecture 60 - Dedekind Domains and prime factorization of ideals
Link NOC:Galois Theory Lecture 1 - Historical Perspectives
Link NOC:Galois Theory Lecture 2 - Examples of Fields
Link NOC:Galois Theory Lecture 3 - Polynomials and Basic properties
Link NOC:Galois Theory Lecture 4 - Polynomial Rings
Link NOC:Galois Theory Lecture 5 - Unit and Unit Groups
Link NOC:Galois Theory Lecture 6 - Division with remainder and prime factorization
Link NOC:Galois Theory Lecture 7 - Zeroes of Polynomials
Link NOC:Galois Theory Lecture 8 - Polynomial functions
Link NOC:Galois Theory Lecture 9 - Algebraically closed Fields and statement of FTA
Link NOC:Galois Theory Lecture 10 - Gauss’s Theorem(Uniqueness of factorization)
Link NOC:Galois Theory Lecture 11 - Digression on Rings homomorphism, Algebras
Link NOC:Galois Theory Lecture 12 - Kernel of homomorphisms and ideals in K[X],Z
Link NOC:Galois Theory Lecture 13 - Algebraic elements
Link NOC:Galois Theory Lecture 14 - Examples
Link NOC:Galois Theory Lecture 15 - Minimal Polynomials
Link NOC:Galois Theory Lecture 16 - Characterization of Algebraic elements
Link NOC:Galois Theory Lecture 17 - Theorem of Kronecker
Link NOC:Galois Theory Lecture 18 - Examples
Link NOC:Galois Theory Lecture 19 - Digression on Groups
Link NOC:Galois Theory Lecture 20 - Some examples and Characteristic of a Ring
Link NOC:Galois Theory Lecture 21 - Finite subGroups of the Unit Group of a Field
Link NOC:Galois Theory Lecture 22 - Construction of Finite Fields
Link NOC:Galois Theory Lecture 23 - Digression on Group action - I
Link NOC:Galois Theory Lecture 24 - Automorphism Groups of a Field Extension
Link NOC:Galois Theory Lecture 25 - Dedekind-Artin Theorem
Link NOC:Galois Theory Lecture 26 - Galois Extension
Link NOC:Galois Theory Lecture 27 - Examples of Galois extension
Link NOC:Galois Theory Lecture 28 - Examples of Automorphism Groups
Link NOC:Galois Theory Lecture 29 - Digression on Linear Algebra
Link NOC:Galois Theory Lecture 30 - Minimal and Characteristic Polynomials, Norms, Trace of elements
Link NOC:Galois Theory Lecture 31 - Primitive Element Theorem for Galois Extension
Link NOC:Galois Theory Lecture 32 - Fundamental Theorem of Galois Theory
Link NOC:Galois Theory Lecture 33 - Fundamental Theorem of Galois Theory (Continued...)
Link NOC:Galois Theory Lecture 34 - Cyclotomic extensions
Link NOC:Galois Theory Lecture 35 - Cyclotomic Polynomials
Link NOC:Galois Theory Lecture 36 - Irreducibility of Cyclotomic Polynomials over Q
Link NOC:Galois Theory Lecture 37 - Reducibility of Cyclotomic Polynomials over Finite Fields
Link NOC:Galois Theory Lecture 38 - Galois Group of Cyclotomic Polynomials
Link NOC:Galois Theory Lecture 39 - Extension over a fixed Field of a finite subGroup is Galois Extension
Link NOC:Galois Theory Lecture 40 - Digression on Group action - II
Link NOC:Galois Theory Lecture 41 - Correspondence of Normal SubGroups and Galois sub-extensions
Link NOC:Galois Theory Lecture 42 - Correspondence of Normal SubGroups and Galois sub-extensions (Continued...)
Link NOC:Galois Theory Lecture 43 - Inverse Galois problem for Abelian Groups
Link NOC:Galois Theory Lecture 44 - Elementary Symmetric Polynomials
Link NOC:Galois Theory Lecture 45 - Fundamental Theorem on Symmetric Polynomials
Link NOC:Galois Theory Lecture 46 - Gal (K[X1,X2,…,Xn]/K[S1,S2,...,Sn])
Link NOC:Galois Theory Lecture 47 - Digression on Symmetric and Alternating Group
Link NOC:Galois Theory Lecture 48 - Discriminant of a Polynomial
Link NOC:Galois Theory Lecture 49 - Zeroes and Embeddings
Link NOC:Galois Theory Lecture 50 - Normal Extensions
Link NOC:Galois Theory Lecture 51 - Existence of Algebraic Closure
Link NOC:Galois Theory Lecture 52 - Uniqueness of Algebraic Closure
Link NOC:Galois Theory Lecture 53 - Proof of The Fundamental Theorem of Algebra
Link NOC:Galois Theory Lecture 54 - Galois Group of a Polynomial
Link NOC:Galois Theory Lecture 55 - Perfect Fields
Link NOC:Galois Theory Lecture 56 - Embeddings
Link NOC:Galois Theory Lecture 57 - Characterization of finite Separable extension
Link NOC:Galois Theory Lecture 58 - Primitive Element Theorem
Link NOC:Galois Theory Lecture 59 - Equivalence of Galois extensions and Normal-Separable extensions
Link NOC:Galois Theory Lecture 60 - Operation of Galois Group of Polynomial on the set of zeroes
Link NOC:Galois Theory Lecture 61 - Discriminants
Link NOC:Galois Theory Lecture 62 - Examples for further study
Link NOC:Basic Real Analysis Lecture 1 - Real Numbers and Sequences - Part I
Link NOC:Basic Real Analysis Lecture 2 - Real Numbers and Sequences - Part II
Link NOC:Basic Real Analysis Lecture 3 - Real Numbers and Sequences - Part III
Link NOC:Basic Real Analysis Lecture 4 - Convergence of Sequences - Part I
Link NOC:Basic Real Analysis Lecture 5 - Convergence of Sequences - Part II
Link NOC:Basic Real Analysis Lecture 6 - Convergence of Sequences - Part III
Link NOC:Basic Real Analysis Lecture 7 - The LUB Property and Consequences - Part I
Link NOC:Basic Real Analysis Lecture 8 - The LUB Property and Consequences - Part II
Link NOC:Basic Real Analysis Lecture 9 - The LUB Property and Consequences - Part III
Link NOC:Basic Real Analysis Lecture 10 - Topology of Real Numbers: Closed Sets - Part I
Link NOC:Basic Real Analysis Lecture 11 - Topology of Real Numbers: Closed Sets - Part II
Link NOC:Basic Real Analysis Lecture 12 - Topology of Real Numbers: Closed Sets - Part III
Link NOC:Basic Real Analysis Lecture 13 - Topology of Real Numbers: Limit Points, Interior Points, Open Sets and Compact Sets - Part I
Link NOC:Basic Real Analysis Lecture 14 - Topology of Real Numbers: Limit Points, Interior Points, Open Sets and Compact Sets - Part II
Link NOC:Basic Real Analysis Lecture 15 - Topology of Real Numbers: Limit Points, Interior Points, Open Sets and Compact Sets - Part III
Link NOC:Basic Real Analysis Lecture 16 - Topology of Real Numbers: Compact Sets and Connected Sets - Part I
Link NOC:Basic Real Analysis Lecture 17 - Topology of Real Numbers: Compact Sets and Connected Sets - Part II
Link NOC:Basic Real Analysis Lecture 18 - Topology of Real Numbers: Compact Sets and Connected Sets - Part III
Link NOC:Basic Real Analysis Lecture 19 - Topology of Real Numbers: Connected Sets; Limits and Continuity - Part I
Link NOC:Basic Real Analysis Lecture 20 - Topology of Real Numbers: Connected Sets; Limits and Continuity - Part II
Link NOC:Basic Real Analysis Lecture 21 - Topology of Real Numbers: Connected Sets; Limits and Continuity - Part III
Link NOC:Basic Real Analysis Lecture 22 - Continuity and Uniform continuity - Part I
Link NOC:Basic Real Analysis Lecture 23 - Continuity and Uniform continuity - Part II
Link NOC:Basic Real Analysis Lecture 24 - Continuity and Uniform continuity - Part III
Link NOC:Basic Real Analysis Lecture 25 - Uniform continuity and connected sets - Part I
Link NOC:Basic Real Analysis Lecture 26 - Uniform continuity and connected sets - Part II
Link NOC:Basic Real Analysis Lecture 27 - Uniform continuity and connected sets - Part III
Link NOC:Basic Real Analysis Lecture 28 - Connected sets and continuity - Part I
Link NOC:Basic Real Analysis Lecture 29 - Connected sets and continuity - Part II
Link NOC:Basic Real Analysis Lecture 30 - Connected sets and continuity - Part III
Link NOC:Basic Real Analysis Lecture 31 - Differentiability - Part I
Link NOC:Basic Real Analysis Lecture 32 - Differentiability - Part II
Link NOC:Basic Real Analysis Lecture 33 - Differentiability - Part III
Link NOC:Basic Real Analysis Lecture 34 - Differentiability - Part IV
Link NOC:Basic Real Analysis Lecture 35 - Differentiability - Part V
Link NOC:Basic Real Analysis Lecture 36 - Differentiability - Part VI
Link NOC:Basic Real Analysis Lecture 37 - Riemann Integration - Part I
Link NOC:Basic Real Analysis Lecture 38 - Riemann Integration - Part II
Link NOC:Basic Real Analysis Lecture 39 - Riemann Integration - Part III
Link NOC:Basic Real Analysis Lecture 40 - Riemann Integration - Part IV
Link NOC:Basic Real Analysis Lecture 41 - Riemann Integration - Part V
Link NOC:Basic Real Analysis Lecture 42 - Riemann Integration - Part VI
Link NOC:Basic Real Analysis Lecture 43 - Riemann Sum and Riemann Integrals - Part I
Link NOC:Basic Real Analysis Lecture 44 - Riemann Sum and Riemann Integrals - Part II
Link NOC:Basic Real Analysis Lecture 45 - Riemann Sum and Riemann Integrals - Part III
Link NOC:Basic Real Analysis Lecture 46 - Optimization in several variables - Part I
Link NOC:Basic Real Analysis Lecture 47 - Optimization in several variables - Part II
Link NOC:Basic Real Analysis Lecture 48 - Optimization in several variables - Part III
Link NOC:Basic Real Analysis Lecture 49 - Integration in several variables - Part I
Link NOC:Basic Real Analysis Lecture 50 - Integration in several variables - Part II
Link NOC:Basic Real Analysis Lecture 51 - Integration in several variables - Part III
Link NOC:Basic Real Analysis Lecture 52 - Change of variables - Part I
Link NOC:Basic Real Analysis Lecture 53 - Change of variables - Part II
Link NOC:Basic Real Analysis Lecture 54 - Change of variables - Part III
Link NOC:Basic Real Analysis Lecture 55 - Change of variables - Part IV
Link NOC:Basic Real Analysis Lecture 56 - Metric Spaces - Part I
Link NOC:Basic Real Analysis Lecture 57 - Metric Spaces - Part II
Link NOC:Basic Real Analysis Lecture 58 - Metric Spaces - Part III
Link NOC:Basic Real Analysis Lecture 59 - L^p Metrics - Part I
Link NOC:Basic Real Analysis Lecture 60 - L^p Metrics - Part II
Link NOC:Basic Real Analysis Lecture 61 - L^p Metrics - Part III
Link NOC:Basic Real Analysis Lecture 62 - Pointwise and Uniform convergence - Part I
Link NOC:Basic Real Analysis Lecture 63 - Pointwise and Uniform convergence - Part II
Link NOC:Basic Real Analysis Lecture 64 - Pointwise and Uniform convergence - Part III
Link NOC:Basic Real Analysis Lecture 65 - Pointwise and Uniform convergence - Part IV
Link NOC:Basic Real Analysis Lecture 66 - Series of Numbers - Part I
Link NOC:Basic Real Analysis Lecture 67 - Series of Numbers - Part II
Link NOC:Basic Real Analysis Lecture 68 - Series of Numbers - Part III
Link NOC:Basic Real Analysis Lecture 69 - Alternating Series and Power Series
Link NOC:A Basic Course in Number Theory Lecture 1 - Integers
Link NOC:A Basic Course in Number Theory Lecture 2 - Divisibility and primes
Link NOC:A Basic Course in Number Theory Lecture 3 - Infinitude of primes
Link NOC:A Basic Course in Number Theory Lecture 4 - Division algorithm and the GCD
Link NOC:A Basic Course in Number Theory Lecture 5 - Computing the GCD and Euclid’s lemma
Link NOC:A Basic Course in Number Theory Lecture 6 - Fundamental theorem of arithmetic
Link NOC:A Basic Course in Number Theory Lecture 7 - Stories around primes
Link NOC:A Basic Course in Number Theory Lecture 8 - Winding up on `Primes' and introducing Congruences'
Link NOC:A Basic Course in Number Theory Lecture 9 - Basic results in congruences
Link NOC:A Basic Course in Number Theory Lecture 10 - Residue classes modulo n
Link NOC:A Basic Course in Number Theory Lecture 11 - Arithmetic modulo n, theory and examples
Link NOC:A Basic Course in Number Theory Lecture 12 - Arithmetic modulo n, more examples
Link NOC:A Basic Course in Number Theory Lecture 13 - Solving linear polynomials modulo n - I
Link NOC:A Basic Course in Number Theory Lecture 14 - Solving linear polynomials modulo n - II
Link NOC:A Basic Course in Number Theory Lecture 15 - Solving linear polynomials modulo n - III
Link NOC:A Basic Course in Number Theory Lecture 16 - Solving linear polynomials modulo n - IV
Link NOC:A Basic Course in Number Theory Lecture 17 - Chinese remainder theorem, the initial cases
Link NOC:A Basic Course in Number Theory Lecture 18 - Chinese remainder theorem, the general case and examples
Link NOC:A Basic Course in Number Theory Lecture 19 - Chinese remainder theorem, more examples
Link NOC:A Basic Course in Number Theory Lecture 20 - Using the CRT, square roots of 1 in ℤn
Link NOC:A Basic Course in Number Theory Lecture 21 - Wilson's theorem
Link NOC:A Basic Course in Number Theory Lecture 22 - Roots of polynomials over ℤp
Link NOC:A Basic Course in Number Theory Lecture 23 - Euler 𝜑-function - I
Link NOC:A Basic Course in Number Theory Lecture 24 - Euler 𝜑-function - II
Link NOC:A Basic Course in Number Theory Lecture 25 - Primitive roots - I
Link NOC:A Basic Course in Number Theory Lecture 26 - Primitive roots - II
Link NOC:A Basic Course in Number Theory Lecture 27 - Primitive roots - III
Link NOC:A Basic Course in Number Theory Lecture 28 - Primitive roots - IV
Link NOC:A Basic Course in Number Theory Lecture 29 - Structure of Un - I
Link NOC:A Basic Course in Number Theory Lecture 30 - Structure of Un - II
Link NOC:A Basic Course in Number Theory Lecture 31 - Quadratic residues
Link NOC:A Basic Course in Number Theory Lecture 32 - The Legendre symbol
Link NOC:A Basic Course in Number Theory Lecture 33 - Quadratic reciprocity law - I
Link NOC:A Basic Course in Number Theory Lecture 34 - Quadratic reciprocity law - II
Link NOC:A Basic Course in Number Theory Lecture 35 - Quadratic reciprocity law - III
Link NOC:A Basic Course in Number Theory Lecture 36 - Quadratic reciprocity law - IV
Link NOC:A Basic Course in Number Theory Lecture 37 - The Jacobi symbol
Link NOC:A Basic Course in Number Theory Lecture 38 - Binary quadratic forms
Link NOC:A Basic Course in Number Theory Lecture 39 - Equivalence of binary quadratic forms
Link NOC:A Basic Course in Number Theory Lecture 40 - Discriminant of a binary quadratic form
Link NOC:A Basic Course in Number Theory Lecture 41 - Reduction theory of integral binary quadratic forms
Link NOC:A Basic Course in Number Theory Lecture 42 - Reduced forms up to equivalence - I
Link NOC:A Basic Course in Number Theory Lecture 43 - Reduced forms up to equivalence - II
Link NOC:A Basic Course in Number Theory Lecture 44 - Reduced forms up to equivalence - III
Link NOC:A Basic Course in Number Theory Lecture 45 - Sums of squares - I
Link NOC:A Basic Course in Number Theory Lecture 46 - Sums of squares - II
Link NOC:A Basic Course in Number Theory Lecture 47 - Sums of squares - III
Link NOC:A Basic Course in Number Theory Lecture 48 - Beyond sums of squares - I
Link NOC:A Basic Course in Number Theory Lecture 49 - Beyond sums of squares - II
Link NOC:A Basic Course in Number Theory Lecture 50 - Continued fractions - basic results
Link NOC:A Basic Course in Number Theory Lecture 51 - Dirichlet's approximation theorem
Link NOC:A Basic Course in Number Theory Lecture 52 - Good rational approximations
Link NOC:A Basic Course in Number Theory Lecture 53 - Continued fraction expansion for real numbers - I
Link NOC:A Basic Course in Number Theory Lecture 54 - Continued fraction expansion for real numbers - II
Link NOC:A Basic Course in Number Theory Lecture 55 - Convergents give better approximations
Link NOC:A Basic Course in Number Theory Lecture 56 - Convergents are the best approximations - I
Link NOC:A Basic Course in Number Theory Lecture 57 - Convergents are the best approximations - II
Link NOC:A Basic Course in Number Theory Lecture 58 - Quadratic irrationals as continued fractions
Link NOC:A Basic Course in Number Theory Lecture 59 - Some basics of algebraic number theory
Link NOC:A Basic Course in Number Theory Lecture 60 - Units in quadratic fields: the imaginary case
Link NOC:A Basic Course in Number Theory Lecture 61 - Units in quadratic fields: the real case
Link NOC:A Basic Course in Number Theory Lecture 62 - Brahmagupta-Pell equations
Link NOC:A Basic Course in Number Theory Lecture 63 - Tying some loose ends
Link NOC:Introduction to Algebraic Topology - Part I Lecture 1 - Basic Problem in Topology
Link NOC:Introduction to Algebraic Topology - Part I Lecture 2 - Concept of homotopy
Link NOC:Introduction to Algebraic Topology - Part I Lecture 3 - Bird's eye-view of the course
Link NOC:Introduction to Algebraic Topology - Part I Lecture 4 - Path Homotopy
Link NOC:Introduction to Algebraic Topology - Part I Lecture 5 - Composition of paths
Link NOC:Introduction to Algebraic Topology - Part I Lecture 6 - Fundamental group π1
Link NOC:Introduction to Algebraic Topology - Part I Lecture 7 - Computation of Fund. Group of a circle
Link NOC:Introduction to Algebraic Topology - Part I Lecture 8 - Computation (Continued...)
Link NOC:Introduction to Algebraic Topology - Part I Lecture 9 - Computation concluded
Link NOC:Introduction to Algebraic Topology - Part I Lecture 10 - Van-Kampen's Theorem
Link NOC:Introduction to Algebraic Topology - Part I Lecture 11 - Function Spaces
Link NOC:Introduction to Algebraic Topology - Part I Lecture 12 - Quotient Maps
Link NOC:Introduction to Algebraic Topology - Part I Lecture 13 - Group Actions
Link NOC:Introduction to Algebraic Topology - Part I Lecture 14 - Examples of Group Actions
Link NOC:Introduction to Algebraic Topology - Part I Lecture 15 - Assorted Results on Quotient Spaces
Link NOC:Introduction to Algebraic Topology - Part I Lecture 16 - Quotient Constructions Typical to Alg. Top
Link NOC:Introduction to Algebraic Topology - Part I Lecture 17 - Quotient Constructions (Continued...)
Link NOC:Introduction to Algebraic Topology - Part I Lecture 18 - Relative Homotopy
Link NOC:Introduction to Algebraic Topology - Part I Lecture 19 - Construction of a typical SDR
Link NOC:Introduction to Algebraic Topology - Part I Lecture 20 - Generalized construction of SDRs
Link NOC:Introduction to Algebraic Topology - Part I Lecture 21 - A theoretical application
Link NOC:Introduction to Algebraic Topology - Part I Lecture 22 - The Harvest
Link NOC:Introduction to Algebraic Topology - Part I Lecture 23 - NDR pairs
Link NOC:Introduction to Algebraic Topology - Part I Lecture 24 - General Remarks
Link NOC:Introduction to Algebraic Topology - Part I Lecture 25 - Basics A ne Geometry
Link NOC:Introduction to Algebraic Topology - Part I Lecture 26 - Abstract Simplicial Complex
Link NOC:Introduction to Algebraic Topology - Part I Lecture 27 - Geometric Realization
Link NOC:Introduction to Algebraic Topology - Part I Lecture 28 - Topology on |K|
Link NOC:Introduction to Algebraic Topology - Part I Lecture 29 - Simplical maps
Link NOC:Introduction to Algebraic Topology - Part I Lecture 30 - Polyhedrons
Link NOC:Introduction to Algebraic Topology - Part I Lecture 31 - Point Set topological Aspects
Link NOC:Introduction to Algebraic Topology - Part I Lecture 32 - Barycentric Subdivision
Link NOC:Introduction to Algebraic Topology - Part I Lecture 33 - Finer Subdivisions
Link NOC:Introduction to Algebraic Topology - Part I Lecture 34 - Simplical Approximation
Link NOC:Introduction to Algebraic Topology - Part I Lecture 35 - Sperner Lemma
Link NOC:Introduction to Algebraic Topology - Part I Lecture 36 - Invariance of domain
Link NOC:Introduction to Algebraic Topology - Part I Lecture 37 - Proof of controled homotopy
Link NOC:Introduction to Algebraic Topology - Part I Lecture 38 - Links and Stars
Link NOC:Introduction to Algebraic Topology - Part I Lecture 39 - Homotopical Aspects of Simplicial Complexes
Link NOC:Introduction to Algebraic Topology - Part I Lecture 40 - Homotopical Aspects
Link NOC:Introduction to Algebraic Topology - Part I Lecture 41 - Covering Spaces and Fund. Groups
Link NOC:Introduction to Algebraic Topology - Part I Lecture 42 - Lifting Properties
Link NOC:Introduction to Algebraic Topology - Part I Lecture 43 - Homotopy Lifting
Link NOC:Introduction to Algebraic Topology - Part I Lecture 44 - Relation with the fund. Group
Link NOC:Introduction to Algebraic Topology - Part I Lecture 45 - Regular covering
Link NOC:Introduction to Algebraic Topology - Part I Lecture 46 - Lifting Problem
Link NOC:Introduction to Algebraic Topology - Part I Lecture 47 - Classification of Coverings
Link NOC:Introduction to Algebraic Topology - Part I Lecture 48 - Classification
Link NOC:Introduction to Algebraic Topology - Part I Lecture 49 - Existence of Simply connected coverings
Link NOC:Introduction to Algebraic Topology - Part I Lecture 50 - Construction of Simply connected covering
Link NOC:Introduction to Algebraic Topology - Part I Lecture 51 - Properties Shared by total space and base
Link NOC:Introduction to Algebraic Topology - Part I Lecture 52 - Examples
Link NOC:Introduction to Algebraic Topology - Part I Lecture 53 - G-coverings
Link NOC:Introduction to Algebraic Topology - Part I Lecture 54 - Pull-backs
Link NOC:Introduction to Algebraic Topology - Part I Lecture 55 - Classification of G-coverings
Link NOC:Introduction to Algebraic Topology - Part I Lecture 56 - Proof of classification
Link NOC:Introduction to Algebraic Topology - Part I Lecture 57 - Pushouts and Free products
Link NOC:Introduction to Algebraic Topology - Part I Lecture 58 - Existence of Free Products, pushouts
Link NOC:Introduction to Algebraic Topology - Part I Lecture 59 - Free Products and free groups
Link NOC:Introduction to Algebraic Topology - Part I Lecture 60 - Seifert-Van Kampen Theorems
Link NOC:Introduction to Algebraic Topology - Part I Lecture 61 - Applications
Link NOC:Introduction to Algebraic Topology - Part I Lecture 62 - Applications (Continued...)
Link NOC:Introduction to Algebraic Topology - Part II Lecture 1 - Introduction
Link NOC:Introduction to Algebraic Topology - Part II Lecture 2 - Attaching cells
Link NOC:Introduction to Algebraic Topology - Part II Lecture 3 - Subcomplexes and Examples
Link NOC:Introduction to Algebraic Topology - Part II Lecture 4 - More examples
Link NOC:Introduction to Algebraic Topology - Part II Lecture 5 - More Examples
Link NOC:Introduction to Algebraic Topology - Part II Lecture 6 - Topological Properties
Link NOC:Introduction to Algebraic Topology - Part II Lecture 7 - Coinduced Topology
Link NOC:Introduction to Algebraic Topology - Part II Lecture 8 - Compactly generated topology on Products
Link NOC:Introduction to Algebraic Topology - Part II Lecture 9 - Product of Cell complexes
Link NOC:Introduction to Algebraic Topology - Part II Lecture 10 - Product of Cell complexes (Continued...)
Link NOC:Introduction to Algebraic Topology - Part II Lecture 11 - Partition of Unity on CW-complexes
Link NOC:Introduction to Algebraic Topology - Part II Lecture 12 - Partition of Unity (Continued...)
Link NOC:Introduction to Algebraic Topology - Part II Lecture 13 - Homotopical Aspects
Link NOC:Introduction to Algebraic Topology - Part II Lecture 14 - Homotopical Aspects (Continued...)
Link NOC:Introduction to Algebraic Topology - Part II Lecture 15 - Cellular Maps
Link NOC:Introduction to Algebraic Topology - Part II Lecture 16 - Cellular Maps (Continued...)
Link NOC:Introduction to Algebraic Topology - Part II Lecture 17 - Homotopy exact sequence of a pair
Link NOC:Introduction to Algebraic Topology - Part II Lecture 18 - Homotopy exact sequence of a fibration
Link NOC:Introduction to Algebraic Topology - Part II Lecture 19 - Categories-Definitions and Examples
Link NOC:Introduction to Algebraic Topology - Part II Lecture 20 - More Examples
Link NOC:Introduction to Algebraic Topology - Part II Lecture 21 - Functors
Link NOC:Introduction to Algebraic Topology - Part II Lecture 22 - Equivalence of Functors (Continued...)
Link NOC:Introduction to Algebraic Topology - Part II Lecture 23 - Universal Objects
Link NOC:Introduction to Algebraic Topology - Part II Lecture 24 - Basic Homological Algebra
Link NOC:Introduction to Algebraic Topology - Part II Lecture 25 - Diagram-Chasing
Link NOC:Introduction to Algebraic Topology - Part II Lecture 26 - Homology of Chain Complexes
Link NOC:Introduction to Algebraic Topology - Part II Lecture 27 - Euler Characteristics
Link NOC:Introduction to Algebraic Topology - Part II Lecture 28 - Singular Homology Groups
Link NOC:Introduction to Algebraic Topology - Part II Lecture 29 - Basic Properties of Singular Homology
Link NOC:Introduction to Algebraic Topology - Part II Lecture 30 - Excision
Link NOC:Introduction to Algebraic Topology - Part II Lecture 31 - Examples of Excision-Mayer Vietoris
Link NOC:Introduction to Algebraic Topology - Part II Lecture 32 - Applications
Link NOC:Introduction to Algebraic Topology - Part II Lecture 33 - Applications (Continued...)
Link NOC:Introduction to Algebraic Topology - Part II Lecture 34 - The Singular Simplicial Homology
Link NOC:Introduction to Algebraic Topology - Part II Lecture 35 - Simplicial Homology
Link NOC:Introduction to Algebraic Topology - Part II Lecture 36 - Simplicial Homology (Continued...)
Link NOC:Introduction to Algebraic Topology - Part II Lecture 37 - CW-Homology and Cellular Singular Homology
Link NOC:Introduction to Algebraic Topology - Part II Lecture 38 - Construction of CW-chain complex
Link NOC:Introduction to Algebraic Topology - Part II Lecture 39 - CW structure and CW homology of Lens Spaces
Link NOC:Introduction to Algebraic Topology - Part II Lecture 40 - Assorted Topics
Link NOC:Introduction to Algebraic Topology - Part II Lecture 41 - Some Applications of Homology
Link NOC:Introduction to Algebraic Topology - Part II Lecture 42 - Applications of LFT
Link NOC:Introduction to Algebraic Topology - Part II Lecture 43 - Jordan-Brouwer
Link NOC:Introduction to Algebraic Topology - Part II Lecture 44 - Proof of Lemmas
Link NOC:Introduction to Algebraic Topology - Part II Lecture 45 - Relation between ?1 and H1
Link NOC:Introduction to Algebraic Topology - Part II Lecture 46 - All Postponed Proofs
Link NOC:Introduction to Algebraic Topology - Part II Lecture 47 - Proofs (Continued...)
Link NOC:Introduction to Algebraic Topology - Part II Lecture 48 - Definitions and Examples
Link NOC:Introduction to Algebraic Topology - Part II Lecture 49 - Paracompactness
Link NOC:Introduction to Algebraic Topology - Part II Lecture 50 - Manifolds with Boundary
Link NOC:Introduction to Algebraic Topology - Part II Lecture 51 - Embeddings and Homotopical Aspects
Link NOC:Introduction to Algebraic Topology - Part II Lecture 52 - Homotopical Aspects (Continued...)
Link NOC:Introduction to Algebraic Topology - Part II Lecture 53 - Classification of 1-manifolds
Link NOC:Introduction to Algebraic Topology - Part II Lecture 54 - Classification of 1-manifolds (Continued...)
Link NOC:Introduction to Algebraic Topology - Part II Lecture 55 - Triangulation of Manifolds
Link NOC:Introduction to Algebraic Topology - Part II Lecture 56 - Pseudo-Manifolds
Link NOC:Introduction to Algebraic Topology - Part II Lecture 57 - One result due to Poincaŕe and another due to Munkres
Link NOC:Introduction to Algebraic Topology - Part II Lecture 58 - Some General Remarks
Link NOC:Introduction to Algebraic Topology - Part II Lecture 59 - Classification of Compact Surface
Link NOC:Introduction to Algebraic Topology - Part II Lecture 60 - Final Reduction-Completion of the Proof
Link NOC:Introduction to Algebraic Topology - Part II Lecture 61 - Proof of Part B
Link NOC:Introduction to Algebraic Topology - Part II Lecture 62 - Orientability
Link NOC:Partial Differential Equations Lecture 1 - Partial Differential Equations - Basic concepts and Nomenclature
Link NOC:Partial Differential Equations Lecture 2 - First Order Partial Differential Equations- How they arise? Cauchy Problems, IVPs, IBVPs
Link NOC:Partial Differential Equations Lecture 3 - First order Partial Differential Equations - Geometry of Quasilinear equations
Link NOC:Partial Differential Equations Lecture 4 - FOPDE's - General Solutions to Linear and Semilinear equations
Link NOC:Partial Differential Equations Lecture 5 - First order Partial Differential Equations- Lagrange's method for Quasilinear equations
Link NOC:Partial Differential Equations Lecture 6 - Relation between Characteristic curves and Integral surfaces for Quasilinear equations
Link NOC:Partial Differential Equations Lecture 7 - Relation between Characteristic curves and Integral surfaces for Quasilinear equations
Link NOC:Partial Differential Equations Lecture 8 - FOPDE's - Method of characteristics for Quasilinear equations - 1
Link NOC:Partial Differential Equations Lecture 9 - First order Partial Differential Equations - Failure of transversality condition
Link NOC:Partial Differential Equations Lecture 10 - First order Partial Differential Equations - Tutorial of Quasilinear equations
Link NOC:Partial Differential Equations Lecture 11 - FOPDE's - General nonlinear equations 1 - Search for a characteristic direction
Link NOC:Partial Differential Equations Lecture 12 - FOPDE's - General nonlinear equations 2 - Characteristic direction and characteristic strip
Link NOC:Partial Differential Equations Lecture 13 - FOPDE's - General nonlinear equations 3 - Finding an initial strip
Link NOC:Partial Differential Equations Lecture 14 - FOPDE's - General nonlinear equations 4 - Local existence and uniqueness theorem
Link NOC:Partial Differential Equations Lecture 15 - First order Partial Differential Equations - Tutorial on General nonlinear equations
Link NOC:Partial Differential Equations Lecture 16 - First order Partial Differential Equations - Initial value problems for Burgers equation
Link NOC:Partial Differential Equations Lecture 17 - FOPDE's - Conservation laws with a view towards global solutions to Burgers equation
Link NOC:Partial Differential Equations Lecture 18 - Second Order Partial Differential Equations - Special Curves associated to a PDE
Link NOC:Partial Differential Equations Lecture 19 - Second Order Partial Differential Equations - Curves of discontinuity
Link NOC:Partial Differential Equations Lecture 20 - Second Order Partial Differential Equations - Classification
Link NOC:Partial Differential Equations Lecture 21 - SOPDE's - Canonical form for an equation of Hyperbolic type
Link NOC:Partial Differential Equations Lecture 22 - SOPDE's - Canonical form for an equation of Parabolic type
Link NOC:Partial Differential Equations Lecture 23 - SOPDE's - Canonical form for an equation of Elliptic type
Link NOC:Partial Differential Equations Lecture 24 - Second Order Partial Differential Equations - Characteristic Surfaces
Link NOC:Partial Differential Equations Lecture 25 - SOPDE's - Canonical forms for constant coefficient PDEs
Link NOC:Partial Differential Equations Lecture 26 - Wave Equation - A mathematical model for vibrating strings
Link NOC:Partial Differential Equations Lecture 27 - Wave Equation in one space dimension - d'Alembert formula
Link NOC:Partial Differential Equations Lecture 28 - Tutorial on One dimensional wave equation
Link NOC:Partial Differential Equations Lecture 29 - Wave Equation in d space dimensions - Equivalent Cauchy problems via Spherical means
Link NOC:Partial Differential Equations Lecture 30 - Cauchy problem for Wave Equation in 3 space dimensions - Poisson-Kirchhoff formulae
Link NOC:Partial Differential Equations Lecture 31 - Cauchy problem for Wave Equation in 2 space dimensions - Hadamard's method of descent
Link NOC:Partial Differential Equations Lecture 32 - Nonhomogeneous Wave Equation - Duhamel principle
Link NOC:Partial Differential Equations Lecture 33 - Wellposedness of Cauchy problem for Wave Equation
Link NOC:Partial Differential Equations Lecture 34 - Wave Equation on an interval in? - Solution to an IBVP from first principles
Link NOC:Partial Differential Equations Lecture 35 - Tutorial on IBVPs for wave equation
Link NOC:Partial Differential Equations Lecture 36 - IBVP for Wave Equation - Separation of Variables Method
Link NOC:Partial Differential Equations Lecture 37 - Tutorial on Separation of variables method for wave equation
Link NOC:Partial Differential Equations Lecture 38 - Qualitative analysis of Wave equation - Parallelogram identity
Link NOC:Partial Differential Equations Lecture 39 - Qualitative analysis of Wave equation - Domain of dependence, domain of influence
Link NOC:Partial Differential Equations Lecture 40 - Qualitative analysis of Wave equation - Causality Principle, Finite speed of propagation
Link NOC:Partial Differential Equations Lecture 41 - Qualitative analysis of Wave equation - Uniqueness by Energy method
Link NOC:Partial Differential Equations Lecture 42 - Qualitative analysis of Wave equation - Huygens Principle
Link NOC:Partial Differential Equations Lecture 43 - Qualitative analysis of Wave equation - Generalized solutions to Wave equation
Link NOC:Partial Differential Equations Lecture 44 - Qualitative analysis of Wave equation - Propagation of waves
Link NOC:Partial Differential Equations Lecture 45 - Laplace equation - Associated Boundary value problems
Link NOC:Partial Differential Equations Lecture 46 - Laplace equation - Fundamental solution
Link NOC:Partial Differential Equations Lecture 47 - Dirichlet BVP for Laplace equation - Green's function and Poisson's formula
Link NOC:Partial Differential Equations Lecture 48 - Laplace equation - Weak maximum principle and its applications
Link NOC:Partial Differential Equations Lecture 49 - Laplace equation - Dirichlet BVP on a disk in R2 for Laplace equations
Link NOC:Partial Differential Equations Lecture 50 - Tutorial 1 on Laplace equation
Link NOC:Partial Differential Equations Lecture 51 - Laplace equation - Mean value property
Link NOC:Partial Differential Equations Lecture 52 - Laplace equation - More qualitative properties
Link NOC:Partial Differential Equations Lecture 53 - Laplace equation - Strong Maximum Principle and Dirichlet Principle
Link NOC:Partial Differential Equations Lecture 54 - Tutorial 2 on Laplace equation
Link NOC:Partial Differential Equations Lecture 55 - Cauchy Problem for Heat Equation - 1
Link NOC:Partial Differential Equations Lecture 56 - Cauchy Problem for Heat Equation - 2
Link NOC:Partial Differential Equations Lecture 57 - IBVP for Heat equation Subtitle: Method of Separation of Variables
Link NOC:Partial Differential Equations Lecture 58 - Maximum principle for heat equation
Link NOC:Partial Differential Equations Lecture 59 - Tutorial on heat equation
Link NOC:Partial Differential Equations Lecture 60 - Heat equation Subheading : Infinite speed of propagation, Energy, Backward Problem
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 1 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 2 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 3 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 4 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 5 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 6 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 7 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 8 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 9 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 10 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 11 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 12 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 13 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 14 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 15 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 16 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 17 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 18 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 19 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 20 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 21 - Introduction
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 22 - Creating New Spaces
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 23 - Creating New Spaces
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 24 - Creating New Spaces
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 25 - Creating New Spaces
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 26 - Creating New Spaces
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 27 - Creating New Spaces
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 28 - Creating New Spaces
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 29 - Creating New Spaces
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 30 - Creating New Spaces
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 31 - Creating New Spaces
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 32
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 33
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 34
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 35
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 36
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 37
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 38 - Smallness Properties of Topological Spaces
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 39 - Smallness Properties of Topological Spaces
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 40 - Smallness Properties of Topological Spaces
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 41 - Smallness Properties of Topological Spaces
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 42 - Smallness Properties of Topological Spaces
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 43 - Smallness Properties of Topological Spaces
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 44 - Smallness Properties of Topological Spaces
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 45 - Smallness Properties of Topological Spaces
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 46 - Smallness Properties of Topological Spaces
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 47 - Largeness properties
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 48 - Largeness properties
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 49 - Largeness properties
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 50 - Largeness properties
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 51 - Largeness properties
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 52 - Largeness properties
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 53 - Largeness properties
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 54 - Largeness properties
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 55 - Largeness properties
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 56
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 57
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 58
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 59
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 60
Link NOC:An Introduction to Point-Set-Topology - Part I Lecture 61
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 1 - Welcome Speech
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 2 - Preliminaries from Banach spaces
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 3 - Differentiation on Banach spaces
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 4 - Preliminaries from one-variable real analysis
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 5 - Implicit and Inverse function theorems
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 6 - Compact Hausdorff spaces
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 7 - Local Compactness
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 8 - Local Compactness (Continued...)
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 9 - The retraction functor k(X)
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 10 - Compactly generated spaces
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 11 - Paracompactness
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 12 - Partition of Unity
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 13 - Paracompactness (Continued...)
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 14 - Paracompactness (Continued...)
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 15 - Various Notions of Compactness
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 16 - Total Boundedness
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 17 - Arzel`a- Ascoli Theorem
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 18 - Generalities on Compactification
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 19 - Alexandroffâ's compactifiction
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 20 - Proper maps
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 21 - Stone-Cech compactification
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 22 - Stone-Weierstrassâ's Theorems
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 23 - Real Stone-Weierstrass Theorem
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 24 - Complex and extended Stone-Weierstrass theorem
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 25 - (Missing)
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 26 - Urysohnâ's Metrization theorem
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 27 - Nagata Smyrnov Metrization theorem
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 28 - Nets
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 29 - Cofinal families subnets
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 30 - Basics of Filters
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 31 - Convergence Properties of Filters
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 32 - Ultrafilters and Tychonoffâ's theorem
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 33 - Ultraclosed filters
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 34 - Wallman compactification
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 35 - Wallman compactification (Continued...)
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 36 - Global Separation of Sets
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 37 - More examples
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 38 - Knaster-Kuratowski Example
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 39 - Separation of Sets (Continued...)
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 40 - Definition of dimension and examples
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 41 - Dimensions of subspaces and Unions
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 42 - Sum theorem for higher dimensions
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 43 - Analytic Proof of Brouwerâ's Fixed Point Theorem
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 44 - Local Separation to Global Separation
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 45 - Partially Ordered sets
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 46 - Principle of Transfinite Induction
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 47 - Order topology
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 48 - Ordinals
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 49 - Ordinal Topology (Continued...)
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 50 - The Long Line
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 51 - Motivation and definition
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 52 - The Exponential Correspondence
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 53 - An Application to Quotient Maps
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 54 - Groups of Homeomoprhisms
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 55 - Definition and Exampels of Manifolds
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 56 - Manifolds with Boundary
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 57 - Homogeneity
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 58 - Homogeneity (Continued...)
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 59 - Classification of 1-dim. manifolds
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 60 - Classification of 1-dim. Manifolds (Continued...)
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 61 - Surfaces
Link NOC:An Introduction to Point-Set-Topology - Part II Lecture 62 - Connected Sum
Link NOC:Fourier Analysis and its Applications Lecture 1 - Genesis and a little history
Link NOC:Fourier Analysis and its Applications Lecture 2 - Basic convergence theorem
Link NOC:Fourier Analysis and its Applications Lecture 3 - Riemann Lebesgue Lemma
Link NOC:Fourier Analysis and its Applications Lecture 4 - The ubiquitous Gaussian
Link NOC:Fourier Analysis and its Applications Lecture 5 - Jacobi theta function identity
Link NOC:Fourier Analysis and its Applications Lecture 6 - The Riemann zeta function
Link NOC:Fourier Analysis and its Applications Lecture 7 - Bessel's functions of the first kind
Link NOC:Fourier Analysis and its Applications Lecture 8 - Least square approximation
Link NOC:Fourier Analysis and its Applications Lecture 9 - Parseval formula. Isoperimetric theorem
Link NOC:Fourier Analysis and its Applications Lecture 10 - Dirichlet problem for a disc
Link NOC:Fourier Analysis and its Applications Lecture 11 - The Poisson kernel
Link NOC:Fourier Analysis and its Applications Lecture 12 - Cesaro summability and Fejer's theorem
Link NOC:Fourier Analysis and its Applications Lecture 13 - Fejer's theorem (Continued...)
Link NOC:Fourier Analysis and its Applications Lecture 14 - Kronecker's theorem
Link NOC:Fourier Analysis and its Applications Lecture 15 - Weyl's equidistribution theorem
Link NOC:Fourier Analysis and its Applications Lecture 16 - Borel's theorem and beyond
Link NOC:Fourier Analysis and its Applications Lecture 17 - Fourier transform and Schwartz space
Link NOC:Fourier Analysis and its Applications Lecture 18 - Hermite's differential equation
Link NOC:Fourier Analysis and its Applications Lecture 19 - Fourier inversion theorem Riemann Lebesgue lemma
Link NOC:Fourier Analysis and its Applications Lecture 20 - Plancherel's Theorem
Link NOC:Fourier Analysis and its Applications Lecture 21 - Heat equation. The heat kernel
Link NOC:Fourier Analysis and its Applications Lecture 22 - The Airy's function
Link NOC:Fourier Analysis and its Applications Lecture 23 - Exercises on Fourier Transform
Link NOC:Fourier Analysis and its Applications Lecture 24 - Principle of equipartitioning of energy
Link NOC:Fourier Analysis and its Applications Lecture 25 - A formula of Srinivasa Ramanujan
Link NOC:Fourier Analysis and its Applications Lecture 26 - Sturm Liouville problems. Orthogonal systems
Link NOC:Fourier Analysis and its Applications Lecture 27 - Vibrations of a circular membrane
Link NOC:Fourier Analysis and its Applications Lecture 28 - Fourier Bessel Series
Link NOC:Fourier Analysis and its Applications Lecture 29 - Properties of Legendre Polynomials
Link NOC:Fourier Analysis and its Applications Lecture 30 - Properties of Legendre polynomials (Continued...)
Link NOC:Fourier Analysis and its Applications Lecture 31 - Legendre polynomials - interlacing of zeros
Link NOC:Fourier Analysis and its Applications Lecture 32 - Laplace's integrals for Legendre polynomials
Link NOC:Fourier Analysis and its Applications Lecture 33 - Regular Sturm-Liouville problems
Link NOC:Fourier Analysis and its Applications Lecture 34 - Variational properties of eigen-values
Link NOC:Fourier Analysis and its Applications Lecture 35 - The Dirichlet principle
Link NOC:Fourier Analysis and its Applications Lecture 36 - Regular Sturm-Liouville problems - Existence of eigen-values
Link NOC:Fourier Analysis and its Applications Lecture 37 - The Bergman space
Link NOC:Fourier Analysis and its Applications Lecture 38 - The Banach Steinhaus' Theorem
Link NOC:Fourier Analysis and its Applications Lecture 39 - Hilbert space basics
Link NOC:Fourier Analysis and its Applications Lecture 40 - Completeness of Hermite functions
Link NOC:Fourier Analysis and its Applications Lecture 41 - Hermite, Laugerre and Tchebycheff's polynomials
Link NOC:Fourier Analysis and its Applications Lecture 42 - Orthonormal bases in Hilbert spaces
Link NOC:Fourier Analysis and its Applications Lecture 43 - Non-separable Hilbert-spaces. Almost periodic functions
Link NOC:Fourier Analysis and its Applications Lecture 44 - Hilbert-Schmidt operators. Green's functions
Link NOC:Fourier Analysis and its Applications Lecture 45 - Spectrum of a bounded linear operator
Link NOC:Fourier Analysis and its Applications Lecture 46 - Weak (sequential) compactness of the closed unit ball
Link NOC:Fourier Analysis and its Applications Lecture 47 - Compact self-adjoint operators. Existence of eigen values
Link NOC:Fourier Analysis and its Applications Lecture 48 - Compact self-adjoint operators. Existence of eigen values (Continued...)
Link NOC:Fourier Analysis and its Applications Lecture 49 - Celestial Mechanics
Link NOC:Fourier Analysis and its Applications Lecture 50 - Inverting the Kepler equation using Fourier series
Link NOC:Fourier Analysis and its Applications Lecture 51 - Odds and Ends
Link NOC:Fourier Analysis and its Applications Lecture 52 - Dirichlet's Theorem on Fourier Series
Link NOC:Fourier Analysis and its Applications Lecture 53 - Dirichlet's Theorem on Fourier Series (Continued...)
Link NOC:Fourier Analysis and its Applications Lecture 54 - Topology on the Schwartz space
Link NOC:Fourier Analysis and its Applications Lecture 55 - Examples of tempered distributions
Link NOC:Fourier Analysis and its Applications Lecture 56 - Operations on distributions
Link NOC:Fourier Analysis and its Applications Lecture 57 - Fourier Transform of tempered distribution
Link NOC:Fourier Analysis and its Applications Lecture 58 - Support of a Distribution. Distributions with point support
Link NOC:Fourier Analysis and its Applications Lecture 59 - Distributional solutions of ODEs. Continuity of the Fourier transform and differentiation
Link NOC:Fourier Analysis and its Applications Lecture 60 - The Poisson summation formula
Link NOC:Numerical Analysis (2023) Lecture 1 - Introduction
Link NOC:Numerical Analysis (2023) Lecture 2 - Mathematical Preliminaries: Taylor Approximation
Link NOC:Numerical Analysis (2023) Lecture 3 - Mathematical Preliminaries: Order of Convergence
Link NOC:Numerical Analysis (2023) Lecture 4 - Arithmetic Error: Floating-point Approximation
Link NOC:Numerical Analysis (2023) Lecture 5 - Arithmetic Error: Significant Digits
Link NOC:Numerical Analysis (2023) Lecture 6 - Arithmetic Error: Condition Number and Stable Computation
Link NOC:Numerical Analysis (2023) Lecture 7 - Tutorial Session-1: Problem Solving
Link NOC:Numerical Analysis (2023) Lecture 8 - Python Coding: Introduction
Link NOC:Numerical Analysis (2023) Lecture 9 - Linear Systems: Gaussian Elimination Method
Link NOC:Numerical Analysis (2023) Lecture 10 - Linear Systems: LU-Factorization (Doolittle and Crout)
Link NOC:Numerical Analysis (2023) Lecture 11 - Linear Systems: LU-Factorization (Cholesky)
Link NOC:Numerical Analysis (2023) Lecture 12 - Linear Systems: Operation Count for Direct Methods
Link NOC:Numerical Analysis (2023) Lecture 13 - Tutorial Session-2: Python Coding for Naive Gaussian Elimination Method
Link NOC:Numerical Analysis (2023) Lecture 14 - Tutorial Session-3: Python Coding for Thomas Algorithm
Link NOC:Numerical Analysis (2023) Lecture 15 - Matrix Norms: Subordinate Matrix Norms
Link NOC:Numerical Analysis (2023) Lecture 16 - Matrix Norms: Condition Number of a Matrix
Link NOC:Numerical Analysis (2023) Lecture 17 - Iterative Methods: Jacobi Method
Link NOC:Numerical Analysis (2023) Lecture 18 - Iterative Methods: Convergence of Jacobi Method
Link NOC:Numerical Analysis (2023) Lecture 19 - Iterative Methods: Gauss-Seidel Method
Link NOC:Numerical Analysis (2023) Lecture 20 - Iterative Methods: Convergence Analysis of Iterative Methods
Link NOC:Numerical Analysis (2023) Lecture 21 - Iterative Methods: Successive Over Relaxation Method
Link NOC:Numerical Analysis (2023) Lecture 22 - Tutorial Session-4: Python implementation of Jacobi Method
Link NOC:Numerical Analysis (2023) Lecture 23 - Eigenvalues and Eigenvectors: Power Method (Construction)
Link NOC:Numerical Analysis (2023) Lecture 24 - Eigenvalues and Eigenvectors: Power Method (Convergence Theorem)
Link NOC:Numerical Analysis (2023) Lecture 25 - Eigenvalues and Eigenvectors: Gerschgorin's Theorem and Applications
Link NOC:Numerical Analysis (2023) Lecture 26 - Eigenvalues and Eigenvectors: Power Method (Inverse and Shifted Methods)
Link NOC:Numerical Analysis (2023) Lecture 27 - Nonlinear Equations: Overview
Link NOC:Numerical Analysis (2023) Lecture 28 - Nonlinear Equations: Bisection Method
Link NOC:Numerical Analysis (2023) Lecture 29 - Tutorial Session-5: Implementation of Bisection Method
Link NOC:Numerical Analysis (2023) Lecture 30 - Nonlinear Equations: Regula-falsi and Secant Methods
Link NOC:Numerical Analysis (2023) Lecture 31 - Nonlinear Equations: Convergence Theorem of Secant Method
Link NOC:Numerical Analysis (2023) Lecture 32 - Nonlinear Equations: Newton-Raphson's method
Link NOC:Numerical Analysis (2023) Lecture 33 - Nonlinear Equations: Newton-Raphson's method (Convergence Theorem)
Link NOC:Numerical Analysis (2023) Lecture 34 - Nonlinear Equations: Fixed-point Iteration Methods
Link NOC:Numerical Analysis (2023) Lecture 35 - Nonlinear Equations: Fixed-point Iteration Methods (Convergence) and Modified Newton's Method
Link NOC:Numerical Analysis (2023) Lecture 36 - Nonlinear Equations: System of Nonlinear Equations
Link NOC:Numerical Analysis (2023) Lecture 37 - Nonlinear Equations: Implementation of Newton-Raphson's Method as Python Code
Link NOC:Numerical Analysis (2023) Lecture 38 - Polynomial Interpolation: Existence and Uniqueness
Link NOC:Numerical Analysis (2023) Lecture 39 - Polynomial Interpolation: Lagrange and Newton Forms
Link NOC:Numerical Analysis (2023) Lecture 40 - Polynomial Interpolation: Newton’s Divided Difference Formula
Link NOC:Numerical Analysis (2023) Lecture 41 - Polynomial Interpolation: Mathematical Error in Interpolating Polynomial
Link NOC:Numerical Analysis (2023) Lecture 42 - Polynomial Interpolation: Arithmetic Error in Interpolating Polynomials
Link NOC:Numerical Analysis (2023) Lecture 43 - Polynomial Interpolation: Implementation of Lagrange Form as Python Code
Link NOC:Numerical Analysis (2023) Lecture 44 - Polynomial Interpolation: Runge Phenomenon and Piecewise Polynomial Interpolation
Link NOC:Numerical Analysis (2023) Lecture 45 - Polynomial Interpolation: Hermite Interpolation
Link NOC:Numerical Analysis (2023) Lecture 46 - Polynomial Interpolation: Cubic Spline Interpolation
Link NOC:Numerical Analysis (2023) Lecture 47 - Polynomial Interpolation: Tutorial Session
Link NOC:Numerical Analysis (2023) Lecture 48 - Numerical Integration: Rectangle Rule
Link NOC:Numerical Analysis (2023) Lecture 49 - Numerical Integration: Trapezoidal Rule
Link NOC:Numerical Analysis (2023) Lecture 50 - Numerical Integration: Simpson's Rule
Link NOC:Numerical Analysis (2023) Lecture 51 - Numerical Integration: Gaussian Quadrature Rule
Link NOC:Numerical Analysis (2023) Lecture 52 - Numerical Integration: Tutorial Session
Link NOC:Numerical Analysis (2023) Lecture 53 - Numerical Differentiation: Primitive Finite Difference Formulae
Link NOC:Numerical Analysis (2023) Lecture 54 - Numerical Differentiation: Method of Undetermined Coefficients and Arithmetic Error
Link NOC:Numerical Analysis (2023) Lecture 55 - Numerical ODEs: Euler Methods
Link NOC:Numerical Analysis (2023) Lecture 56 - Numerical ODEs: Euler Methods (Error Analysis)
Link NOC:Numerical Analysis (2023) Lecture 57 - Numerical ODEs: Runge-Kutta Methods
Link NOC:Numerical Analysis (2023) Lecture 58 - Numerical ODEs: Modified Euler's Methods
Link NOC:Numerical Analysis (2023) Lecture 59 - Numerical ODEs: Multistep Methods
Link NOC:Numerical Analysis (2023) Lecture 60 - Numerical ODEs: Stability Analysis
Link NOC:Numerical Analysis (2023) Lecture 61 - Numerical ODEs: Two-point Boundary Value Problems
Link NOC:Point Set Topology Lecture 1 - Definition and examples of topological spaces
Link NOC:Point Set Topology Lecture 2 - Examples of topological spaces
Link NOC:Point Set Topology Lecture 3 - Basis for topology
Link NOC:Point Set Topology Lecture 4 - Subspace Topology
Link NOC:Point Set Topology Lecture 5 - Product Topology
Link NOC:Point Set Topology Lecture 6 - Product Topology (Continued...)
Link NOC:Point Set Topology Lecture 7 - Continuous maps
Link NOC:Point Set Topology Lecture 8 - Continuity of addition and multiplication maps
Link NOC:Point Set Topology Lecture 9 - Continuous maps to a product
Link NOC:Point Set Topology Lecture 10 - Projection from a point
Link NOC:Point Set Topology Lecture 11 - Closed subsets
Link NOC:Point Set Topology Lecture 12 - Closure
Link NOC:Point Set Topology Lecture 13 - Joining continuous maps
Link NOC:Point Set Topology Lecture 14 - Metric spaces
Link NOC:Point Set Topology Lecture 15 - Connectedness
Link NOC:Point Set Topology Lecture 16 - Connectedness (Continued...)
Link NOC:Point Set Topology Lecture 17 - Connectedness (Continued...)
Link NOC:Point Set Topology Lecture 18 - Connected components
Link NOC:Point Set Topology Lecture 19 - Path connectedness
Link NOC:Point Set Topology Lecture 20 - Path connectedness (Continued...)
Link NOC:Point Set Topology Lecture 21 - Connectedness of GL(n,R)^+ (math symbol)
Link NOC:Point Set Topology Lecture 22 - Connectedness of GL(n,C), SL(n,C), SL(n,R)
Link NOC:Point Set Topology Lecture 23 - Compactness
Link NOC:Point Set Topology Lecture 24 - Compactness (Continued...)
Link NOC:Point Set Topology Lecture 25 - Compactness (Continued...)
Link NOC:Point Set Topology Lecture 26 - Compactness (Continued...)
Link NOC:Point Set Topology Lecture 27 - SO(n) is connected
Link NOC:Point Set Topology Lecture 28 - Compact metric spaces
Link NOC:Point Set Topology Lecture 29 - Lebesgue Number Lemma
Link NOC:Point Set Topology Lecture 30 - Locally compact spaces
Link NOC:Point Set Topology Lecture 31 - One point compactification
Link NOC:Point Set Topology Lecture 32 - One point compactification (Continued...)
Link NOC:Point Set Topology Lecture 33 - Uniqueness of one point compatification
Link NOC:Point Set Topology Lecture 34 - Part 1 : Quotient topology
Link NOC:Point Set Topology Lecture 35 - Part 2 : Quotient topology on G/H
Link NOC:Point Set Topology Lecture 36 - Part 3 : Grassmannian
Link NOC:Point Set Topology Lecture 37 - Normal topological spaces
Link NOC:Point Set Topology Lecture 38 - Urysohn's Lemma
Link NOC:Point Set Topology Lecture 39 - Tietze Extension Theorem
Link NOC:Point Set Topology Lecture 40 - Regular and Second Countable spaces
Link NOC:Point Set Topology Lecture 41 - Product Topology on mathbb{R}^{mathbb{N}}
Link NOC:Point Set Topology Lecture 42 - Urysohn's Metrization Theorem
Link Stochastic Processes Lecture 1 - Introduction to Stochastic Processes
Link Stochastic Processes Lecture 2 - Introduction to Stochastic Processes (Continued.)
Link Stochastic Processes Lecture 3 - Problems in Random Variables and Distributions
Link Stochastic Processes Lecture 4 - Problems in Sequences of Random Variables
Link Stochastic Processes Lecture 5 - Definition, Classification and Examples
Link Stochastic Processes Lecture 6 - Simple Stochastic Processes
Link Stochastic Processes Lecture 7 - Stationary Processes
Link Stochastic Processes Lecture 8 - Autoregressive Processes
Link Stochastic Processes Lecture 9 - Introduction, Definition and Transition Probability Matrix
Link Stochastic Processes Lecture 10 - Chapman-Kolmogrov Equations
Link Stochastic Processes Lecture 11 - Classification of States and Limiting Distributions
Link Stochastic Processes Lecture 12 - Limiting and Stationary Distributions
Link Stochastic Processes Lecture 13 - Limiting Distributions, Ergodicity and Stationary Distributions
Link Stochastic Processes Lecture 14 - Time Reversible Markov Chain, Application of Irreducible Markov Chain in Queueing Models
Link Stochastic Processes Lecture 15 - Reducible Markov Chains
Link Stochastic Processes Lecture 16 - Definition, Kolmogrov Differential Equations and Infinitesimal Generator Matrix
Link Stochastic Processes Lecture 17 - Limiting and Stationary Distributions, Birth Death Processes
Link Stochastic Processes Lecture 18 - Poisson Processes
Link Stochastic Processes Lecture 19 - M/M/1 Queueing Model
Link Stochastic Processes Lecture 20 - Simple Markovian Queueing Models
Link Stochastic Processes Lecture 21 - Queueing Networks
Link Stochastic Processes Lecture 22 - Communication Systems
Link Stochastic Processes Lecture 23 - Stochastic Petri Nets
Link Stochastic Processes Lecture 24 - Conditional Expectation and Filtration
Link Stochastic Processes Lecture 25 - Definition and Simple Examples
Link Stochastic Processes Lecture 26 - Definition and Properties
Link Stochastic Processes Lecture 27 - Processes Derived from Brownian Motion
Link Stochastic Processes Lecture 28 - Stochastic Differential Equations
Link Stochastic Processes Lecture 29 - Ito Integrals
Link Stochastic Processes Lecture 30 - Ito Formula and its Variants
Link Stochastic Processes Lecture 31 - Some Important SDE`s and Their Solutions
Link Stochastic Processes Lecture 32 - Renewal Function and Renewal Equation
Link Stochastic Processes Lecture 33 - Generalized Renewal Processes and Renewal Limit Theorems
Link Stochastic Processes Lecture 34 - Markov Renewal and Markov Regenerative Processes
Link Stochastic Processes Lecture 35 - Non Markovian Queues
Link Stochastic Processes Lecture 36 - Non Markovian Queues Cont,,
Link Stochastic Processes Lecture 37 - Application of Markov Regenerative Processes
Link Stochastic Processes Lecture 38 - Galton-Watson Process
Link Stochastic Processes Lecture 39 - Markovian Branching Process
Link NOC:Stochastic Processes - 1 Lecture 1 - Introduction and motivation for studying stochastic processes
Link NOC:Stochastic Processes - 1 Lecture 2 - Probability space and conditional probability
Link NOC:Stochastic Processes - 1 Lecture 3 - Random variable and cumulative distributive function
Link NOC:Stochastic Processes - 1 Lecture 4 - Discrete Uniform Distribution, Binomial Distribution, Geometric Distribution, Continuous Uniform Distribution, Exponential Distribution, Normal Distribution and Poisson Distribution
Link NOC:Stochastic Processes - 1 Lecture 5 - Joint Distribution of Random Variables
Link NOC:Stochastic Processes - 1 Lecture 6 - Independent Random Variables, Covariance and Correlation Coefficient and Conditional Distribution
Link NOC:Stochastic Processes - 1 Lecture 7 - Conditional Expectation and Covariance Matrix
Link NOC:Stochastic Processes - 1 Lecture 8 - Generating Functions, Law of Large Numbers and Central Limit Theorem
Link NOC:Stochastic Processes - 1 Lecture 9 - Problems in Random variables and Distributions
Link NOC:Stochastic Processes - 1 Lecture 10 - Problems in Random variables and Distributions (Continued...)
Link NOC:Stochastic Processes - 1 Lecture 11 - Problems in Random variables and Distributions (Continued...)
Link NOC:Stochastic Processes - 1 Lecture 12 - Problems in Random variables and Distributions (Continued...)
Link NOC:Stochastic Processes - 1 Lecture 13 - Problems in Sequences of Random Variables
Link NOC:Stochastic Processes - 1 Lecture 14 - Problems in Sequences of Random Variables (Continued...)
Link NOC:Stochastic Processes - 1 Lecture 15 - Problems in Sequences of Random Variables (Continued...)
Link NOC:Stochastic Processes - 1 Lecture 16 - Problems in Sequences of Random Variables (Continued...)
Link NOC:Stochastic Processes - 1 Lecture 17 - Definition of Stochastic Processes, Parameter and State Spaces
Link NOC:Stochastic Processes - 1 Lecture 18 - Classification of Stochastic Processes
Link NOC:Stochastic Processes - 1 Lecture 19 - Examples of Classification of Stochastic Processes
Link NOC:Stochastic Processes - 1 Lecture 20 - Examples of Classification of Stochastic Processes (Continued...)
Link NOC:Stochastic Processes - 1 Lecture 21 - Bernoulli Process
Link NOC:Stochastic Processes - 1 Lecture 22 - Poisson Process
Link NOC:Stochastic Processes - 1 Lecture 23 - Poisson Process (Continued...)
Link NOC:Stochastic Processes - 1 Lecture 24 - Simple Random Walk and Population Processes
Link NOC:Stochastic Processes - 1 Lecture 25 - Introduction to Discrete time Markov Chain
Link NOC:Stochastic Processes - 1 Lecture 26 - Introduction to Discrete time Markov Chain (Continued...)
Link NOC:Stochastic Processes - 1 Lecture 27 - Examples of Discrete time Markov Chain
Link NOC:Stochastic Processes - 1 Lecture 28 - Examples of Discrete time Markov Chain (Continued...)
Link NOC:Stochastic Processes - 1 Lecture 29 - Introduction to Chapman-Kolmogorov equations
Link NOC:Stochastic Processes - 1 Lecture 30 - State Transition Diagram and Examples
Link NOC:Stochastic Processes - 1 Lecture 31 - Examples
Link NOC:Stochastic Processes - 1 Lecture 32 - Introduction to Classification of States and Periodicity
Link NOC:Stochastic Processes - 1 Lecture 33 - Closed set of States and Irreducible Markov Chain
Link NOC:Stochastic Processes - 1 Lecture 34 - First Passage time and Mean Recurrence Time
Link NOC:Stochastic Processes - 1 Lecture 35 - Recurrent State and Transient State
Link NOC:Stochastic Processes - 1 Lecture 36 - Introduction and example of Classification of states
Link NOC:Stochastic Processes - 1 Lecture 37 - Example of Classification of states (Continued...)
Link NOC:Stochastic Processes - 1 Lecture 38 - Example of Classification of states (Continued...)
Link NOC:Stochastic Processes - 1 Lecture 39 - Example of Classification of states (Continued...)
Link NOC:Stochastic Processes - 1 Lecture 40 - Introduction and Limiting Distribution
Link NOC:Stochastic Processes - 1 Lecture 41 - Example of Limiting Distribution and Ergodicity
Link NOC:Stochastic Processes - 1 Lecture 42 - Stationary Distribution and Examples
Link NOC:Stochastic Processes - 1 Lecture 43 - Examples of Stationary Distributions
Link NOC:Stochastic Processes - 1 Lecture 44 - Time Reversible Markov Chain and Examples
Link NOC:Stochastic Processes - 1 Lecture 45 - Definition of Reducible Markov Chains and Types of Reducible Markov Chains
Link NOC:Stochastic Processes - 1 Lecture 46 - Stationary Distributions and Types of Reducible Markov chains
Link NOC:Stochastic Processes - 1 Lecture 47 - Type of Reducible Markov Chains (Continued...)
Link NOC:Stochastic Processes - 1 Lecture 48 - Gambler's Ruin Problem
Link NOC:Stochastic Processes - 1 Lecture 49 - Introduction to Continuous time Markov Chain
Link NOC:Stochastic Processes - 1 Lecture 50 - Waiting time Distribution
Link NOC:Stochastic Processes - 1 Lecture 51 - Chapman-Kolmogorov Equation
Link NOC:Stochastic Processes - 1 Lecture 52 - Infinitesimal Generator Matrix
Link NOC:Stochastic Processes - 1 Lecture 53 - Introduction and Example Of Continuous time Markov Chain
Link NOC:Stochastic Processes - 1 Lecture 54 - Limiting and Stationary Distributions
Link NOC:Stochastic Processes - 1 Lecture 55 - Time reversible CTMC and Birth Death Process
Link NOC:Stochastic Processes - 1 Lecture 56 - Steady State Distributions, Pure Birth Process and Pure Death Process
Link NOC:Stochastic Processes - 1 Lecture 57 - Introduction to Poisson Process
Link NOC:Stochastic Processes - 1 Lecture 58 - Definition of Poisson Process
Link NOC:Stochastic Processes - 1 Lecture 59 - Superposition and Deposition of Poisson Process
Link NOC:Stochastic Processes - 1 Lecture 60 - Compound Poisson Process and Examples
Link NOC:Stochastic Processes - 1 Lecture 61 - Introduction to Queueing Systems and Kendall Notations
Link NOC:Stochastic Processes - 1 Lecture 62 - M/M/1 Queueing Model
Link NOC:Stochastic Processes - 1 Lecture 63 - Little's Law, Distribution of Waiting Time and Response Time
Link NOC:Stochastic Processes - 1 Lecture 64 - Burke's Theorem and Simulation of M/M/1 queueing Model
Link NOC:Stochastic Processes - 1 Lecture 65 - M/M/c Queueing Model
Link NOC:Stochastic Processes - 1 Lecture 66 - M/M/1/N Queueing Model
Link NOC:Stochastic Processes - 1 Lecture 67 - M/M/c/K Model, M/M/c/c Loss System, M/M/? Self Service System
Link NOC:Stochastic Processes - 1 Lecture 68 - Transient Solution of Finite Birth Death Process and Finite Source Markovian Queueing Model
Link NOC:Stochastic Processes - 1 Lecture 69 - Queueing Networks Characteristics and Types of Queueing Networks
Link NOC:Stochastic Processes - 1 Lecture 70 - Tandem Queueing Networks
Link NOC:Stochastic Processes - 1 Lecture 71 - Stationary Distribution and Open Queueing Network
Link NOC:Stochastic Processes - 1 Lecture 72 - Jackson's Theorem, Closed Queueing Networks, Gordon and Newell Results
Link NOC:Stochastic Processes - 1 Lecture 73 - Wireless Handoff Performance Model and System Description
Link NOC:Stochastic Processes - 1 Lecture 74 - Description of 3G Cellular Networks and Queueing Model
Link NOC:Stochastic Processes - 1 Lecture 75 - Simulation of Queueing Systems
Link NOC:Stochastic Processes - 1 Lecture 76 - Definition and Basic Components of Petri Net and Reachability Analysis
Link NOC:Stochastic Processes - 1 Lecture 77 - Arc Extensions in Petri Net, Stochastic Petri Nets and examples
Link NOC:Stochastic Processes Lecture 1 - Introduction and motivation for studying stochastic processes
Link NOC:Stochastic Processes Lecture 2 - Probability space and conditional probability
Link NOC:Stochastic Processes Lecture 3 - Random variable and cumulative distributive function
Link NOC:Stochastic Processes Lecture 4 - Discrete Uniform Distribution, Binomial Distribution, Geometric Distribution, Continuous Uniform Distribution, Exponential Distribution, Normal Distribution and Poisson Distribution
Link NOC:Stochastic Processes Lecture 5 - Joint Distribution of Random Variables
Link NOC:Stochastic Processes Lecture 6 - Independent Random Variables, Covariance and Correlation Coefficient and Conditional Distribution
Link NOC:Stochastic Processes Lecture 7 - Conditional Expectation and Covariance Matrix
Link NOC:Stochastic Processes Lecture 8 - Generating Functions, Law of Large Numbers and Central Limit Theorem
Link NOC:Stochastic Processes Lecture 9 - Problems in Random variables and Distributions
Link NOC:Stochastic Processes Lecture 10 - Problems in Random variables and Distributions (Continued...)
Link NOC:Stochastic Processes Lecture 11 - Problems in Random variables and Distributions (Continued...)
Link NOC:Stochastic Processes Lecture 12 - Problems in Random variables and Distributions (Continued...)
Link NOC:Stochastic Processes Lecture 13 - Problems in Sequences of Random Variables
Link NOC:Stochastic Processes Lecture 14 - Problems in Sequences of Random Variables (Continued...)
Link NOC:Stochastic Processes Lecture 15 - Problems in Sequences of Random Variables (Continued...)
Link NOC:Stochastic Processes Lecture 16 - Problems in Sequences of Random Variables (Continued...)
Link NOC:Stochastic Processes Lecture 17 - Definition of Stochastic Processes, Parameter and State Spaces
Link NOC:Stochastic Processes Lecture 18 - Classification of Stochastic Processes
Link NOC:Stochastic Processes Lecture 19 - Examples of Discrete Time Markov Chain
Link NOC:Stochastic Processes Lecture 20 - Examples of Discrete Time Markov Chain (Continued...)
Link NOC:Stochastic Processes Lecture 21 - Bernoulli Process
Link NOC:Stochastic Processes Lecture 22 - Poisson Process
Link NOC:Stochastic Processes Lecture 23 - Poisson Process (Continued...)
Link NOC:Stochastic Processes Lecture 24 - Simple Random Walk and Population Processes
Link NOC:Stochastic Processes Lecture 25 - Introduction to Discrete time Markov Chain
Link NOC:Stochastic Processes Lecture 26 - Introduction to Discrete time Markov Chain (Continued...)
Link NOC:Stochastic Processes Lecture 27 - Examples of Discrete time Markov Chain
Link NOC:Stochastic Processes Lecture 28 - Examples of Discrete time Markov Chain (Continued...)
Link NOC:Stochastic Processes Lecture 29 - Introduction to Chapman-Kolmogorov equations
Link NOC:Stochastic Processes Lecture 30 - State Transition Diagram and Examples
Link NOC:Stochastic Processes Lecture 31 - Examples
Link NOC:Stochastic Processes Lecture 32 - Introduction to Classification of States and Periodicity
Link NOC:Stochastic Processes Lecture 33 - Closed set of States and Irreducible Markov Chain
Link NOC:Stochastic Processes Lecture 34 - First Passage time and Mean Recurrence Time
Link NOC:Stochastic Processes Lecture 35 - Recurrent State and Transient State
Link NOC:Stochastic Processes Lecture 36 - Introduction and example of Classification of states
Link NOC:Stochastic Processes Lecture 37 - Example of Classification of states (Continued...)
Link NOC:Stochastic Processes Lecture 38 - Example of Classification of states (Continued...)
Link NOC:Stochastic Processes Lecture 39 - Example of Classification of states (Continued...)
Link NOC:Stochastic Processes Lecture 40 - Introduction and Limiting Distribution
Link NOC:Stochastic Processes Lecture 41 - Example of Limiting Distribution and Ergodicity
Link NOC:Stochastic Processes Lecture 42 - Stationary Distribution and Examples
Link NOC:Stochastic Processes Lecture 43 - Examples of Stationary Distributions
Link NOC:Stochastic Processes Lecture 44 - Time Reversible Markov Chain and Examples
Link NOC:Stochastic Processes Lecture 45 - Definition of Reducible Markov Chains and Types of Reducible Markov Chains
Link NOC:Stochastic Processes Lecture 46 - Stationary Distributions and Types of Reducible Markov chains
Link NOC:Stochastic Processes Lecture 47 - Type of Reducible Markov Chains (Continued...)
Link NOC:Stochastic Processes Lecture 48 - Gambler's Ruin Problem
Link NOC:Stochastic Processes Lecture 49 - Introduction to Continuous time Markov Chain
Link NOC:Stochastic Processes Lecture 50 - Waiting time Distribution
Link NOC:Stochastic Processes Lecture 51 - Chapman-Kolmogorov Equation
Link NOC:Stochastic Processes Lecture 52 - Infinitesimal Generator Matrix
Link NOC:Stochastic Processes Lecture 53 - Introduction and Example Of Continuous time Markov Chain
Link NOC:Stochastic Processes Lecture 54 - Limiting and Stationary Distributions
Link NOC:Stochastic Processes Lecture 55 - Time reversible CTMC and Birth Death Process
Link NOC:Stochastic Processes Lecture 56 - Steady State Distributions, Pure Birth Process and Pure Death Process
Link NOC:Stochastic Processes Lecture 57 - Introduction to Poisson Process
Link NOC:Stochastic Processes Lecture 58 - Definition of Poisson Process
Link NOC:Stochastic Processes Lecture 59 - Superposition and Deposition of Poisson Process
Link NOC:Stochastic Processes Lecture 60 - Compound Poisson Process and Examples
Link NOC:Stochastic Processes Lecture 61 - Introduction to Queueing Systems and Kendall Notations
Link NOC:Stochastic Processes Lecture 62 - M/M/1 Queueing Model
Link NOC:Stochastic Processes Lecture 63 - Little's Law, Distribution of Waiting Time and Response Time
Link NOC:Stochastic Processes Lecture 64 - Burke's Theorem and Simulation of M/M/1 queueing Model
Link NOC:Stochastic Processes Lecture 65 - M/M/c Queueing Model
Link NOC:Stochastic Processes Lecture 66 - M/M/1/N Queueing Model
Link NOC:Stochastic Processes Lecture 67 - M/M/c/K Model, M/M/c/c Loss System, M/M/? Self Service System
Link NOC:Stochastic Processes Lecture 68 - Transient Solution of Finite Birth Death Process and Finite Source Markovian Queueing Model
Link NOC:Stochastic Processes Lecture 69 - Queueing Networks Characteristics and Types of Queueing Networks
Link NOC:Stochastic Processes Lecture 70 - Tandem Queueing Networks
Link NOC:Stochastic Processes Lecture 71 - Stationary Distribution and Open Queueing Network
Link NOC:Stochastic Processes Lecture 72 - Jackson's Theorem, Closed Queueing Networks, Gordon and Newell Results
Link NOC:Stochastic Processes Lecture 73 - Wireless Handoff Performance Model and System Description
Link NOC:Stochastic Processes Lecture 74 - Description of 3G Cellular Networks and Queueing Model
Link NOC:Stochastic Processes Lecture 75 - Simulation of Queueing Systems
Link NOC:Stochastic Processes Lecture 76 - Definition and Basic Components of Petri Net and Reachability Analysis
Link NOC:Stochastic Processes Lecture 77 - Arc Extensions in Petri Net, Stochastic Petri Nets and examples
Link NOC:Stochastic Processes Lecture 78 - Generalized Stochastic Petri Net
Link NOC:Stochastic Processes Lecture 79 - Generalized Stochastic Petri Net (Continued...)
Link NOC:Stochastic Processes Lecture 80 - Conditional Expectation and Examples
Link NOC:Stochastic Processes Lecture 81 - Filtration in Discrete time
Link NOC:Stochastic Processes Lecture 82 - Remarks of Conditional Expectation and Adaptabilty
Link NOC:Stochastic Processes Lecture 83 - Definition and Examples of Martingale
Link NOC:Stochastic Processes Lecture 84 - Examples of Martingale (Continued...)
Link NOC:Stochastic Processes Lecture 85 - Examples of Martingale (Continued...)
Link NOC:Stochastic Processes Lecture 86 - Doob's Martingale Process, Sub martingale and Super Martingale
Link NOC:Stochastic Processes Lecture 87 - Definition of Brownian Motion
Link NOC:Stochastic Processes Lecture 88 - Definition of Brownian Motion (Continued...)
Link NOC:Stochastic Processes Lecture 89 - Properties of Brownian Motion
Link NOC:Stochastic Processes Lecture 90 - Processes Derived from Brownian Motion
Link NOC:Stochastic Processes Lecture 91 - Processes Derived from Brownian Motion (Continued...)
Link NOC:Stochastic Processes Lecture 92 - Processes Derived from Brownian Motion (Continued...)
Link NOC:Stochastic Processes Lecture 93 - Stochastic Differential Equations
Link NOC:Stochastic Processes Lecture 94 - Stochastic Differential Equations (Continued...)
Link NOC:Stochastic Processes Lecture 95 - Stochastic Differential Equations (Continued...)
Link NOC:Stochastic Processes Lecture 96 - Ito Integrals
Link NOC:Stochastic Processes Lecture 97 - Ito Integrals (Continued...)
Link NOC:Stochastic Processes Lecture 98 - Ito Integrals (Continued...)
Link NOC:Stochastic Processes Lecture 99 - Renewal Function and Renewal Equation
Link NOC:Stochastic Processes Lecture 100 - Renewal Function and Renewal Equation (Continued...)
Link NOC:Stochastic Processes Lecture 101 - Renewal Function and Renewal Equation (Continued...)
Link NOC:Stochastic Processes Lecture 102 - Generalized Renewal Processes and Renewal Limit Theorems
Link NOC:Stochastic Processes Lecture 103 - Generalized Renewal Processes and Renewal Limit Theorems (Continued...)
Link NOC:Stochastic Processes Lecture 104 - Generalized Renewal Processes and Renewal Limit Theorems (Continued...)
Link NOC:Stochastic Processes Lecture 105 - Markov Renewal and Markov Regenerative Processes
Link NOC:Stochastic Processes Lecture 106 - Markov Renewal and Markov Regenerative Processes (Continued...)
Link NOC:Stochastic Processes Lecture 107 - Markov Renewal and Markov Regenerative Processes (Continued...)
Link NOC:Stochastic Processes Lecture 108 - Markov Renewal and Markov Regenerative Processes (Continued...)
Link NOC:Stochastic Processes Lecture 109 - Non Markovian Queues
Link NOC:Stochastic Processes Lecture 110 - Non Markovian Queues (Continued...)
Link NOC:Stochastic Processes Lecture 111 - Non Markovian Queues (Continued...)
Link NOC:Stochastic Processes Lecture 112 - Stationary Processes
Link NOC:Stochastic Processes Lecture 113 - Stationary Processes (Continued...)
Link NOC:Stochastic Processes Lecture 114 - Stationary Processes (Continued...)
Link NOC:Stochastic Processes Lecture 115 - Stationary Processes (Continued...) and Ergodicity
Link NOC:Stochastic Processes Lecture 116 - G1/M/1 queue
Link NOC:Stochastic Processes Lecture 117 - G1/M/1 queue (Continued...)
Link NOC:Stochastic Processes Lecture 118 - G1/M/1/N queue and examples
Link NOC:Stochastic Processes Lecture 119 - Galton-Watson Process
Link NOC:Stochastic Processes Lecture 120 - Examples and Theorems
Link NOC:Stochastic Processes Lecture 121 - Theorems and Examples (Continued...)
Link NOC:Stochastic Processes Lecture 122 - Markov Branching Process
Link NOC:Stochastic Processes Lecture 123 - Markov Branching Process Theorems and Properties
Link NOC:Stochastic Processes Lecture 124 - Markov Branching Process Theorems and Properties (Continued...)
Link NOC:Chaotic Dynamical Systems Lecture 1 - The beginning
Link NOC:Chaotic Dynamical Systems Lecture 2 - Elementary Concepts
Link NOC:Chaotic Dynamical Systems Lecture 3 - Elementary Concepts (Continued...)
Link NOC:Chaotic Dynamical Systems Lecture 4 - More on orbits
Link NOC:Chaotic Dynamical Systems Lecture 5 - Peiods of Periodic Points
Link NOC:Chaotic Dynamical Systems Lecture 6 - Scrambled Sets
Link NOC:Chaotic Dynamical Systems Lecture 7 - Sensitive Dependence on Initial Conditions
Link NOC:Chaotic Dynamical Systems Lecture 8 - A Population Dynamics Model
Link NOC:Chaotic Dynamical Systems Lecture 9 - Bifurcations
Link NOC:Chaotic Dynamical Systems Lecture 10 - Nonlinear Systems
Link NOC:Chaotic Dynamical Systems Lecture 11 - Horseshoe Attractor
Link NOC:Chaotic Dynamical Systems Lecture 12 - Dynamics of the Horseshoe Attractor
Link NOC:Chaotic Dynamical Systems Lecture 13 - Recurrence
Link NOC:Chaotic Dynamical Systems Lecture 14 - Recurrence (Continued...)
Link NOC:Chaotic Dynamical Systems Lecture 15 - Transitivity
Link NOC:Chaotic Dynamical Systems Lecture 16 - Devaney’s Chaos
Link NOC:Chaotic Dynamical Systems Lecture 17 - Transitivity = Chaos on Intervals
Link NOC:Chaotic Dynamical Systems Lecture 18 - Stronger forms of Transitivity
Link NOC:Chaotic Dynamical Systems Lecture 19 - Chaotic Properties of Mixing Systems
Link NOC:Chaotic Dynamical Systems Lecture 20 - Weakly Mixing and Chaos
Link NOC:Chaotic Dynamical Systems Lecture 21 - Strongly Transitive Systems
Link NOC:Chaotic Dynamical Systems Lecture 22 - Strongly Transitive Systems (Continued...)
Link NOC:Chaotic Dynamical Systems Lecture 23 - Introduction to Symbolic Dynamics
Link NOC:Chaotic Dynamical Systems Lecture 24 - Shift Spaces
Link NOC:Chaotic Dynamical Systems Lecture 25 - Subshifts of Finite Type
Link NOC:Chaotic Dynamical Systems Lecture 26 - Subshifts of Finite Type (Continued...), Chatoic Dynamical Systems
Link NOC:Chaotic Dynamical Systems Lecture 27 - Measuring Chaos - Topological Entropy
Link NOC:Chaotic Dynamical Systems Lecture 28 - Topological Entropy - Adler’s Version
Link NOC:Chaotic Dynamical Systems Lecture 29 - Bowen’s Definition of Topological Entropy
Link NOC:Chaotic Dynamical Systems Lecture 30 - Equivalance of the two definitions of Topological Entropy
Link NOC:Chaotic Dynamical Systems Lecture 31 - Linear Systems in Two Dimentions
Link NOC:Chaotic Dynamical Systems Lecture 32 - Asymptotic Properties of Orbits of Linear Transformation in IR2
Link NOC:Chaotic Dynamical Systems Lecture 33 - Hyperbolic Toral Automorphisms
Link NOC:Chaotic Dynamical Systems Lecture 34 - Chaos in Toral Automorphisms
Link NOC:Chaotic Dynamical Systems Lecture 35 - Chaotic Attractors of Henon Maps
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 1 - Random experiment, sample space, axioms of probability, probability space
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 2 - Random experiment, sample space, axioms of probability, probability space (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 3 - Random experiment, sample space, axioms of probability, probability space (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 4 - Conditional probability, independence of events.
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 5 - Multiplication rule, total probability rule, Bayes's theorem.
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 6 - Definition of Random Variable, Cumulative Distribution Function
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 7 - Definition of Random Variable, Cumulative Distribution Function (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 8 - Definition of Random Variable, Cumulative Distribution Function (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 9 - Type of Random Variables, Probability Mass Function, Probability Density Function
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 10 - Type of Random Variables, Probability Mass Function, Probability Density Function (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 11 - Distribution of Function of Random Variables
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 12 - Mean and Variance
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 13 - Mean and Variance (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 14 - Higher Order Moments and Moments Inequalities
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 15 - Higher Order Moments and Moments Inequalities (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 16 - Generating Functions
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 17 - Generating Functions (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 18 - Common Discrete Distributions
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 19 - Common Discrete Distributions (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 20 - Common Continuous Distributions
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 21 - Common Continuous Distributions (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 22 - Applications of Random Variable
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 23 - Applications of Random Variable (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 24 - Random vector and joint distribution
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 25 - Joint probability mass function
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 26 - Joint probability density function
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 27 - Independent random variables
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 28 - Independent random variables (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 29 - Functions of several random variables
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 30 - Functions of several random variables (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 31 - Some important results
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 32 - Order statistics
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 33 - Conditional distributions
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 34 - Random sum
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 35 - Moments and Covariance
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 36 - Variance Covariance matrix
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 37 - Multivariate Normal distribution
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 38 - Probability generating function and Moment generating function
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 39 - Correlation coefficient
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 40 - Conditional Expectation
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 41 - Conditional Expectation (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 42 - Modes of Convergence
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 43 - Mode of Convergence (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 44 - Law of Large Numbers
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 45 - Central Limit Theorem
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 46 - Central Limit Theorem (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 47 - Motivation for Stochastic Processes
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 48 - Definition of a Stochastic Process
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 49 - Classification of Stochastic Processes
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 50 - Examples of Stochastic Process
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 51 - Examples Of Stochastic Process (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 52 - Bernoulli Process
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 53 - Poisson Process
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 54 - Poisson Process (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 55 - Simple Random Walk
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 56 - Time Series and Related Definitions
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 57 - Strict Sense Stationary Process
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 58 - Wide Sense Stationary Process and Examples
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 59 - Examples of Stationary Processes (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 60 - Discrete Time Markov Chain (DTMC)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 61 - DTMC (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 62 - Examples of DTMC
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 63 - Examples of DTMC (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 64 - Chapman-Kolmogorov equations and N-step transition matrix
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 65 - Examples based on N-step transition matrix
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 66 - Examples (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 67 - Classification of states
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 68 - Classification of states (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 69 - Calculation of N-Step - 9
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 70 - Calculation of N-Step - 10
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 71 - Limiting and Stationary distributions
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 72 - Limiting and Stationary distributions (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 73 - Continuous time Markov chain (CTMC)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 74 - CTMC (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 75 - State transition diagram and Chapman-Kolmogorov equation
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 76 - Infinitesimal generator and Kolmogorov differential equations
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 77 - Limiting distribution
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 78 - Limiting and Stationary distributions - 1
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 79 - Birth death process
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 80 - Birth death process (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 81 - Poisson process - 1
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 82 - Poisson process (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 83 - Poisson process (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 84 - Non-homogeneous and compound Poisson process
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 85 - Introduction to Queueing Models and Kendall Notation
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 86 - M/M/1 Queueing Model
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 87 - M/M/1 Queueing Model (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 88 - M/M/1 Queueing Model and Burke's Theorem
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 89 - M/M/c Queueing Model
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 90 - M/M/c (Continued...) and M/M/1/N Model
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 91 - Other Markovian Queueing Models
Link NOC:Introduction to Probability Theory and Stochastic Processes Lecture 92 - Transient Solution of Finite Capacity Markovian Queues
Link NOC:Statistical Inference Lecture 1 - Statistical Inference - 1
Link NOC:Statistical Inference Lecture 2 - Statistical Inference - 2
Link NOC:Statistical Inference Lecture 3 - Statistical Inference - 3
Link NOC:Statistical Inference Lecture 4 - Statistical Inference - 4
Link NOC:Statistical Inference Lecture 5 - Statistical Inference - 5
Link NOC:Statistical Inference Lecture 6 - Statistical Inference - 6
Link NOC:Statistical Inference Lecture 7 - Statistical Inference - 7
Link NOC:Statistical Inference Lecture 8 - Statistical Inference - 8
Link NOC:Statistical Inference Lecture 9 - Statistical Inference - 9
Link NOC:Statistical Inference Lecture 10 - Statistical Inference - 10
Link NOC:Statistical Inference Lecture 11 - Statistical Inference - 11
Link NOC:Statistical Inference Lecture 12 - Statistical Inference - 12
Link NOC:Statistical Inference Lecture 13 - Statistical Inference - 13
Link NOC:Statistical Inference Lecture 14 - Statistical Inference - 14
Link NOC:Statistical Inference Lecture 15 - Statistical Inference - 15
Link NOC:Statistical Inference Lecture 16 - Stasistical Inference - 16
Link NOC:Statistical Inference Lecture 17 - Stasistical Inference - 17
Link NOC:Statistical Inference Lecture 18 - Statistical Inference - 18
Link NOC:Statistical Inference Lecture 19 - Stasistical Inference - 19
Link NOC:Statistical Inference Lecture 20 - Stasistical Inference - 20
Link NOC:Statistical Inference Lecture 21 - Stasistical Inference - 21
Link NOC:Integral Transforms and their Applications Lecture 1 - Introduction to Fourier Transforms - Part 1
Link NOC:Integral Transforms and their Applications Lecture 2 - Introduction to Fourier Transforms - Part 2
Link NOC:Integral Transforms and their Applications Lecture 3 - Introduction to Fourier Transforms - Part 3
Link NOC:Integral Transforms and their Applications Lecture 4 - Properties of Fourier transforms, Shannon Sampling Theorem, Gibb's Phenomena - Part 1
Link NOC:Integral Transforms and their Applications Lecture 5 - Properties of Fourier transforms, Shannon Sampling Theorem, Gibb's Phenomena - Part 2
Link NOC:Integral Transforms and their Applications Lecture 6 - Properties of Fourier transforms, Shannon Sampling Theorem, Gibb's Phenomena - Part 3
Link NOC:Integral Transforms and their Applications Lecture 7 - Applications of Fourier Transforms - Part 1
Link NOC:Integral Transforms and their Applications Lecture 8 - Applications of Fourier Transforms - Part 2
Link NOC:Integral Transforms and their Applications Lecture 9 - Applications of Fourier Transforms - Part 3
Link NOC:Integral Transforms and their Applications Lecture 10 - Introduction to Laplace Transforms - Part 1
Link NOC:Integral Transforms and their Applications Lecture 11 - Introduction to Laplace Transforms - Part 2
Link NOC:Integral Transforms and their Applications Lecture 12 - Introduction to Laplace Transforms - Part 3
Link NOC:Integral Transforms and their Applications Lecture 13 - Inverse Laplace Transform, Initial and Final Value Theorems - Part 1
Link NOC:Integral Transforms and their Applications Lecture 14 - Inverse Laplace Transform, Initial and Final Value Theorems - Part 2
Link NOC:Integral Transforms and their Applications Lecture 15 - Inverse Laplace Transform, Initial and Final Value Theorems - Part 3
Link NOC:Integral Transforms and their Applications Lecture 16 - Applications of Laplace Transforms - Part 1
Link NOC:Integral Transforms and their Applications Lecture 17 - Applications of Laplace Transforms - Part 2
Link NOC:Integral Transforms and their Applications Lecture 18 - Applications of Laplace Transforms - Part 3
Link NOC:Integral Transforms and their Applications Lecture 19 - Applications of Laplace Transforms (Continued) - Part 1
Link NOC:Integral Transforms and their Applications Lecture 20 - Applications of Laplace Transforms (Continued) - Part 2
Link NOC:Integral Transforms and their Applications Lecture 21 - Applications of Laplace Transforms (Continued) - Part 3
Link NOC:Integral Transforms and their Applications Lecture 22 - Applications of Fourier-Laplace Transforms - Part 1
Link NOC:Integral Transforms and their Applications Lecture 23 - Applications of Fourier-Laplace Transforms - Part 2
Link NOC:Integral Transforms and their Applications Lecture 24 - Applications of Fourier-Laplace Transforms - Part 3
Link NOC:Integral Transforms and their Applications Lecture 25 - Introduction to Hankel Transforms - Part 1
Link NOC:Integral Transforms and their Applications Lecture 26 - Introduction to Hankel Transforms - Part 2
Link NOC:Integral Transforms and their Applications Lecture 27 - Introduction to Hankel Transforms - Part 3
Link NOC:Integral Transforms and their Applications Lecture 28 - Introduction to Mellin Transforms - Part 1
Link NOC:Integral Transforms and their Applications Lecture 29 - Introduction to Mellin Transforms - Part 2
Link NOC:Integral Transforms and their Applications Lecture 30 - Introduction to Mellin Transforms - Part 3
Link NOC:Integral Transforms and their Applications Lecture 31 - Introduction to Hilbert Transforms - Part 1
Link NOC:Integral Transforms and their Applications Lecture 32 - Introduction to Hilbert Transforms - Part 2
Link NOC:Integral Transforms and their Applications Lecture 33 - Introduction to Hilbert Transforms - Part 3
Link NOC:Integral Transforms and their Applications Lecture 34 - Applications of Hilbert Transfroms, Introduction to Stieltjes Transform - Part 1
Link NOC:Integral Transforms and their Applications Lecture 35 - Applications of Hilbert Transfroms, Introduction to Stieltjes Transform - Part 2
Link NOC:Integral Transforms and their Applications Lecture 36 - Applications of Hilbert Transfroms, Introduction to Stieltjes Transform - Part 3
Link NOC:Integral Transforms and their Applications Lecture 37 - Applications of Stieltjes Transform, Generalized Stieltjes Transform - Part 1
Link NOC:Integral Transforms and their Applications Lecture 38 - Applications of Stieltjes Transform, Generalized Stieltjes Transform - Part 2
Link NOC:Integral Transforms and their Applications Lecture 39 - Applications of Stieltjes Transform, Generalized Stieltjes Transform - Part 3
Link NOC:Integral Transforms and their Applications Lecture 40 - Introduction to Legendre Transform - Part 1
Link NOC:Integral Transforms and their Applications Lecture 41 - Introduction to Legendre Transform - Part 2
Link NOC:Integral Transforms and their Applications Lecture 42 - Introduction to Legendre Transform - Part 3
Link NOC:Integral Transforms and their Applications Lecture 43 - Introduction to Z-transform - Part 1
Link NOC:Integral Transforms and their Applications Lecture 44 - Introduction to Z-transform - Part 2
Link NOC:Integral Transforms and their Applications Lecture 45 - Introduction to Z-transform - Part 3
Link NOC:Integral Transforms and their Applications Lecture 46 - Inverse Z-transfrom, Applciations of Z-Transform - Part 1
Link NOC:Integral Transforms and their Applications Lecture 47 - Inverse Z-transfrom, Applciations of Z-Transform - Part 2
Link NOC:Integral Transforms and their Applications Lecture 48 - Inverse Z-transfrom, Applciations of Z-Transform - Part 3
Link NOC:Integral Transforms and their Applications Lecture 49 - Introduction to Radon Transform - Part 1
Link NOC:Integral Transforms and their Applications Lecture 50 - Introduction to Radon Transform - Part 2
Link NOC:Integral Transforms and their Applications Lecture 51 - Introduction to Radon Transform - Part 3
Link NOC:Integral Transforms and their Applications Lecture 52 - Inverse Radon Transform, Applications to Radon Transform - Part 1
Link NOC:Integral Transforms and their Applications Lecture 53 - Inverse Radon Transform, Applications to Radon Transform - Part 2
Link NOC:Integral Transforms and their Applications Lecture 54 - Inverse Radon Transform, Applications to Radon Transform - Part 3
Link NOC:Integral Transforms and their Applications Lecture 55 - Introduction to Fractional Calculus - Part 1
Link NOC:Integral Transforms and their Applications Lecture 56 - Introduction to Fractional Calculus - Part 2
Link NOC:Integral Transforms and their Applications Lecture 57 - Introduction to Fractional Calculus - Part 3
Link NOC:Integral Transforms and their Applications Lecture 58 - Fractional ODEs, Abel's Integral Equations - Part 1
Link NOC:Integral Transforms and their Applications Lecture 59 - Fractional ODEs, Abel's Integral Equations - Part 2
Link NOC:Integral Transforms and their Applications Lecture 60 - Fractional ODEs, Abel's Integral Equations - Part 3
Link NOC:Integral Transforms and their Applications Lecture 61 - Fractional PDEs - Part 1
Link NOC:Integral Transforms and their Applications Lecture 62 - Fractional PDEs - Part 2
Link NOC:Integral Transforms and their Applications Lecture 63 - Fractional PDEs - Part 3
Link NOC:Integral Transforms and their Applications Lecture 64 - Fractional ODEs and PDEs (Continued) - Part 1
Link NOC:Integral Transforms and their Applications Lecture 65 - Fractional ODEs and PDEs (Continued) - Part 2
Link NOC:Integral Transforms and their Applications Lecture 66 - Fractional ODEs and PDEs (Continued) - Part 3
Link NOC:Integral Transforms and their Applications Lecture 67 - Introduction to Wavelet Transform - Part 1
Link NOC:Integral Transforms and their Applications Lecture 68 - Introduction to Wavelet Transform - Part 2
Link NOC:Integral Transforms and their Applications Lecture 69 - Introduction to Wavelet Transform - Part 3
Link NOC:Integral Transforms and their Applications Lecture 70 - Discrete Haar, Shanon and Debauchies Wavelet - Part 1
Link NOC:Integral Transforms and their Applications Lecture 71 - Discrete Haar, Shanon and Debauchies Wavelet - Part 2
Link NOC:Integral Transforms and their Applications Lecture 72 - Discrete Haar, Shanon and Debauchies Wavelet - Part 3
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 1 - Fuzzy Sets Arithmetic and Logic - 1
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 2 - Fuzzy Sets Arithmetic and Logic - 2
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 3 - Fuzzy Sets Arithmetic and Logic - 3
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 4 - Fuzzy Sets Arithmetic and Logic - 4
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 5 - Fuzzy Sets Arithmetic and Logic - 5
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 6 - Fuzzy Sets Arithmetic and Logic - 6
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 7 - Fuzzy Sets Arithmetic and Logic - 7
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 8 - Fuzzy Sets Arithmetic and Logic - 8
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 9 - Fuzzy Sets Arithmetic and Logic - 9
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 10 - Fuzzy Sets Arithmetic and Logic - 10
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 11 - Fuzzy Sets Arithmetic and Logic - 11
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 12 - Fuzzy Sets Arithmetic and Logic - 12
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 13 - Fuzzy Sets Arithmetic and Logic - 13
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 14 - Fuzzy Sets Arithmetic and Logic - 14
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 15 - Fuzzy Sets Arithmetic and Logic - 15
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 16 - Fuzzy Sets Arithmetic and Logic - 16
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 17 - Fuzzy Sets Arithmetic and Logic - 17
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 18 - Fuzzy Sets Arithmetic and Logic - 18
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 19 - Fuzzy Sets Arithmetic and Logic - 19
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 20 - Fuzzy Sets Arithmetic and Logic - 20
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 21 - Fuzzy Sets Arithmetic and Logic - 21
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 22 - Fuzzy Sets Arithmetic and Logic - 22
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 23 - Fuzzy Sets Arithmetic and Logic - 23
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 24 - Fuzzy Sets Arithmetic and Logic - 24
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 25 - Fuzzy Sets Arithmetic and Logic - 25
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 26 - Fuzzy Sets Arithmetic and Logic - 26
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 27 - Fuzzy Sets Arithmetic and Logic - 27
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 28 - Fuzzy Sets Arithmetic and Logic - 28
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 29 - Fuzzy Sets Arithmetic and Logic - 29
Link NOC:Introduction to Fuzzy Set Theory, Arithmetic and Logic Lecture 30 - Fuzzy Sets Arithmetic and Logic - 30
Link NOC:Introduction to Methods of Applied Mathematics Lecture 1 - Introduction to First Order Differential Equations
Link NOC:Introduction to Methods of Applied Mathematics Lecture 2 - Introduction to First Order Differential Equations (Continued...)
Link NOC:Introduction to Methods of Applied Mathematics Lecture 3 - Introduction to Second Order Linear Differential Equations
Link NOC:Introduction to Methods of Applied Mathematics Lecture 4 - Second Order Linear Differential Equations With Constant Coefficients
Link NOC:Introduction to Methods of Applied Mathematics Lecture 5 - Second Order Linear Differential Equations With Constant Coefficients (Continued...)
Link NOC:Introduction to Methods of Applied Mathematics Lecture 6 - Second Order Linear Differential Equations With Variable Coefficients
Link NOC:Introduction to Methods of Applied Mathematics Lecture 7 - Factorization of Second order Differential Operator and Euler Cauchy Equation
Link NOC:Introduction to Methods of Applied Mathematics Lecture 8 - Power Series Solution of General Differential Equation
Link NOC:Introduction to Methods of Applied Mathematics Lecture 9 - Green's function
Link NOC:Introduction to Methods of Applied Mathematics Lecture 10 - Method of Green's Function for Solving Initial Value and Boundary Value Problems
Link NOC:Introduction to Methods of Applied Mathematics Lecture 11 - Adjoint Linear Differential Operator
Link NOC:Introduction to Methods of Applied Mathematics Lecture 12 - Adjoint Linear Differential Operator (Continued...)
Link NOC:Introduction to Methods of Applied Mathematics Lecture 13 - Sturm-Liouvile Problems
Link NOC:Introduction to Methods of Applied Mathematics Lecture 14 - Laplace transformation
Link NOC:Introduction to Methods of Applied Mathematics Lecture 15 - Laplace transformation (Continued...)
Link NOC:Introduction to Methods of Applied Mathematics Lecture 16 - Laplace Transform Method for Solving Ordinary Differential Equations
Link NOC:Introduction to Methods of Applied Mathematics Lecture 17 - Laplace Transform Applied to Differential Equations and Convolution
Link NOC:Introduction to Methods of Applied Mathematics Lecture 18 - Fourier Series
Link NOC:Introduction to Methods of Applied Mathematics Lecture 19 - Fourier Series (Continued...)
Link NOC:Introduction to Methods of Applied Mathematics Lecture 20 - Gibbs Phenomenon and Parseval's Identity
Link NOC:Introduction to Methods of Applied Mathematics Lecture 21 - Fourier Integral and Fourier Transform
Link NOC:Introduction to Methods of Applied Mathematics Lecture 22 - Fourier Integral and Fourier Transform (Continued...)
Link NOC:Introduction to Methods of Applied Mathematics Lecture 23 - Fourier Transform Method for Solving Ordinary Differential Equations
Link NOC:Introduction to Methods of Applied Mathematics Lecture 24 - Frames, Riesz Bases and Orthonormal Bases
Link NOC:Introduction to Methods of Applied Mathematics Lecture 25 - Frames, Riesz Bases and Orthonormal Bases (Continued...)
Link NOC:Introduction to Methods of Applied Mathematics Lecture 26 - Fourier Series and Fourier Transform
Link NOC:Introduction to Methods of Applied Mathematics Lecture 27 - Time-Frequency Analysis and Gabor Transform
Link NOC:Introduction to Methods of Applied Mathematics Lecture 28 - Window Fourier Transform and Multiresolution Analysis
Link NOC:Introduction to Methods of Applied Mathematics Lecture 29 - Construction of Scaling Functions and Wavelets Using Multiresolution Analysis
Link NOC:Introduction to Methods of Applied Mathematics Lecture 30 - Daubechies Wavelet
Link NOC:Introduction to Methods of Applied Mathematics Lecture 31 - Daubechies Wavelet (Continued...)
Link NOC:Introduction to Methods of Applied Mathematics Lecture 32 - Wavelet Transform and Shannon Wavelet
Link NOC:Advanced Probability Theory Lecture 1 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 2 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 3 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 4 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 5 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 6 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 7 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 8 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 9 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 10 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 11 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 12 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 13 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 14 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 15 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 16 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 17 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 18 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 19 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 20 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 21 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 22 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 23 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 24 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 25 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 26 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 27 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 28 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 29 - Advanced Probability Theory
Link NOC:Advanced Probability Theory Lecture 30 - Advanced Probability Theory
Link NOC:Scientific Computing using Matlab Lecture 1 - Introduction to Matlab
Link NOC:Scientific Computing using Matlab Lecture 2 - Plotting of Functions in Matlab
Link NOC:Scientific Computing using Matlab Lecture 3 - Symbolic Computation in Matlab
Link NOC:Scientific Computing using Matlab Lecture 4 - Functions definition in Matlab
Link NOC:Scientific Computing using Matlab Lecture 5 - In continuation of basics of Matlab
Link NOC:Scientific Computing using Matlab Lecture 6 - In continuation of basics of Matlab (Continued...)
Link NOC:Scientific Computing using Matlab Lecture 7 - Floating point representation of a number
Link NOC:Scientific Computing using Matlab Lecture 8 - Errors arithmetic
Link NOC:Scientific Computing using Matlab Lecture 9 - Iterative method for solving nonlinear equations
Link NOC:Scientific Computing using Matlab Lecture 10 - Bisection method for solving nonlinear equations
Link NOC:Scientific Computing using Matlab Lecture 11 - Order of Convergence of an Iterative Method
Link NOC:Scientific Computing using Matlab Lecture 12 - Regula-Falsi and Secant Method for Solving Nonlinear Equations
Link NOC:Scientific Computing using Matlab Lecture 13 - Raphson method for solving nonlinear equations
Link NOC:Scientific Computing using Matlab Lecture 14 - Newton-Raphson Method for Solving Nonlinear System of Equations
Link NOC:Scientific Computing using Matlab Lecture 15 - Matlab Code for Fixed Point Iteration Method
Link NOC:Scientific Computing using Matlab Lecture 16 - Matlab Code for Newton-Raphson and Regula-Falsi Method
Link NOC:Scientific Computing using Matlab Lecture 17 - Matlab Code for Newton Method for Solving System of Equations
Link NOC:Scientific Computing using Matlab Lecture 18 - Linear System of Equations
Link NOC:Scientific Computing using Matlab Lecture 19 - Linear System of Equations (Continued...)
Link NOC:Scientific Computing using Matlab Lecture 20 - Gauss Elimination Method for solving Linear System of Equation
Link NOC:Scientific Computing using Matlab Lecture 21 - Matlab Code for Gauss Elimination Method
Link NOC:Scientific Computing using Matlab Lecture 22 - LU Decomposition Method for Solving Linear System of Equations
Link NOC:Scientific Computing using Matlab Lecture 23 - LU Decomposition Method for Solving Linear System of Equations (Continued...)
Link NOC:Scientific Computing using Matlab Lecture 24 - Iterative Method for Solving Linear System of Equations
Link NOC:Scientific Computing using Matlab Lecture 25 - Iterative Method for Solving Linear System of Equations (Continued...)
Link NOC:Scientific Computing using Matlab Lecture 26 - Matlab Code for Gauss Jacobi Method
Link NOC:Scientific Computing using Matlab Lecture 27 - Matlab Code for Gauss Seidel Method
Link NOC:Scientific Computing using Matlab Lecture 28 - Matlab Code for Gauss Seidel Method
Link NOC:Scientific Computing using Matlab Lecture 29 - Power Method for Solving Eigenvalues of a Matrix
Link NOC:Scientific Computing using Matlab Lecture 30 - Power Method for Solving Eigenvalues of a Matrix (Continued...)
Link NOC:Scientific Computing using Matlab Lecture 31 - Gershgorin Circle Theorem for Estimating Eigenvalues of a Matrix
Link NOC:Scientific Computing using Matlab Lecture 32 - Gershgorin Circle Theorem for Estimating Eigenvalues of a Matrix
Link NOC:Scientific Computing using Matlab Lecture 33 - Matlab Code for Power Method/ Shifted Inverse Power Method
Link NOC:Scientific Computing using Matlab Lecture 34 - Interpolation
Link NOC:Scientific Computing using Matlab Lecture 35 - Interpolation (Continued...)
Link NOC:Scientific Computing using Matlab Lecture 36 - Interpolation (Continued...)
Link NOC:Scientific Computing using Matlab Lecture 37 - Interpolating Polynomial Using Newton's Forward Difference Formula
Link NOC:Scientific Computing using Matlab Lecture 38 - Error Estimates in Polynomial Approximation
Link NOC:Scientific Computing using Matlab Lecture 39 - Interpolating Polynomial Using Newton's Backward Difference Formula
Link NOC:Scientific Computing using Matlab Lecture 40 - Stirling's Formula and Lagrange's Interpolating Polynomial
Link NOC:Scientific Computing using Matlab Lecture 41 - In Continuation of Lagrange's Interpolating Formula
Link NOC:Scientific Computing using Matlab Lecture 42 - Interpolating Polynomial Using Newton's Divided Difference Formula
Link NOC:Scientific Computing using Matlab Lecture 43 - Examples Based on Lagrange's and Newton's Divided Difference Interpolation
Link NOC:Scientific Computing using Matlab Lecture 44 - Spline Interpolation
Link NOC:Scientific Computing using Matlab Lecture 45 - Cubic Spline
Link NOC:Scientific Computing using Matlab Lecture 46 - Cubic Spline (Continued...)
Link NOC:Scientific Computing using Matlab Lecture 47 - Curve Fitting
Link NOC:Scientific Computing using Matlab Lecture 48 - Quadratic Polynomial Fitting and Code for Lagrange's Interpolating Polynomial using Octave
Link NOC:Scientific Computing using Matlab Lecture 49 - Matlab Code for Newton's Divided Difference and Least Square Approximation
Link NOC:Scientific Computing using Matlab Lecture 50 - Matlab Code for Cubic Spline
Link NOC:Scientific Computing using Matlab Lecture 51 - Numerical Differentiation
Link NOC:Scientific Computing using Matlab Lecture 52 - Various Numerical Differentiation Formulas
Link NOC:Scientific Computing using Matlab Lecture 53 - Higher Order Accurate Numerical Differentiation Formula For First Order Derivative
Link NOC:Scientific Computing using Matlab Lecture 54 - Higher Order Accurate Numerical Differentiation Formula For Second Order Derivative
Link NOC:Scientific Computing using Matlab Lecture 55 - Numerical Integration
Link NOC:Scientific Computing using Matlab Lecture 56 - Trapezoidal Rule for Numerical Integration
Link NOC:Scientific Computing using Matlab Lecture 57 - Simpson's 1/3 rule for Numerical Integration
Link NOC:Scientific Computing using Matlab Lecture 58 - Simpson's 3/8 Rule for Numerical Integration
Link NOC:Scientific Computing using Matlab Lecture 59 - Method of Undetermined Coefficients
Link NOC:Scientific Computing using Matlab Lecture 60 - Octave Code for Trapezoidal and Simpson's Rule
Link NOC:Scientific Computing using Matlab Lecture 61 - Taylor Series Method for Ordinary Differential Equations
Link NOC:Scientific Computing using Matlab Lecture 62 - Linear Multistep Method (LMM) for Ordinary Differential Equations
Link NOC:Scientific Computing using Matlab Lecture 63 - Convergence and Zero Stability for LMM
Link NOC:Scientific Computing using Matlab Lecture 64 - Matlab/Octave Code for Initial Value Problems
Link NOC:Scientific Computing using Matlab Lecture 65 - Advantage of Implicit and Explicit Methods Over Each other via Matlab/Octave Codes for Initial value Problem
Link NOC:Non-parametric Statistical Inference Lecture 1
Link NOC:Non-parametric Statistical Inference Lecture 2
Link NOC:Non-parametric Statistical Inference Lecture 3
Link NOC:Non-parametric Statistical Inference Lecture 4
Link NOC:Non-parametric Statistical Inference Lecture 5
Link NOC:Non-parametric Statistical Inference Lecture 6
Link NOC:Non-parametric Statistical Inference Lecture 7
Link NOC:Non-parametric Statistical Inference Lecture 8
Link NOC:Non-parametric Statistical Inference Lecture 9
Link NOC:Non-parametric Statistical Inference Lecture 10
Link NOC:Matrix Computation and its applications Lecture 1 - Binary Operation and Groups
Link NOC:Matrix Computation and its applications Lecture 2 - Vector Spaces
Link NOC:Matrix Computation and its applications Lecture 3 - Some Examples of Vector Spaces
Link NOC:Matrix Computation and its applications Lecture 4 - Some Examples of Vector Spaces (Continued...)
Link NOC:Matrix Computation and its applications Lecture 5 - Subspace of a Vector Space
Link NOC:Matrix Computation and its applications Lecture 6 - Spanning Set
Link NOC:Matrix Computation and its applications Lecture 7 - Properties of Subspaces
Link NOC:Matrix Computation and its applications Lecture 8 - Properties of Subspaces (Continued...)
Link NOC:Matrix Computation and its applications Lecture 9 - Linearly Independent and Dependent Vectors
Link NOC:Matrix Computation and its applications Lecture 10 - Linearly Independent and Dependent Vectors (Continued...)
Link NOC:Matrix Computation and its applications Lecture 11 - Properties of Linearly Independent and Dependent Vectors
Link NOC:Matrix Computation and its applications Lecture 12 - Properties of Linearly Independent and Dependent Vectors (Continued...)
Link NOC:Matrix Computation and its applications Lecture 13 - Basis and Dimension of a Vector Space
Link NOC:Matrix Computation and its applications Lecture 14 - Example of Basis and Standard Basis of a Vector Space
Link NOC:Matrix Computation and its applications Lecture 15 - Linear Functions
Link NOC:Matrix Computation and its applications Lecture 16 - Range Space of a Matrix and Row Reduced Echelon Form
Link NOC:Matrix Computation and its applications Lecture 17 - Row Equivalent Matrices
Link NOC:Matrix Computation and its applications Lecture 18 - Row Equivalent Matrices (Continued...)
Link NOC:Matrix Computation and its applications Lecture 19 - Null Space of a Matrix
Link NOC:Matrix Computation and its applications Lecture 20 - Four Subspaces Associated with a Given Matrix
Link NOC:Matrix Computation and its applications Lecture 21 - Four Subspaces Associated with a Given Matrix (Continued...)
Link NOC:Matrix Computation and its applications Lecture 22 - Linear Independence of the rows and columns of a Matrix
Link NOC:Matrix Computation and its applications Lecture 23 - Application of Diagonal Dominant Matrices
Link NOC:Matrix Computation and its applications Lecture 24 - Application of Zero Null Space: Interpolating Polynomial and Wronskian Matrix
Link NOC:Matrix Computation and its applications Lecture 25 - Characterization of basic of a Vector Space and its Subspaces
Link NOC:Matrix Computation and its applications Lecture 26 - Coordinate of a Vector with respect to Ordered Basis
Link NOC:Matrix Computation and its applications Lecture 27 - Examples of different subspaces of a vector space of polynomials having degree less than or equal to 3
Link NOC:Matrix Computation and its applications Lecture 28 - Linear Transformation
Link NOC:Matrix Computation and its applications Lecture 29 - Properties of Linear Transformation
Link NOC:Matrix Computation and its applications Lecture 30 - Determining Linear Transformation on a Vector Space by its value on the basis element
Link NOC:Matrix Computation and its applications Lecture 31 - Range space and null space of a Linear Transformation
Link NOC:Matrix Computation and its applications Lecture 32 - Rank and Nuility of a Linear Transformation
Link NOC:Matrix Computation and its applications Lecture 33 - Rank Nuility Theorem
Link NOC:Matrix Computation and its applications Lecture 34 - Application of Rank Nuility Theorem and Inverse of a Linear Transformation
Link NOC:Matrix Computation and its applications Lecture 35 - Matrix Associated with Linear Transformation
Link NOC:Matrix Computation and its applications Lecture 36 - Matrix Representation of a Linear Transformation Relative to Ordered Bases
Link NOC:Matrix Computation and its applications Lecture 37 - Matrix Representation of a Linear Transformation Relative to Ordered Bases (Continued...)
Link NOC:Matrix Computation and its applications Lecture 38 - Linear Map Associated with a Matrix
Link NOC:Matrix Computation and its applications Lecture 39 - Similar Matrices and Diagonalisation of Matrix
Link NOC:Matrix Computation and its applications Lecture 40 - Orthonormal bases of a Vector Space
Link NOC:Matrix Computation and its applications Lecture 41 - Gram-Schmidt Orthogonalisation Process
Link NOC:Matrix Computation and its applications Lecture 42 - QR Factorisation
Link NOC:Matrix Computation and its applications Lecture 43 - Inner Product Spaces
Link NOC:Matrix Computation and its applications Lecture 44 - Inner Product of different real vector spaces and basics of complex vector space
Link NOC:Matrix Computation and its applications Lecture 45 - Inner Product on complex vector spaces and Cauchy-Schwarz inequality
Link NOC:Matrix Computation and its applications Lecture 46 - Norm of a Vector
Link NOC:Matrix Computation and its applications Lecture 47 - Matrix Norm
Link NOC:Matrix Computation and its applications Lecture 48 - Sensitivity Analysis of a System of Linear Equations
Link NOC:Matrix Computation and its applications Lecture 49 - Orthoganality of the four subspaces associated with a matrix
Link NOC:Matrix Computation and its applications Lecture 50 - Best Approximation: Least Square Method
Link NOC:Matrix Computation and its applications Lecture 51 - Best Approximation: Least Square Method (Continued...)
Link NOC:Matrix Computation and its applications Lecture 52 - Jordan-Canonical Form
Link NOC:Matrix Computation and its applications Lecture 53 - Some examples on the Jordan form of a given matrix and generalised eigon vectors
Link NOC:Matrix Computation and its applications Lecture 54 - Singular value decomposition (SVD) theorem
Link NOC:Matrix Computation and its applications Lecture 55 - Matlab/Octave code for Solving SVD
Link NOC:Matrix Computation and its applications Lecture 56 - Pseudo-Inverse/Moore-Penrose Inverse
Link NOC:Matrix Computation and its applications Lecture 57 - Householder Transformation
Link NOC:Matrix Computation and its applications Lecture 58 - Matlab/Octave code for Householder Transformation
Link NOC:Introduction to Probability Theory and Statistics Lecture 1 - Random experiment, sample space, axioms of probability, probability space
Link NOC:Introduction to Probability Theory and Statistics Lecture 2 - Random experiment, sample space, axioms of probability, probability space (Continued...)
Link NOC:Introduction to Probability Theory and Statistics Lecture 3 - Random experiment, sample space, axioms of probability, probability space (Continued...)
Link NOC:Introduction to Probability Theory and Statistics Lecture 4 - Conditional probability, independence of events
Link NOC:Introduction to Probability Theory and Statistics Lecture 5 - Multiplication rule, total probability rule, Bayes's theorem
Link NOC:Introduction to Probability Theory and Statistics Lecture 6 - Definition of Random Variable, Cumulative Distribution Function
Link NOC:Introduction to Probability Theory and Statistics Lecture 7 - Definition of Random Variable, Cumulative Distribution Function (Continued...)
Link NOC:Introduction to Probability Theory and Statistics Lecture 8 - Definition of Random Variable, Cumulative Distribution Function (Continued...)
Link NOC:Introduction to Probability Theory and Statistics Lecture 9 - Type of Random Variables, Probability Mass Function, Probability Density Function
Link NOC:Introduction to Probability Theory and Statistics Lecture 10 - Type of Random Variables, Probability Mass Function, Probability Density Function (Continued...)
Link NOC:Introduction to Probability Theory and Statistics Lecture 11 - Distribution of Function of Random Variables
Link NOC:Introduction to Probability Theory and Statistics Lecture 12 - Mean and Variance
Link NOC:Introduction to Probability Theory and Statistics Lecture 13 - Mean and Variance (Continued...)
Link NOC:Introduction to Probability Theory and Statistics Lecture 14 - Higher Order Moments and Moments Inequalities
Link NOC:Introduction to Probability Theory and Statistics Lecture 15 - Higher Order Moments and Moments Inequalities (Continued...)
Link NOC:Introduction to Probability Theory and Statistics Lecture 16 - Generating Functions
Link NOC:Introduction to Probability Theory and Statistics Lecture 17 - Generating Functions (Continued...)
Link NOC:Introduction to Probability Theory and Statistics Lecture 18 - Common Discrete Distributions
Link NOC:Introduction to Probability Theory and Statistics Lecture 19 - Common Discrete Distributions (Continued...)
Link NOC:Introduction to Probability Theory and Statistics Lecture 20 - Common Continuous Distributions
Link NOC:Introduction to Probability Theory and Statistics Lecture 21 - Common Continuous Distributions (Continued...)
Link NOC:Introduction to Probability Theory and Statistics Lecture 22 - Applications of Random Variable
Link NOC:Introduction to Probability Theory and Statistics Lecture 23 - Applications of Random Variable (Continued...)
Link NOC:Introduction to Probability Theory and Statistics Lecture 24 - Random vector and joint distribution
Link NOC:Introduction to Probability Theory and Statistics Lecture 25 - Joint probability mass function
Link NOC:Introduction to Probability Theory and Statistics Lecture 26 - Joint probability density function
Link NOC:Introduction to Probability Theory and Statistics Lecture 27 - Independent random variables
Link NOC:Introduction to Probability Theory and Statistics Lecture 28 - Independent random variables (Continued...)
Link NOC:Introduction to Probability Theory and Statistics Lecture 29 - Functions of several random variables
Link NOC:Introduction to Probability Theory and Statistics Lecture 30 - Functions of several random variables (Continued...)
Link NOC:Introduction to Probability Theory and Statistics Lecture 31 - Some important results
Link NOC:Introduction to Probability Theory and Statistics Lecture 32 - Order statistics
Link NOC:Introduction to Probability Theory and Statistics Lecture 33 - Conditional distributions
Link NOC:Introduction to Probability Theory and Statistics Lecture 34 - Random sum
Link NOC:Introduction to Probability Theory and Statistics Lecture 35 - Moments and Covariance
Link NOC:Introduction to Probability Theory and Statistics Lecture 36 - Variance Covariance matrix
Link NOC:Introduction to Probability Theory and Statistics Lecture 37 - Multivariate Normal distribution
Link NOC:Introduction to Probability Theory and Statistics Lecture 38 - Probability generating function and Moment generating function
Link NOC:Introduction to Probability Theory and Statistics Lecture 39 - Correlation coefficient
Link NOC:Introduction to Probability Theory and Statistics Lecture 40 - Conditional Expectation
Link NOC:Introduction to Probability Theory and Statistics Lecture 41 - Conditional Expectation (Continued...)
Link NOC:Introduction to Probability Theory and Statistics Lecture 42 - Mode of Convergence
Link NOC:Introduction to Probability Theory and Statistics Lecture 43 - Mode of Convergence (Continued...)
Link NOC:Introduction to Probability Theory and Statistics Lecture 44 - Law of Large Numbers
Link NOC:Introduction to Probability Theory and Statistics Lecture 45 - Central Limit Theorem
Link NOC:Introduction to Probability Theory and Statistics Lecture 46 - Central Limit Theorem (Continued...)
Link NOC:Introduction to Probability Theory and Statistics Lecture 47 - Descriptive Statistics and Sampling Distributions
Link NOC:Introduction to Probability Theory and Statistics Lecture 48 - Descriptive Statistics and Sampling Distributions (Continued...)
Link NOC:Introduction to Probability Theory and Statistics Lecture 49 - Descriptive Statistics and Sampling Distributions (Continued...)
Link NOC:Introduction to Probability Theory and Statistics Lecture 50 - Point estimation
Link NOC:Introduction to Probability Theory and Statistics Lecture 51 - Methods of Point estimation
Link NOC:Introduction to Probability Theory and Statistics Lecture 52 - Interval Estimation
Link NOC:Introduction to Probability Theory and Statistics Lecture 53 - Testing of Statistical Hypothesis
Link NOC:Introduction to Probability Theory and Statistics Lecture 54 - Nonparametric Statistical Tests
Link NOC:Introduction to Probability Theory and Statistics Lecture 55 - Analysis of Variance
Link NOC:Introduction to Probability Theory and Statistics Lecture 56 - Correlation
Link NOC:Introduction to Probability Theory and Statistics Lecture 57 - Regression
Link NOC:Introduction to Probability Theory and Statistics Lecture 58 - Logistic Regression
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 1 - Random Experiment, Sample Space and Sigma Field
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 2 - Axiomatic Definition of Probability
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 3 - Properties of Axiomatic Definition of Probability and Classical Definition of Probability
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 4 - Conditional Probability, Independent Events and Baye's Rule
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 5 - Definition of Random Variable
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 6 - Cumulative Distribution Function
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 7 - Discrete and Continuous Type Random Variables
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 8 - Mixed Type Random Variable
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 9 - Function of a Random Variable
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 10 - Mean
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 11 - Variance and Higher Order Moments
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 12 - Inequalities of Markov and Chebyshev
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 13 - Generating Functions
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 14 - Standard Discrete Distributions
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 15 - Standard Discrete Distributions (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 16 - Standard Continuous Distributions
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 17 - Standard Continuous Distributions (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 18 - Definition and Joint Distribution of a Random Vector
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 19 - Joint Probability Mass Function
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 20 - Joint Probability Density Function
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 21 - Independent Random Vector
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 22 - Distribution of Functions of Random Variables (Discrete Type)
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 23 - Distribution of Functions of Random Variables (Continuous Type)
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 24 - Conditional Distribution of Random Variables (Discrete Type)
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 25 - Conditional Distribution of Random Variables (Continuous Type)
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 26 - Expectation for Several Random Variables
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 27 - Covariance and Correlation Coefficient
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 28 - Generating Functions for Several Random Variables
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 29 - Conditional Expectation
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 30 - Modes of Convergence
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 31 - Modes of Convergence (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 32 - Law of Large Numbers
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 33 - Central Limit Theorem
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 34 - Definition and Classification of Stochastic Processes
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 35 - Properties of Stochastic Processes
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 36 - Properties of Stochastic Processes (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 37 - Standard Simple Stochastic Processes
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 38 - Definition of Discrete Time Markov Chain (DTMC)
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 39 - Chapman-Kolmogorov Equation
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 40 - Classification of States
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 41 - Classification of States (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 42 - Limiting Distribution
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 43 - Stationary Distribution
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 44 - Reducible Markov Chains
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 45 - Definition of Continuous Time Markov Chain (CTMC)
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 46 - Infinitesimal Generator Matrix
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 47 - Kolmogorov Differential Equations
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 48 - Limiting Distribution and Steady-State Distribution
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 49 - Birth Death Processes
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 50 - Introduction to Queueing Models and Kendall Notation
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 51 - Single-Server Queueing Models
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 52 - Single-Server Queueing Models (Continued...)
Link NOC:Introduction to Probability Theory and Stochastic Processes (Tamil) Lecture 53 - Multi-Server Queueing Models
Link Formal Languages and Automata Theory Lecture 1 - Introduction
Link Formal Languages and Automata Theory Lecture 2 - Alphabet, Strings, Languages
Link Formal Languages and Automata Theory Lecture 3 - Finite Representation
Link Formal Languages and Automata Theory Lecture 4 - Grammars (CFG)
Link Formal Languages and Automata Theory Lecture 5 - Derivation Trees
Link Formal Languages and Automata Theory Lecture 6 - Regular Grammars
Link Formal Languages and Automata Theory Lecture 7 - Finite Automata
Link Formal Languages and Automata Theory Lecture 8 - Nondeterministic Finite Automata
Link Formal Languages and Automata Theory Lecture 9 - NFA <=> DFA
Link Formal Languages and Automata Theory Lecture 10 - Myhill-Nerode Theorem
Link Formal Languages and Automata Theory Lecture 11 - Minimization
Link Formal Languages and Automata Theory Lecture 12 - RE => FA
Link Formal Languages and Automata Theory Lecture 13 - FA => RE
Link Formal Languages and Automata Theory Lecture 14 - FA <=> RG
Link Formal Languages and Automata Theory Lecture 15 - Variants of FA
Link Formal Languages and Automata Theory Lecture 16 - Closure Properties of RL
Link Formal Languages and Automata Theory Lecture 17 - Homomorphism
Link Formal Languages and Automata Theory Lecture 18 - Pumping Lemma
Link Formal Languages and Automata Theory Lecture 19 - Simplification of CFG
Link Formal Languages and Automata Theory Lecture 20 - Normal Forms of CFG
Link Formal Languages and Automata Theory Lecture 21 - Properties of CFLs
Link Formal Languages and Automata Theory Lecture 22 - Pushdown Automata
Link Formal Languages and Automata Theory Lecture 23 - PDA <=> CFG
Link Formal Languages and Automata Theory Lecture 24 - Turing Machines
Link Formal Languages and Automata Theory Lecture 25 - Turing Computable Functions
Link Formal Languages and Automata Theory Lecture 26 - Combining Turing Machines
Link Formal Languages and Automata Theory Lecture 27 - Multi Input
Link Formal Languages and Automata Theory Lecture 28 - Turing Decidable Languages
Link Formal Languages and Automata Theory Lecture 29 - Varients of Turing Machines
Link Formal Languages and Automata Theory Lecture 30 - Structured Grammars
Link Formal Languages and Automata Theory Lecture 31 - Decidability
Link Formal Languages and Automata Theory Lecture 32 - Undecidability 1
Link Formal Languages and Automata Theory Lecture 33 - Undecidability 2
Link Formal Languages and Automata Theory Lecture 34 - Undecidability 3
Link Formal Languages and Automata Theory Lecture 35 - Time Bounded Turing Machines
Link Formal Languages and Automata Theory Lecture 36 - P and NP
Link Formal Languages and Automata Theory Lecture 37 - NP-Completeness
Link Formal Languages and Automata Theory Lecture 38 - NP-Complete Problems 1
Link Formal Languages and Automata Theory Lecture 39 - NP-Complete Problems 2
Link Formal Languages and Automata Theory Lecture 40 - NP-Complete Problems 3
Link Formal Languages and Automata Theory Lecture 41 - Chomsky Hierarchy
Link Complex Analysis Lecture 1 - Introduction
Link Complex Analysis Lecture 2 - Introduction to Complex Numbers
Link Complex Analysis Lecture 3 - de Moivre’s Formula and Stereographic Projection
Link Complex Analysis Lecture 4 - Topology of the Complex Plane - Part-I
Link Complex Analysis Lecture 5 - Topology of the Complex Plane - Part-II
Link Complex Analysis Lecture 6 - Topology of the Complex Plane - Part-III
Link Complex Analysis Lecture 7 - Introduction to Complex Functions
Link Complex Analysis Lecture 8 - Limits and Continuity
Link Complex Analysis Lecture 9 - Differentiation
Link Complex Analysis Lecture 10 - Cauchy-Riemann Equations and Differentiability
Link Complex Analysis Lecture 11 - Analytic functions; the exponential function
Link Complex Analysis Lecture 12 - Sine, Cosine and Harmonic functions
Link Complex Analysis Lecture 13 - Branches of Multifunctions; Hyperbolic Functions
Link Complex Analysis Lecture 14 - Problem Solving Session I
Link Complex Analysis Lecture 15 - Integration and Contours
Link Complex Analysis Lecture 16 - Contour Integration
Link Complex Analysis Lecture 17 - Introduction to Cauchy’s Theorem
Link Complex Analysis Lecture 18 - Cauchy’s Theorem for a Rectangle
Link Complex Analysis Lecture 19 - Cauchy’s theorem - Part-II
Link Complex Analysis Lecture 20 - Cauchy’s Theorem - Part-III
Link Complex Analysis Lecture 21 - Cauchy’s Integral Formula and its Consequences
Link Complex Analysis Lecture 22 - The First and Second Derivatives of Analytic Functions
Link Complex Analysis Lecture 23 - Morera’s Theorem and Higher Order Derivatives of Analytic Functions
Link Complex Analysis Lecture 24 - Problem Solving Session II
Link Complex Analysis Lecture 25 - Introduction to Complex Power Series
Link Complex Analysis Lecture 26 - Analyticity of Power Series
Link Complex Analysis Lecture 27 - Taylor’s Theorem
Link Complex Analysis Lecture 28 - Zeroes of Analytic Functions
Link Complex Analysis Lecture 29 - Counting the Zeroes of Analytic Functions
Link Complex Analysis Lecture 30 - Open mapping theorem - Part-I
Link Complex Analysis Lecture 31 - Open mapping theorem - Part-II
Link Complex Analysis Lecture 32 - Properties of Mobius Transformations - Part-I
Link Complex Analysis Lecture 33 - Properties of Mobius Transformations - Part-II
Link Complex Analysis Lecture 34 - Problem Solving Session III
Link Complex Analysis Lecture 35 - Removable Singularities
Link Complex Analysis Lecture 36 - Poles Classification of Isolated Singularities
Link Complex Analysis Lecture 37 - Essential Singularity & Introduction to Laurent Series
Link Complex Analysis Lecture 38 - Laurent’s Theorem
Link Complex Analysis Lecture 39 - Residue Theorem and Applications
Link Complex Analysis Lecture 40 - Problem Solving Session IV
Link NOC:Mathematical Finance Lecture 1 - Introduction to Financial Markets and Bonds
Link NOC:Mathematical Finance Lecture 2 - Introduction to Stocks, Futures and Forwards and Swaps
Link NOC:Mathematical Finance Lecture 3 - Introduction to Options
Link NOC:Mathematical Finance Lecture 4 - Interest Rates and Present Value
Link NOC:Mathematical Finance Lecture 5 - Present and Future Values, Annuities, Amortization and Bond Yield
Link NOC:Mathematical Finance Lecture 6 - Price Yield Curve and Term Structure of Interest Rates
Link NOC:Mathematical Finance Lecture 7 - Markowitz Theory, Return and Risk and Two Asset Portfolio
Link NOC:Mathematical Finance Lecture 8 - Minimum Variance Portfolio and Feasible Set
Link NOC:Mathematical Finance Lecture 9 - Multi Asset Portfolio, Minimum Variance Portfolio, Efficient Frontier and Minimum Variance Line
Link NOC:Mathematical Finance Lecture 10 - Minimum Variance Line (Continued), Market Portfolio
Link NOC:Mathematical Finance Lecture 11 - Capital Market Line, Capital Asset Pricing Model
Link NOC:Mathematical Finance Lecture 12 - Performance Analysis
Link NOC:Mathematical Finance Lecture 13 - No-Arbitrage Principle and Pricing of Forward Contracts
Link NOC:Mathematical Finance Lecture 14 - Futures, Options and Put-Call-Parity
Link NOC:Mathematical Finance Lecture 15 - Bounds on Options
Link NOC:Mathematical Finance Lecture 16 - Derivative Pricing in a Single Period Binomial Model
Link NOC:Mathematical Finance Lecture 17 - Derivative Pricing in Multiperiod Binomial Model
Link NOC:Mathematical Finance Lecture 18 - Derivative Pricing in Binomial Model and Path Dependent Options
Link NOC:Mathematical Finance Lecture 19 - Discrete Probability Spaces
Link NOC:Mathematical Finance Lecture 20 - Filtrations and Conditional Expectations
Link NOC:Mathematical Finance Lecture 21 - Properties of Conditional Expectations
Link NOC:Mathematical Finance Lecture 22 - Examples of Conditional Expectations, Martingales
Link NOC:Mathematical Finance Lecture 23 - Risk-Neutral Pricing of European Derivatives in Binomial Model
Link NOC:Mathematical Finance Lecture 24 - Actual and Risk-Neutral Probabilities, Markov Process, American Options
Link NOC:Mathematical Finance Lecture 25 - General Probability Spaces, Expectations, Change of Measure
Link NOC:Mathematical Finance Lecture 26 - Filtrations, Independence, Conditional Expectations
Link NOC:Mathematical Finance Lecture 27 - Brownian Motion and its Properties
Link NOC:Mathematical Finance Lecture 28 - Itô Integral and its Properties
Link NOC:Mathematical Finance Lecture 29 - Itô Formula, Itô Processes
Link NOC:Mathematical Finance Lecture 30 - Multivariable Stochastic Calculus, Stochastic Differential Equations
Link NOC:Mathematical Finance Lecture 31 - Black-Scholes-Merton (BSM) Model, BSM Equation, BSM Formula
Link NOC:Mathematical Finance Lecture 32 - Greeks, Put-Call Parity, Change of Measure
Link NOC:Mathematical Finance Lecture 33 - Girsanov Theorem, Risk-Neutral Pricing of Derivatives, BSM Formula
Link NOC:Mathematical Finance Lecture 34 - MRT and Hedging, Multidimensional Girsanov and MRT
Link NOC:Mathematical Finance Lecture 35 - Multidimensional BSM Model, Fundamental Theorems of Asset Pricing
Link NOC:Mathematical Finance Lecture 36 - BSM Model with Dividend-Paying Stocks
Link NOC:Mathematical Portfolio Theory Lecture 1 - Probability space and their properties, Random variables
Link NOC:Mathematical Portfolio Theory Lecture 2 - Mean, variance, covariance and their properties
Link NOC:Mathematical Portfolio Theory Lecture 3 - Linear regression; Binomial and normal distribution; Central Limit Theorem
Link NOC:Mathematical Portfolio Theory Lecture 4 - Financial markets
Link NOC:Mathematical Portfolio Theory Lecture 5 - Bonds and stocks
Link NOC:Mathematical Portfolio Theory Lecture 6 - Binomial and geometric Brownian motion (gBm) asset pricing models
Link NOC:Mathematical Portfolio Theory Lecture 7 - Expected return, risk and covariance of returns
Link NOC:Mathematical Portfolio Theory Lecture 8 - Expected return and risk of a portfolio; Minimum variance portfolio
Link NOC:Mathematical Portfolio Theory Lecture 9 - Multi-asset portfolio and Efficient frontier
Link NOC:Mathematical Portfolio Theory Lecture 10 - Capital Market Line and Derivation of efficient frontier
Link NOC:Mathematical Portfolio Theory Lecture 11 - Capital Asset Pricing Model and Single index model
Link NOC:Mathematical Portfolio Theory Lecture 12 - Portfolio performance analysis
Link NOC:Mathematical Portfolio Theory Lecture 13 - Utility functions and expected utility
Link NOC:Mathematical Portfolio Theory Lecture 14 - Risk preferences of investors
Link NOC:Mathematical Portfolio Theory Lecture 15 - Absolute Risk Aversion and Relative Risk Aversion
Link NOC:Mathematical Portfolio Theory Lecture 16 - Portfolio theory with utility functions
Link NOC:Mathematical Portfolio Theory Lecture 17 - Geometric Mean Return and Roy's Safety-First Criterion
Link NOC:Mathematical Portfolio Theory Lecture 18 - Kataoka's Safety-First Criterion and Telser's Safety-First Criterion
Link NOC:Mathematical Portfolio Theory Lecture 19 - Semi-variance framework
Link NOC:Mathematical Portfolio Theory Lecture 20 - Stochastic dominance; First order stochastic dominance
Link NOC:Mathematical Portfolio Theory Lecture 21 - Second order stochastic dominance and Third order stochastic dominance
Link NOC:Mathematical Portfolio Theory Lecture 22 - Discrete time model and utility function
Link NOC:Mathematical Portfolio Theory Lecture 23 - Optimal portfolio for single-period discrete time model
Link NOC:Mathematical Portfolio Theory Lecture 24 - Optimal portfolio for multi-period discrete time model; Discrete Dynamic Programming
Link NOC:Mathematical Portfolio Theory Lecture 25 - Continuous time model; Hamilton-Jacobi-Bellman PDE
Link NOC:Mathematical Portfolio Theory Lecture 26 - Hamilton-Jacobi-Bellman PDE; Duality/Martingale Approach
Link NOC:Mathematical Portfolio Theory Lecture 27 - Duality/Martingale Approach in Discrete and Continuous Time
Link NOC:Mathematical Portfolio Theory Lecture 28 - Interest rates and bonds; Duration
Link NOC:Mathematical Portfolio Theory Lecture 29 - Duration; Immunization
Link NOC:Mathematical Portfolio Theory Lecture 30 - Convexity; Hedging and Immunization
Link NOC:Mathematical Portfolio Theory Lecture 31 - Quantiles and their properties
Link NOC:Mathematical Portfolio Theory Lecture 32 - Value-at-Risk and its properties
Link NOC:Mathematical Portfolio Theory Lecture 33 - Average Value-at-Risk and its properties
Link NOC:Mathematical Portfolio Theory Lecture 34 - Asset allocation
Link NOC:Mathematical Portfolio Theory Lecture 35 - Portfolio optimization
Link NOC:Mathematical Portfolio Theory Lecture 36 - Portfolio optimization with constraints, Value-at-Risk: Estimation and backtesting
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 1 - Review of Basic Probability - I
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 2 - Review of Basic Probability - II
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 3 - Review of Basic Probability - III
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 4 - Stochastic Processes
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 5 - Definition of Markov Chain and Transition Probabilities
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 6 - Markov Property and Chapman-Kolmogorov Equations
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 7 - Chapman-Kolmogorov Equations: Examples
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 8 - Accessibility and Communication of States
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 9 - Hitting Time - I
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 10 - Hitting Time - II
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 11 - Hitting Time - III
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 12 - Strong Markov Property
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 13 - Passage Time and Excursion
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 14 - Number of Visits
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 15 - Class Property
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 16 - Transience and Recurrence of Random Walks
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 17 - Stationary Distribution - I
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 18 - Stationary Distribution - II
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 19 - Stationary Distribution - III
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 20 - Limit Theorems - I
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 21 - Limit Theorems - II
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 22 - Some Problems - I
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 23 - Some Problems - II
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 24 - Time Reversibility
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 25 - Properties of Exponential Distribution
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 26 - Some Problems
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 27 - Order Statistics
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 28 - Poisson Processes
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 29 - Poisson Thinning - I
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 30 - Poisson Thinning - II
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 31 - Conditional Arrival Times
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 32 - Independent Poisson Processes
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 33 - Some Problems
Link NOC:Discrete-time Markov Chains and Poission Processes Lecture 34 - Compound Poisson Processes
Link NOC:Introduction to Queueing Theory Lecture 0 - Prerequisite: Review of Probability
Link NOC:Introduction to Queueing Theory Lecture 1 - Queueing Systems, System Performance Measures
Link NOC:Introduction to Queueing Theory Lecture 2 - Characteristics of Queueing Systems, Kendall's Notation
Link NOC:Introduction to Queueing Theory Lecture 3 - Little's Law, General Relationships
Link NOC:Introduction to Queueing Theory Lecture 4 - Laplace and Laplace-Stieltjes Transforms, Probability Generating Functions
Link NOC:Introduction to Queueing Theory Lecture 5 - An Overview of Stochastic Processes
Link NOC:Introduction to Queueing Theory Lecture 6 - Markov Chains: Definition, Transition Probabilities
Link NOC:Introduction to Queueing Theory Lecture 7 - Classification Properties of Markov Chains
Link NOC:Introduction to Queueing Theory Lecture 8 - Long-Term Behaviour of Markov Chains
Link NOC:Introduction to Queueing Theory Lecture 9 - Exponential Distribution and its Properties, Poisson Process
Link NOC:Introduction to Queueing Theory Lecture 10 - Poisson Process and its Properties, Generalizations
Link NOC:Introduction to Queueing Theory Lecture 11 - Continuous-Time Markov Chains, Generator Matrix, Kolmogorov Equations
Link NOC:Introduction to Queueing Theory Lecture 12 - Stationary and Limiting Distributions of CTMC, Balance Equations, Birth-Death Processes
Link NOC:Introduction to Queueing Theory Lecture 13 - Birth-Death Queues: General Theory, M/M/1 Queues and their Steady State Solution
Link NOC:Introduction to Queueing Theory Lecture 14 - M/M/1 Queues: Performance Measures, PASTA Property, Waiting Time Distributions
Link NOC:Introduction to Queueing Theory Lecture 15 - M/M/c Queues, Erlang Delay Formula
Link NOC:Introduction to Queueing Theory Lecture 16 - M/M/c/K Queues
Link NOC:Introduction to Queueing Theory Lecture 17 - Erlang's Loss System, Erlang Loss Formula, Infinite-Server Queues
Link NOC:Introduction to Queueing Theory Lecture 18 - Finite-Source Queues, Engset Loss System, State-Dependent Queues, Queues with Impatience
Link NOC:Introduction to Queueing Theory Lecture 19 - Transient Solutions: M/M/1/1, Infinite-Server and M/M/1 Queues, Busy Period Analysis
Link NOC:Introduction to Queueing Theory Lecture 20 - Queues with Bulk Arrivals
Link NOC:Introduction to Queueing Theory Lecture 21 - Queues with Bulk Service
Link NOC:Introduction to Queueing Theory Lecture 22 - Erlang and Phase-Type Distributions
Link NOC:Introduction to Queueing Theory Lecture 23 - Erlangian Queues: Erlangian Arrivals, Erlangian Service Times
Link NOC:Introduction to Queueing Theory Lecture 24 - Nonpreemptive Priority Queues
Link NOC:Introduction to Queueing Theory Lecture 25 - Nonpreemptive and Preemptive Priority Queues
Link NOC:Introduction to Queueing Theory Lecture 26 - M/M/1 Retrial Queues
Link NOC:Introduction to Queueing Theory Lecture 27 - Discrete-Time Queues: Geo/Geo/1 (EAS), Geo/Geo/1 (LAS)
Link NOC:Introduction to Queueing Theory Lecture 28 - Introduction to Queueing Networks, Two-Node Network
Link NOC:Introduction to Queueing Theory Lecture 29 - Burke's Theorem, General Setup, Tandem Networks
Link NOC:Introduction to Queueing Theory Lecture 30 - Queueing Networks with Blocking, Open Jackson Networks
Link NOC:Introduction to Queueing Theory Lecture 31 - Waiting Times and Multiple Classes in Open Jackson Networks
Link NOC:Introduction to Queueing Theory Lecture 32 - Closed Jackson Networks
Link NOC:Introduction to Queueing Theory Lecture 33 - Closed Jackson Networks, Convolution Algorithm
Link NOC:Introduction to Queueing Theory Lecture 34 - Mean-Value Analysis Algorithm
Link NOC:Introduction to Queueing Theory Lecture 35 - Cyclic Queueing Networks, Extensions of Jackson Networks
Link NOC:Introduction to Queueing Theory Lecture 36 - Renewal Processes
Link NOC:Introduction to Queueing Theory Lecture 37 - Regenerative Processes, Semi-Markov Processes
Link NOC:Introduction to Queueing Theory Lecture 38 - M/G/1 Queues, The Pollaczek-Khinchin Mean Formula
Link NOC:Introduction to Queueing Theory Lecture 39 - M/G/1 Queues, The Pollaczek-Khinchin Transform Formula
Link NOC:Introduction to Queueing Theory Lecture 40 - M/G/1 Queues: Waiting Times and Busy Period
Link NOC:Introduction to Queueing Theory Lecture 41 - M/G/1/K Queues, Additional Insights on M/G/1 Queues
Link NOC:Introduction to Queueing Theory Lecture 42 - M/G/c, M/G/∞ and M/G/c/c Queues
Link NOC:Introduction to Queueing Theory Lecture 43 - G/M/1 Queues
Link NOC:Introduction to Queueing Theory Lecture 44 - G/G/1 Queues: Lindley's Integral Equation
Link NOC:Introduction to Queueing Theory Lecture 45 - G/G/1 Queues: Bounds
Link NOC:Introduction to Queueing Theory Lecture 46 - Vacation Queues: Introduction, M/M/1 Queues with Vacations
Link NOC:Introduction to Queueing Theory Lecture 47 - M/G/1 Queues with Vacations
Link Applied Multivariate Analysis Lecture 1 - Prologue
Link Applied Multivariate Analysis Lecture 2 - Basic concepts on multivariate distribution
Link Applied Multivariate Analysis Lecture 3 - Basic concepts on multivariate distribution
Link Applied Multivariate Analysis Lecture 4 - Multivariate normal distribution – I
Link Applied Multivariate Analysis Lecture 5 - Multivariate normal distribution – II
Link Applied Multivariate Analysis Lecture 6 - Multivariate normal distribution – III
Link Applied Multivariate Analysis Lecture 7 - Some problems on multivariate distributions – I
Link Applied Multivariate Analysis Lecture 8 - Some problems on multivariate distributions – II
Link Applied Multivariate Analysis Lecture 9 - Random sampling from multivariate normal distribution and Wishart distribution - I
Link Applied Multivariate Analysis Lecture 10 - Random sampling from multivariate normal distribution and Wishart distribution - II
Link Applied Multivariate Analysis Lecture 11 - Random sampling from multivariate normal distribution and Wishart distribution - III
Link Applied Multivariate Analysis Lecture 12 - Wishart distribution and it’s properties - I
Link Applied Multivariate Analysis Lecture 13 - Wishart distribution and it’s properties - II
Link Applied Multivariate Analysis Lecture 14 - Hotelling’s T2 distribution and it’s applications
Link Applied Multivariate Analysis Lecture 15 - Hotelling’s T2 distribution and various confidence intervals and regions
Link Applied Multivariate Analysis Lecture 16 - Hotelling’s T2 distribution and Profile analysis
Link Applied Multivariate Analysis Lecture 17 - Profile analysis - I
Link Applied Multivariate Analysis Lecture 18 - Profile analysis - II
Link Applied Multivariate Analysis Lecture 19 - MANOVA - I
Link Applied Multivariate Analysis Lecture 20 - MANOVA - II
Link Applied Multivariate Analysis Lecture 21 - MANOVA - III
Link Applied Multivariate Analysis Lecture 22 - MANOVA & Multiple Correlation Coefficient
Link Applied Multivariate Analysis Lecture 23 - Multiple Correlation Coefficient
Link Applied Multivariate Analysis Lecture 24 - Principal Component Analysis
Link Applied Multivariate Analysis Lecture 25 - Principal Component Analysis
Link Applied Multivariate Analysis Lecture 26 - Principal Component Analysis
Link Applied Multivariate Analysis Lecture 27 - Cluster Analysis
Link Applied Multivariate Analysis Lecture 28 - Cluster Analysis
Link Applied Multivariate Analysis Lecture 29 - Cluster Analysis
Link Applied Multivariate Analysis Lecture 30 - Cluster Analysis
Link Applied Multivariate Analysis Lecture 31 - Discriminant Analysis and Classification
Link Applied Multivariate Analysis Lecture 32 - Discriminant Analysis and Classification
Link Applied Multivariate Analysis Lecture 33 - Discriminant Analysis and Classification
Link Applied Multivariate Analysis Lecture 34 - Discriminant Analysis and Classification
Link Applied Multivariate Analysis Lecture 35 - Discriminant Analysis and Classification
Link Applied Multivariate Analysis Lecture 36 - Discriminant Analysis and Classification
Link Applied Multivariate Analysis Lecture 37 - Discriminant Analysis and Classification
Link Applied Multivariate Analysis Lecture 38 - Factor_Analysis
Link Applied Multivariate Analysis Lecture 39 - Factor_Analysis
Link Applied Multivariate Analysis Lecture 40 - Factor_Analysis
Link Applied Multivariate Analysis Lecture 41 - Cannonical Correlation Analysis
Link Applied Multivariate Analysis Lecture 42 - Cannonical Correlation Analysis
Link Applied Multivariate Analysis Lecture 43 - Cannonical Correlation Analysis
Link Applied Multivariate Analysis Lecture 44 - Cannonical Correlation Analysis
Link Calculus of Variations and Integral Equations Lecture 1 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 2 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 3 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 4 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 5 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 6 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 7 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 8 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 9 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 10 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 11 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 12 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 13 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 14 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 15 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 16 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 17 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 18 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 19 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 20 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 21 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 22 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 23 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 24 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 25 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 26 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 27 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 28 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 29 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 30 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 31 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 32 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 33 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 34 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 35 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 36 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 37 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 38 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 39 - Calculus of Variations and Integral Equations
Link Calculus of Variations and Integral Equations Lecture 40 - Calculus of Variations and Integral Equations
Link Linear programming and Extensions Lecture 1 - Introduction to Linear Programming Problems
Link Linear programming and Extensions Lecture 2 - Vector space, Linear independence and dependence, basis
Link Linear programming and Extensions Lecture 3 - Moving from one basic feasible solution to another, optimality criteria
Link Linear programming and Extensions Lecture 4 - Basic feasible solutions, existence & derivation
Link Linear programming and Extensions Lecture 5 - Convex sets, dimension of a polyhedron, Faces, Example of a polytope
Link Linear programming and Extensions Lecture 6 - Direction of a polyhedron, correspondence between bfs and extreme points
Link Linear programming and Extensions Lecture 7 - Representation theorem, LPP solution is a bfs, Assignment 1
Link Linear programming and Extensions Lecture 8 - Development of the Simplex Algorithm, Unboundedness, Simplex Tableau
Link Linear programming and Extensions Lecture 9 - Simplex Tableau & algorithm ,Cycling, Bland’s anti-cycling rules, Phase I & Phase II
Link Linear programming and Extensions Lecture 10 - Big-M method,Graphical solutions, adjacent extreme pts and adjacent bfs
Link Linear programming and Extensions Lecture 11 - Assignment 2, progress of Simplex algorithm on a polytope, bounded variable LPP
Link Linear programming and Extensions Lecture 12 - LPP Bounded variable, Revised Simplex algorithm, Duality theory, weak duality theorem
Link Linear programming and Extensions Lecture 13 - Weak duality theorem, economic interpretation of dual variables, Fundamental theorem of duality
Link Linear programming and Extensions Lecture 14 - Examples of writing the dual, complementary slackness theorem
Link Linear programming and Extensions Lecture 15 - Complementary slackness conditions, Dual Simplex algorithm, Assignment 3
Link Linear programming and Extensions Lecture 16 - Primal-dual algorithm
Link Linear programming and Extensions Lecture 17 - Problem in lecture 16, starting dual feasible solution, Shortest Path Problem
Link Linear programming and Extensions Lecture 18 - Shortest Path Problem, Primal-dual method, example
Link Linear programming and Extensions Lecture 19 - Shortest Path Problem-complexity, interpretation of dual variables, post-optimality analysis-changes in the cost vector
Link Linear programming and Extensions Lecture 20 - Assignment 4, postoptimality analysis, changes in b, adding a new constraint, changes in {aij} , Parametric analysis
Link Linear programming and Extensions Lecture 21 - Parametric LPP-Right hand side vector
Link Linear programming and Extensions Lecture 22 - Parametric cost vector LPP
Link Linear programming and Extensions Lecture 23 - Parametric cost vector LPP, Introduction to Min-cost flow problem
Link Linear programming and Extensions Lecture 24 - Mini-cost flow problem-Transportation problem
Link Linear programming and Extensions Lecture 25 - Transportation problem degeneracy, cycling
Link Linear programming and Extensions Lecture 26 - Sensitivity analysis
Link Linear programming and Extensions Lecture 27 - Sensitivity analysis
Link Linear programming and Extensions Lecture 28 - Bounded variable transportation problem, min-cost flow problem
Link Linear programming and Extensions Lecture 29 - Min-cost flow problem
Link Linear programming and Extensions Lecture 30 - Starting feasible solution, Lexicographic method for preventing cycling ,strongly feasible solution
Link Linear programming and Extensions Lecture 31 - Assignment 6, Shortest path problem, Shortest Path between any two nodes,Detection of negative cycles
Link Linear programming and Extensions Lecture 32 - Min-cost-flow Sensitivity analysis Shortest path problem sensitivity analysis
Link Linear programming and Extensions Lecture 33 - Min-cost flow changes in arc capacities , Max-flow problem, assignment 7
Link Linear programming and Extensions Lecture 34 - Problem 3 (assignment 7), Min-cut Max-flow theorem, Labelling algorithm
Link Linear programming and Extensions Lecture 35 - Max-flow - Critical capacity of an arc, starting solution for min-cost flow problem
Link Linear programming and Extensions Lecture 36 - Improved Max-flow algorithm
Link Linear programming and Extensions Lecture 37 - Critical Path Method (CPM)
Link Linear programming and Extensions Lecture 38 - Programme Evaluation and Review Technique (PERT)
Link Linear programming and Extensions Lecture 39 - Simplex Algorithm is not polynomial time- An example
Link Linear programming and Extensions Lecture 40 - Interior Point Methods
Link Convex Optimization Lecture 1 - Convex Optimization
Link Convex Optimization Lecture 2 - Convex Optimization
Link Convex Optimization Lecture 3 - Convex Optimization
Link Convex Optimization Lecture 4 - Convex Optimization
Link Convex Optimization Lecture 5 - Convex Optimization
Link Convex Optimization Lecture 6 - Convex Optimization
Link Convex Optimization Lecture 7 - Convex Optimization
Link Convex Optimization Lecture 8 - Convex Optimization
Link Convex Optimization Lecture 9 - Convex Optimization
Link Convex Optimization Lecture 10 - Convex Optimization
Link Convex Optimization Lecture 11 - Convex Optimization
Link Convex Optimization Lecture 12 - Convex Optimization
Link Convex Optimization Lecture 13 - Convex Optimization
Link Convex Optimization Lecture 14 - Convex Optimization
Link Convex Optimization Lecture 15 - Convex Optimization
Link Convex Optimization Lecture 16 - Convex Optimization
Link Convex Optimization Lecture 17 - Convex Optimization
Link Convex Optimization Lecture 18 - Convex Optimization
Link Convex Optimization Lecture 19 - Convex Optimization
Link Convex Optimization Lecture 20 - Convex Optimization
Link Convex Optimization Lecture 21 - Convex Optimization
Link Convex Optimization Lecture 22 - Convex Optimization
Link Convex Optimization Lecture 23 - Convex Optimization
Link Convex Optimization Lecture 24 - Convex Optimization
Link Convex Optimization Lecture 25 - Convex Optimization
Link Convex Optimization Lecture 26 - Convex Optimization
Link Convex Optimization Lecture 27 - Convex Optimization
Link Convex Optimization Lecture 28 - Convex Optimization
Link Convex Optimization Lecture 29 - Convex Optimization
Link Convex Optimization Lecture 30 - Convex Optimization
Link Convex Optimization Lecture 31 - Convex Optimization
Link Convex Optimization Lecture 32 - Convex Optimization
Link Convex Optimization Lecture 33 - Convex Optimization
Link Convex Optimization Lecture 34 - Convex Optimization
Link Convex Optimization Lecture 35 - Convex Optimization
Link Convex Optimization Lecture 36 - Convex Optimization
Link Convex Optimization Lecture 37 - Convex Optimization
Link Convex Optimization Lecture 38 - Convex Optimization
Link Convex Optimization Lecture 39 - Convex Optimization
Link Convex Optimization Lecture 40 - Convex Optimization
Link Convex Optimization Lecture 41 - Convex Optimization
Link Convex Optimization Lecture 42 - Convex Optimization
Link Foundations of Optimization Lecture 1 - Optimization
Link Foundations of Optimization Lecture 2 - Optimization
Link Foundations of Optimization Lecture 3 - Optimization
Link Foundations of Optimization Lecture 4 - Optimization
Link Foundations of Optimization Lecture 5 - Optimization
Link Foundations of Optimization Lecture 6 - Optimization
Link Foundations of Optimization Lecture 7 - Optimization
Link Foundations of Optimization Lecture 8 - Optimization
Link Foundations of Optimization Lecture 9 - Optimization
Link Foundations of Optimization Lecture 10 - Optimization
Link Foundations of Optimization Lecture 11 - Optimization
Link Foundations of Optimization Lecture 12 - Optimization
Link Foundations of Optimization Lecture 13 - Optimization
Link Foundations of Optimization Lecture 14 - Optimization
Link Foundations of Optimization Lecture 15 - Optimization
Link Foundations of Optimization Lecture 16 - Optimization
Link Foundations of Optimization Lecture 17 - Optimization
Link Foundations of Optimization Lecture 18 - Optimization
Link Foundations of Optimization Lecture 19 - Optimization
Link Foundations of Optimization Lecture 20 - Optimization
Link Foundations of Optimization Lecture 21 - Optimization
Link Foundations of Optimization Lecture 22 - Optimization
Link Foundations of Optimization Lecture 23 - Optimization
Link Foundations of Optimization Lecture 24 - Optimization
Link Foundations of Optimization Lecture 25 - Optimization
Link Foundations of Optimization Lecture 26 - Optimization
Link Foundations of Optimization Lecture 27 - Optimization
Link Foundations of Optimization Lecture 28 - Optimization
Link Foundations of Optimization Lecture 29 - Optimization
Link Foundations of Optimization Lecture 30 - Optimization
Link Foundations of Optimization Lecture 31 - Optimization
Link Foundations of Optimization Lecture 32 - Optimization
Link Foundations of Optimization Lecture 33 - Optimization
Link Foundations of Optimization Lecture 34 - Optimization
Link Foundations of Optimization Lecture 35 - Optimization
Link Foundations of Optimization Lecture 36 - Optimization
Link Foundations of Optimization Lecture 37 - Optimization
Link Foundations of Optimization Lecture 38 - Optimization
Link Probability Theory and Applications Lecture 1 - Basic principles of counting
Link Probability Theory and Applications Lecture 2 - Sample space, events, axioms of probability
Link Probability Theory and Applications Lecture 3 - Conditional probability, Independence of events
Link Probability Theory and Applications Lecture 4 - Random variables, cumulative density function, expected value
Link Probability Theory and Applications Lecture 5 - Discrete random variables and their distributions
Link Probability Theory and Applications Lecture 6 - Discrete random variables and their distributions
Link Probability Theory and Applications Lecture 7 - Discrete random variables and their distributions
Link Probability Theory and Applications Lecture 8 - Continuous random variables and their distributions
Link Probability Theory and Applications Lecture 9 - Continuous random variables and their distributions
Link Probability Theory and Applications Lecture 10 - Continuous random variables and their distributions
Link Probability Theory and Applications Lecture 11 - Function of random variables, Momement generating function
Link Probability Theory and Applications Lecture 12 - Jointly distributed random variables, Independent r. v. and their sums
Link Probability Theory and Applications Lecture 13 - Independent r. v. and their sums
Link Probability Theory and Applications Lecture 14 - Chi – square r. v., sums of independent normal r. v., Conditional distr
Link Probability Theory and Applications Lecture 15 - Conditional disti, Joint distr. of functions of r. v., Order statistics
Link Probability Theory and Applications Lecture 16 - Order statistics, Covariance and correlation
Link Probability Theory and Applications Lecture 17 - Covariance, Correlation, Cauchy- Schwarz inequalities, Conditional expectation
Link Probability Theory and Applications Lecture 18 - Conditional expectation, Best linear predictor
Link Probability Theory and Applications Lecture 19 - Inequalities and bounds
Link Probability Theory and Applications Lecture 20 - Convergence and limit theorems
Link Probability Theory and Applications Lecture 21 - Central limit theorem
Link Probability Theory and Applications Lecture 22 - Applications of central limit theorem
Link Probability Theory and Applications Lecture 23 - Strong law of large numbers, Joint mgf
Link Probability Theory and Applications Lecture 24 - Convolutions
Link Probability Theory and Applications Lecture 25 - Stochastic processes: Markov process
Link Probability Theory and Applications Lecture 26 - Transition and state probabilities
Link Probability Theory and Applications Lecture 27 - State prob., First passage and First return prob
Link Probability Theory and Applications Lecture 28 - First passage and First return prob. Classification of states
Link Probability Theory and Applications Lecture 29 - Random walk, periodic and null states
Link Probability Theory and Applications Lecture 30 - Reducible Markov chains
Link Probability Theory and Applications Lecture 31 - Time reversible Markov chains
Link Probability Theory and Applications Lecture 32 - Poisson Processes
Link Probability Theory and Applications Lecture 33 - Inter-arrival times, Properties of Poisson processes
Link Probability Theory and Applications Lecture 34 - Queuing Models: M/M/I, Birth and death process, Little’s formulae
Link Probability Theory and Applications Lecture 35 - Analysis of L, Lq ,W and Wq , M/M/S model
Link Probability Theory and Applications Lecture 36 - M/M/S , M/M/I/K models
Link Probability Theory and Applications Lecture 37 - M/M/I/K and M/M/S/K models
Link Probability Theory and Applications Lecture 38 - Application to reliability theory failure law
Link Probability Theory and Applications Lecture 39 - Exponential failure law, Weibull law
Link Probability Theory and Applications Lecture 40 - Reliability of systems
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 1 - Numbers
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 2 - Functions-1
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 3 - Sequence-1
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 4 - Sequence-2
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 5 - Limits and Continuity-1
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 6 - Limits and Continuity-2
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 7 - Limits And Continuity-3
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 8 - Derivative-1
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 9 - Derivative-2
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 10 - Maxima And Minima
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 11 - Mean-Value Theorem And Taylors Expansion-1
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 12 - Mean-Value Theorem And Taylors Expansion-2
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 13 - Integration-1
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 14 - Integration-2
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 15 - Integration By Parts
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 16 - Definite Integral
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 17 - Riemann Integration-1
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 18 - Riemann Integration-2
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 19 - Functions Of Two Or More Variables
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 20 - Limits And Continuity Of Functions Of Two Variable
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 21 - Differentiation Of Functions Of Two Variables-1
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 22 - Differentiation Of Functions Of Two Variables-2
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 23 - Unconstrained Minimization Of Funtions Of Two Variables
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 24 - Constrained Minimization And Lagrange Multiplier Rules
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 25 - Infinite Series-1
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 26 - Infinite Series-2
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 27 - Infinite Series-3
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 28 - Multiple Integrals-1
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 29 - Multiple Integrals-2
Link NOC:Basic Calculus for Engineers, Scientists and Economists Lecture 30 - Multiple Integrals-3
Link NOC:Probability and Stochastics for finance Lecture 1 - Basic Probability
Link NOC:Probability and Stochastics for finance Lecture 2 - Interesting Problems In Probability
Link NOC:Probability and Stochastics for finance Lecture 3 - Random variables, distribution function and independence
Link NOC:Probability and Stochastics for finance Lecture 4 - Chebyshev inequality, Borel-Cantelli Lemmas and related issues
Link NOC:Probability and Stochastics for finance Lecture 5 - Law of Large Number and Central Limit Theorem
Link NOC:Probability and Stochastics for finance Lecture 6 - Conditional Expectation - I
Link NOC:Probability and Stochastics for finance Lecture 7 - Conditional Expectation - II
Link NOC:Probability and Stochastics for finance Lecture 8 - Martingales
Link NOC:Probability and Stochastics for finance Lecture 9 - Brownian Motion - I
Link NOC:Probability and Stochastics for finance Lecture 10 - Brownian Motion - II
Link NOC:Probability and Stochastics for finance Lecture 11 - Brownian Motion - III
Link NOC:Probability and Stochastics for finance Lecture 12 - Ito Integral - I
Link NOC:Probability and Stochastics for finance Lecture 13 - Ito Integral - II
Link NOC:Probability and Stochastics for finance Lecture 14 - Ito Calculus - I
Link NOC:Probability and Stochastics for finance Lecture 15 - Ito Calculus - II
Link NOC:Probability and Stochastics for finance Lecture 16 - Ito Integral In Higher Dimension
Link NOC:Probability and Stochastics for finance Lecture 17 - Application to Ito Integral - I
Link NOC:Probability and Stochastics for finance Lecture 18 - Application to Ito Integral - II
Link NOC:Probability and Stochastics for finance Lecture 19 - Black Scholes Formula - I
Link NOC:Probability and Stochastics for finance Lecture 20 - Black Scholes Formula - II
Link NOC:Differential Calculus in Several Variables Lecture 1 - Introduction to Several Variables and Notion Of distance in Rn
Link NOC:Differential Calculus in Several Variables Lecture 2 - Countinuity And Compactness
Link NOC:Differential Calculus in Several Variables Lecture 3 - Countinuity And Connectdness
Link NOC:Differential Calculus in Several Variables Lecture 4 - Derivatives: Possible Definition
Link NOC:Differential Calculus in Several Variables Lecture 5 - Matrix Of Linear Transformation
Link NOC:Differential Calculus in Several Variables Lecture 6 - Examples for Differentiable function
Link NOC:Differential Calculus in Several Variables Lecture 7 - Sufficient condition of differentiability
Link NOC:Differential Calculus in Several Variables Lecture 8 - Chain Rule
Link NOC:Differential Calculus in Several Variables Lecture 9 - Mean Value Theorem
Link NOC:Differential Calculus in Several Variables Lecture 10 - Higher Order Derivatives
Link NOC:Differential Calculus in Several Variables Lecture 11 - Taylor's Formula
Link NOC:Differential Calculus in Several Variables Lecture 12 - Maximum And Minimum
Link NOC:Differential Calculus in Several Variables Lecture 13 - Second derivative test for maximum, minimum and saddle point
Link NOC:Differential Calculus in Several Variables Lecture 14 - We formalise the second derivative test discussed in Lecture 2 and do examples
Link NOC:Differential Calculus in Several Variables Lecture 15 - Specialisation to functions of two variables
Link NOC:Differential Calculus in Several Variables Lecture 16 - Implicit Function Theorem
Link NOC:Differential Calculus in Several Variables Lecture 17 - Implicit Function Theorem -a
Link NOC:Differential Calculus in Several Variables Lecture 18 - Application of IFT: Lagrange's Multipliers Method
Link NOC:Differential Calculus in Several Variables Lecture 19 - Application of IFT: Lagrange's Multipliers Method - b
Link NOC:Differential Calculus in Several Variables Lecture 20 - Application of IFT: Lagrange's Multipliers Method - c
Link NOC:Differential Calculus in Several Variables Lecture 21 - Application of IFT: Inverse Function Theorem - c
Link NOC:Curves and Surfaces Lecture 1 - Level curves and locus, definition of parametric curves, tangent, arc length, arc length parametrisation
Link NOC:Curves and Surfaces Lecture 2 - How much a curve is ‘curved’, signed unit normal and signed curvature, rigid motions, constant curvature
Link NOC:Curves and Surfaces Lecture 3 - Curves in R^3, principal normal and binormal, torsion
Link NOC:Curves and Surfaces Lecture 4 - Frenet-Serret formula
Link NOC:Curves and Surfaces Lecture 5 - Simple closed curve and isoperimetric inequality
Link NOC:Curves and Surfaces Lecture 6 - Surfaces and parametric surfaces, examples, regular surface and non-example of regular surface, transition maps.
Link NOC:Curves and Surfaces Lecture 7 - Transition maps of smooth surfaces, smooth function between surfaces, diffeomorphism
Link NOC:Curves and Surfaces Lecture 8 - Reparameterization
Link NOC:Curves and Surfaces Lecture 9 - Tangent, Normal
Link NOC:Curves and Surfaces Lecture 10 - Orientable surfaces
Link NOC:Curves and Surfaces Lecture 11 - Examples of Surfaces
Link NOC:Curves and Surfaces Lecture 12 - First Fundamental Form
Link NOC:Curves and Surfaces Lecture 13 - Conformal Mapping
Link NOC:Curves and Surfaces Lecture 14 - Curvature of Surfaces
Link NOC:Curves and Surfaces Lecture 15 - Euler's Theorem
Link NOC:Curves and Surfaces Lecture 16 - Regular Surfaces locally as Quadratic Surfaces
Link NOC:Curves and Surfaces Lecture 17 - Geodesics
Link NOC:Curves and Surfaces Lecture 18 - Existence of Geodesics, Geodesics on Surfaces of revolution
Link NOC:Curves and Surfaces Lecture 19 - Geodesics on surfaces of revolution; Clairaut's Theorem
Link NOC:Curves and Surfaces Lecture 20 - Pseudosphere
Link NOC:Curves and Surfaces Lecture 21 - Classification of Quadratic Surface
Link NOC:Curves and Surfaces Lecture 22 - Surface Area and Equiareal Map
Link NOC:Linear Regression Analysis and Forecasting Lecture 1 - Basic Fundamental Concepts Of Modelling
Link NOC:Linear Regression Analysis and Forecasting Lecture 2 - Regression Model - A Statistical Tool
Link NOC:Linear Regression Analysis and Forecasting Lecture 3 - Simple Linear Regression Analysis
Link NOC:Linear Regression Analysis and Forecasting Lecture 4 - Estimation Of Parameters In Simple Linear Regression Model
Link NOC:Linear Regression Analysis and Forecasting Lecture 5 - Estimation Of Parameters In Simple Linear Regression Model (Continued...) : Some Nice Properties
Link NOC:Linear Regression Analysis and Forecasting Lecture 6 - Estimation Of Parameters In Simple Linear Regression Model (Continued...)
Link NOC:Linear Regression Analysis and Forecasting Lecture 7 - Maximum Likelihood Estimation of Parameters in Simple Linear Regression Model
Link NOC:Linear Regression Analysis and Forecasting Lecture 8 - Testing of Hypotheis and Confidence Interval Estimation in Simple Linear Regression Model
Link NOC:Linear Regression Analysis and Forecasting Lecture 9 - Testing of Hypotheis and Confidence Interval Estimation in Simple Linear Regression Model (Continued...)
Link NOC:Linear Regression Analysis and Forecasting Lecture 10 - Software Implementation in Simple Linear Regression Model using MINITAB
Link NOC:Linear Regression Analysis and Forecasting Lecture 11 - Multiple Linear Regression Model
Link NOC:Linear Regression Analysis and Forecasting Lecture 12 - Estimation of Model Parameters in Multiple Linear Regression Model
Link NOC:Linear Regression Analysis and Forecasting Lecture 13 - Estimation of Model Parameters in Multiple Linear Regression Model (Continued...)
Link NOC:Linear Regression Analysis and Forecasting Lecture 14 - Standardized Regression Coefficients and Testing of Hypothesis
Link NOC:Linear Regression Analysis and Forecasting Lecture 15 - Testing of Hypothesis (Continued...) and Goodness of Fit of the Model
Link NOC:Linear Regression Analysis and Forecasting Lecture 16 - Diagnostics in Multiple Linear Regression Model
Link NOC:Linear Regression Analysis and Forecasting Lecture 17 - Diagnostics in Multiple Linear Regression Model (Continued...)
Link NOC:Linear Regression Analysis and Forecasting Lecture 18 - Diagnostics in Multiple Linear Regression Model (Continued...)
Link NOC:Linear Regression Analysis and Forecasting Lecture 19 - Software Implementation of Multiple Linear Regression Model using MINITAB
Link NOC:Linear Regression Analysis and Forecasting Lecture 20 - Software Implementation of Multiple Linear Regression Model using MINITAB (Continued...)
Link NOC:Linear Regression Analysis and Forecasting Lecture 21 - Forecasting in Multiple Linear Regression Model
Link NOC:Linear Regression Analysis and Forecasting Lecture 22 - Within Sample Forecasting
Link NOC:Linear Regression Analysis and Forecasting Lecture 23 - Outside Sample Forecasting
Link NOC:Linear Regression Analysis and Forecasting Lecture 24 - Software Implementation of Forecasting using MINITAB
Link NOC:Introduction to R Software Lecture 1 - How to Learn and Follow the Course
Link NOC:Introduction to R Software Lecture 2 - Why R and Installation Procedure
Link NOC:Introduction to R Software Lecture 3 - Introduction _Help_ Demo examples_ packages_ libraries
Link NOC:Introduction to R Software Lecture 4 - Introduction _Command line_ Data editor _ Rstudio
Link NOC:Introduction to R Software Lecture 5 - Basics in Calculations
Link NOC:Introduction to R Software Lecture 6 - Basics of Calculations _ Calculator _Built in Functions Assignments
Link NOC:Introduction to R Software Lecture 7 - Basics of Calculations _Functions _Matrices
Link NOC:Introduction to R Software Lecture 8 - Basics Calculations: Matrix Operations
Link NOC:Introduction to R Software Lecture 9 - Basics Calculations: Matrix operations
Link NOC:Introduction to R Software Lecture 10 - Basics Calculations: Missing data and logical operators
Link NOC:Introduction to R Software Lecture 11 - Basics Calculations: Logical operators
Link NOC:Introduction to R Software Lecture 12 - Basics Calculations: Truth table and conditional executions
Link NOC:Introduction to R Software Lecture 13 - Basics Calculations: Conditional executions and loops
Link NOC:Introduction to R Software Lecture 14 - Basics Calculations: Loops
Link NOC:Introduction to R Software Lecture 15 - Data management - Sequences
Link NOC:Introduction to R Software Lecture 16 - Data management - sequences
Link NOC:Introduction to R Software Lecture 17 - Data management - Repeats
Link NOC:Introduction to R Software Lecture 18 - Data management - Sorting and Ordering
Link NOC:Introduction to R Software Lecture 19 - Data management - Lists
Link NOC:Introduction to R Software Lecture 20 - Data management - Lists (Continued...)
Link NOC:Introduction to R Software Lecture 21 - Data management - Vector indexing
Link NOC:Introduction to R Software Lecture 22 - Data management - Vector Indexing (Continued...)
Link NOC:Introduction to R Software Lecture 23 - Data management - Factors
Link NOC:Introduction to R Software Lecture 24 - Data management - factors (Continued...)
Link NOC:Introduction to R Software Lecture 25 - Strings - Display and Formatting, Print and Format Functions
Link NOC:Introduction to R Software Lecture 26 - Strings - Display and Formatting, Print and Format with Concatenate
Link NOC:Introduction to R Software Lecture 27 - Strings - Display and Formatting, Paste Function
Link NOC:Introduction to R Software Lecture 28 - Strings - Display and Formatting, Splitting
Link NOC:Introduction to R Software Lecture 29 - Strings - Display and Formatting, Replacement_ Manipulations _Alphabets
Link NOC:Introduction to R Software Lecture 30 - Strings - Display and Formatting, Replacement and Evaluation of Strings
Link NOC:Introduction to R Software Lecture 31 - Data frames
Link NOC:Introduction to R Software Lecture 32 - Data frames (Continued...)
Link NOC:Introduction to R Software Lecture 33 - Data frames (Continued...)
Link NOC:Introduction to R Software Lecture 34 - Data Handling - Importing CSV and Tabular Data Files
Link NOC:Introduction to R Software Lecture 35 - Data Handling - Importing Data Files from Other Software
Link NOC:Introduction to R Software Lecture 36 - Statistical Functions - Frequency and Partition values
Link NOC:Introduction to R Software Lecture 37 - Statistical Functions - Graphics and Plots
Link NOC:Introduction to R Software Lecture 38 - Statistical Functions - Central Tendency and Variation
Link NOC:Introduction to R Software Lecture 39 - Statistical Functions - Boxplots, Skewness and Kurtosis
Link NOC:Introduction to R Software Lecture 40 - Statistical Functions - Bivariate three dimensional plot
Link NOC:Introduction to R Software Lecture 41 - Statistical Functions - Correlation and Examples of Programming
Link NOC:Introduction to R Software Lecture 42 - Examples of Programming
Link NOC:Introduction to R Software Lecture 43 - Examples of More Programming
Link NOC:Descriptive Statistics with R Software Lecture 1 - Introduction to R Software
Link NOC:Descriptive Statistics with R Software Lecture 2 - Basics and R as a Calculator
Link NOC:Descriptive Statistics with R Software Lecture 3 - Calculations with Data Vectors
Link NOC:Descriptive Statistics with R Software Lecture 4 - Built-in Commands and Missing Data Handling
Link NOC:Descriptive Statistics with R Software Lecture 5 - Operations with Matrices
Link NOC:Descriptive Statistics with R Software Lecture 6 - Objectives, Steps and Basic Definitions
Link NOC:Descriptive Statistics with R Software Lecture 7 - Variables and Types of Data
Link NOC:Descriptive Statistics with R Software Lecture 8 - Absolute Frequency, Relative Frequency and Frequency Distribution
Link NOC:Descriptive Statistics with R Software Lecture 9 - Frequency Distribution and Cumulative Distribution Function
Link NOC:Descriptive Statistics with R Software Lecture 10 - Bar Diagrams
Link NOC:Descriptive Statistics with R Software Lecture 11 - Subdivided Bar Plots and Pie Diagrams
Link NOC:Descriptive Statistics with R Software Lecture 12 - 3D Pie Diagram and Histogram
Link NOC:Descriptive Statistics with R Software Lecture 13 - Kernel Density and Stem - Leaf Plots
Link NOC:Descriptive Statistics with R Software Lecture 14 - Arithmetic Mean
Link NOC:Descriptive Statistics with R Software Lecture 15 - Median
Link NOC:Descriptive Statistics with R Software Lecture 16 - Quantiles
Link NOC:Descriptive Statistics with R Software Lecture 17 - Mode, Geometric Mean and Harmonic Mean
Link NOC:Descriptive Statistics with R Software Lecture 18 - Range, Interquartile Range and Quartile Deviation
Link NOC:Descriptive Statistics with R Software Lecture 19 - Absolute Deviation and Absolute Mean Deviation
Link NOC:Descriptive Statistics with R Software Lecture 20 - Mean Squared Error, Variance and Standard Deviation
Link NOC:Descriptive Statistics with R Software Lecture 21 - Coefficient of Variation and Boxplots
Link NOC:Descriptive Statistics with R Software Lecture 22 - Raw and Central Moments
Link NOC:Descriptive Statistics with R Software Lecture 23 - Sheppard's Correction, Absolute Moments and Computation of Moments
Link NOC:Descriptive Statistics with R Software Lecture 24 - Skewness and Kurtosis
Link NOC:Descriptive Statistics with R Software Lecture 25 - Univariate and Bivariate Scatter Plots
Link NOC:Descriptive Statistics with R Software Lecture 26 - Smooth Scatter Plots
Link NOC:Descriptive Statistics with R Software Lecture 27 - Quantile- Quantile and Three Dimensional Plots
Link NOC:Descriptive Statistics with R Software Lecture 28 - Correlation Coefficient
Link NOC:Descriptive Statistics with R Software Lecture 29 - Correlation Coefficient Using R Software
Link NOC:Descriptive Statistics with R Software Lecture 30 - Rank Correlation Coefficient
Link NOC:Descriptive Statistics with R Software Lecture 31 - Measures of Association for Discrete and Counting Variables - Part 1
Link NOC:Descriptive Statistics with R Software Lecture 32 - Measures of Association for Discrete and Counting Variables - Part 2
Link NOC:Descriptive Statistics with R Software Lecture 33 - Least Squares Method - One Variable
Link NOC:Descriptive Statistics with R Software Lecture 34 - Least Squares Method - R Commands and More than One Variables
Link NOC:Calculus of Several Real Variables Lecture 1 - Vectors in plane and space
Link NOC:Calculus of Several Real Variables Lecture 2 - Inner product and distance
Link NOC:Calculus of Several Real Variables Lecture 3 - Application to real world problems
Link NOC:Calculus of Several Real Variables Lecture 4 - Matrices and determinants
Link NOC:Calculus of Several Real Variables Lecture 5 - Cross product of two vectors
Link NOC:Calculus of Several Real Variables Lecture 6 - Higher dimensional Euclidean space
Link NOC:Calculus of Several Real Variables Lecture 7 - Functions of more than one real-variable
Link NOC:Calculus of Several Real Variables Lecture 8 - Partial derivatives and Continuity
Link NOC:Calculus of Several Real Variables Lecture 9 - Vector-valued maps and Jacobian matrix
Link NOC:Calculus of Several Real Variables Lecture 10 - Chain rule for partial derivatives
Link NOC:Calculus of Several Real Variables Lecture 11 - The Gradient Vector and Directional Derivative
Link NOC:Calculus of Several Real Variables Lecture 12 - The Implicit Function Theorem
Link NOC:Calculus of Several Real Variables Lecture 13 - Higher Order Partial Derivatives
Link NOC:Calculus of Several Real Variables Lecture 14 - Taylor's Theorem in Higher Dimension
Link NOC:Calculus of Several Real Variables Lecture 15 - Maxima and Minima for Several Variables
Link NOC:Calculus of Several Real Variables Lecture 16 - Second Derivative Test for Maximum and Minimum
Link NOC:Calculus of Several Real Variables Lecture 17 - Constrained Optimization and The Lagrange Multiplier Rule
Link NOC:Calculus of Several Real Variables Lecture 18 - Vector Valued Function and Classical Mechanics
Link NOC:Calculus of Several Real Variables Lecture 19 - Arc Length
Link NOC:Calculus of Several Real Variables Lecture 20 - Vector Fields
Link NOC:Calculus of Several Real Variables Lecture 21 - Multiple Integral - I
Link NOC:Calculus of Several Real Variables Lecture 22 - Multiple Integral - II
Link NOC:Calculus of Several Real Variables Lecture 23 - Multiple Integral - III
Link NOC:Calculus of Several Real Variables Lecture 24 - Multiple Integral - IV
Link NOC:Calculus of Several Real Variables Lecture 25 - Cylindrical and Spherical Coordinates
Link NOC:Calculus of Several Real Variables Lecture 26 - Multiple Integrals and Mechanics
Link NOC:Calculus of Several Real Variables Lecture 27 - Line Integral - I
Link NOC:Calculus of Several Real Variables Lecture 28 - Line Integral - II
Link NOC:Calculus of Several Real Variables Lecture 29 - Parametrized Surfaces
Link NOC:Calculus of Several Real Variables Lecture 30 - Area of a surface Integral
Link NOC:Calculus of Several Real Variables Lecture 31 - Area of parametrized surface
Link NOC:Calculus of Several Real Variables Lecture 32 - Surface Integrals
Link NOC:Calculus of Several Real Variables Lecture 33 - Green's Theorem
Link NOC:Calculus of Several Real Variables Lecture 34 - Stoke's Theorem
Link NOC:Calculus of Several Real Variables Lecture 35 - Examples of Stoke's Theorem
Link NOC:Calculus of Several Real Variables Lecture 36 - Gauss Divergence Theorem
Link NOC:Calculus of Several Real Variables Lecture 37 - Facts about vector fields
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 1 - Notations, Motivation and Definition
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 2 - Matrix: Examples, Transpose and Addition
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 3 - Matrix Multiplication
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 4 - Matrix Product Recalled
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 5 - Matrix Product (Continued...)
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 6 - Inverse of a Matrix
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 7 - Introduction to System of Linear Equations
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 8 - Some Initial Results on Linear Systems
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 9 - Row Echelon Form (REF)
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 10 - LU Decomposition - Simplest Form
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 11 - Elementary Matrices
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 12 - Row Reduced Echelon Form (RREF)
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 13 - Row Reduced Echelon Form (RREF) (Continued...)
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 14 - RREF and Inverse
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 15 - Rank of a matrix
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 16 - Solution Set of a System of Linear Equations
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 17 - System of n Linear Equations in n Unknowns
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 18 - Determinant
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 19 - Permutations and the Inverse of a Matrix
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 20 - Inverse and the Cramer's Rule
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 21 - Vector Spaces
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 22 - Vector Subspaces and Linear Span
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 23 - Linear Combination, Linear Independence and Dependence
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 24 - Basic Results on Linear Independence
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 25 - Results on Linear Independence (Continued...)
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 26 - Basis of a Finite Dimensional Vector Space
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 27 - Fundamental Spaces associated with a Matrix
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 28 - Rank - Nullity Theorem
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 29 - Fundamental Theorem of Linear Algebra
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 30 - Definition and Examples of Linear Transformations
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 31 - Results on Linear Transformations
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 32 - Rank-Nullity Theorem and Applications
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 33 - Isomorphism of Vector Spaces
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 34 - Ordered Basis of a Finite Dimensional Vector Space
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 35 - Ordered Basis (Continued...)
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 36 - Matrix of a Linear Transformation
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 37 - Matrix of a Linear Transformation (Continued...)
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 38 - Matrix of a Linear Transformation (Continued...)
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 39 - Similarity of Matrices
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 40 - Inner Product Space
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 41 - Inner Product (Continued...)
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 42 - Cauchy Schwartz Inequality
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 43 - Projection on a Vector
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 44 - Results on Orthogonality
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 45 - Results on Orthogonality (Continued...)
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 46 - Gram-Schmidt Orthonormalization Process
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 47 - Orthogonal Projections
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 48 - Gram-Schmidt Process: Applications
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 49 - Examples and Applications on QR-decomposition
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 50 - Recapitulate ideas on Inner Product Spaces
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 51 - Motivation on Eigenvalues and Eigenvectors
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 52 - Examples and Introduction to Eigenvalues and Eigenvectors
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 53 - Results on Eigenvalues and Eigenvectors
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 54 - Results on Eigenvalues and Eigenvectors (Continued...)
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 55 - Results on Eigenvalues and Eigenvectors (Continued...)
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 56 - Diagonalizability
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 57 - Diagonalizability (Continued...)
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 58 - Schur's Unitary Triangularization (SUT)
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 59 - Applications of Schur's Unitary Triangularization
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 60 - Spectral Theorem for Hermitian Matrices
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 61 - Cayley Hamilton Theorem
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 62 - Quadratic Forms
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 63 - Sylvester's Law of Inertia
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 64 - Applications of Quadratic Forms to Analytic Geometry
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 65 - Examples of Conics and Quartics
Link NOC:Linear Algebra (Prof. A.K. Lal) Lecture 66 - Singular Value Decomposition (SVD)
Link NOC:Computational Number Theory and Algebra Lecture 1 - Introduction: Computation and Algebra
Link NOC:Computational Number Theory and Algebra Lecture 2 - Background
Link NOC:Computational Number Theory and Algebra Lecture 3 - GCD algorithm and Chinese Remainder Theorem
Link NOC:Computational Number Theory and Algebra Lecture 4 - Fast polynomial multiplication
Link NOC:Computational Number Theory and Algebra Lecture 5 - Fast polynomial multiplication (Continued...)
Link NOC:Computational Number Theory and Algebra Lecture 6 - Fast integer multiplication and division
Link NOC:Computational Number Theory and Algebra Lecture 7 - Fast integer arithmetic and matrix multiplication
Link NOC:Computational Number Theory and Algebra Lecture 8 - Matrix Multiplication Tensor
Link NOC:Computational Number Theory and Algebra Lecture 9 - Polynomial factoring over finite fields: Irreducibility testing
Link NOC:Computational Number Theory and Algebra Lecture 10 - Equi-degree factorization and idea of Berlekamp's algorithm
Link NOC:Computational Number Theory and Algebra Lecture 11 - Berlekamp's algorithm as a reduction method
Link NOC:Computational Number Theory and Algebra Lecture 12 - Factoring over finite fields: Cantor-Zassenhaus algorithm
Link NOC:Computational Number Theory and Algebra Lecture 13 - Reed Solomon Error Correcting Codes
Link NOC:Computational Number Theory and Algebra Lecture 14 - List Decoding
Link NOC:Computational Number Theory and Algebra Lecture 15 - Bivariate Factorization - Hensel Lifting
Link NOC:Computational Number Theory and Algebra Lecture 16 - Bivariate polynomial factoring (Continued...)
Link NOC:Computational Number Theory and Algebra Lecture 17 - Multivariate Polynomial Factorization
Link NOC:Computational Number Theory and Algebra Lecture 18 - Multivariate Factoring - Hilbert's Irreducibility Theorem
Link NOC:Computational Number Theory and Algebra Lecture 19 - Multivariate factoring (Continued...)
Link NOC:Computational Number Theory and Algebra Lecture 20 - Analysis of LLL algorithm
Link NOC:Computational Number Theory and Algebra Lecture 21 - Analysis of LLL algorithm (Continued...)
Link NOC:Computational Number Theory and Algebra Lecture 22 - Analysis of LLL-reduced basis algorithm and Introduction to NTRU cryptosystem
Link NOC:Computational Number Theory and Algebra Lecture 23 - NTRU cryptosystem (Continued...) and Introduction to Primality testing
Link NOC:Computational Number Theory and Algebra Lecture 24 - Randomized Primality testing: Solovay-Strassen and Miller-Rabin tests
Link NOC:Computational Number Theory and Algebra Lecture 25 - Deterministic primality test (AKS) and RSA cryptosystem
Link NOC:Computational Number Theory and Algebra Lecture 26 - Integer factoring: Smooth numbers and Pollard's rho method
Link NOC:Computational Number Theory and Algebra Lecture 27 - Pollard's p-1, Fermat, Morrison-Brillhart, Quadratic and Number field sieve methods
Link NOC:Basic Calculus 1 and 2 Lecture 1 - Real numbers and Archimedean property
Link NOC:Basic Calculus 1 and 2 Lecture 2 - Supremum and Decimal representation of Reals
Link NOC:Basic Calculus 1 and 2 Lecture 3 - Functions
Link NOC:Basic Calculus 1 and 2 Lecture 4 - Functions continued and Limits
Link NOC:Basic Calculus 1 and 2 Lecture 5 - Limits (Continued...)
Link NOC:Basic Calculus 1 and 2 Lecture 6 - Limits (Continued...) and Continuity
Link NOC:Basic Calculus 1 and 2 Lecture 7 - Continuity and Intermediate Value Property
Link NOC:Basic Calculus 1 and 2 Lecture 8 - Differentiation
Link NOC:Basic Calculus 1 and 2 Lecture 9 - Chain Rule
Link NOC:Basic Calculus 1 and 2 Lecture 10 - Nth derivative of a function
Link NOC:Basic Calculus 1 and 2 Lecture 11 - Local extrema and Rolle's theorem
Link NOC:Basic Calculus 1 and 2 Lecture 12 - Mean value theorem and Monotone functions
Link NOC:Basic Calculus 1 and 2 Lecture 13 - Local extremum tests
Link NOC:Basic Calculus 1 and 2 Lecture 14 - Concavity and points of inflection
Link NOC:Basic Calculus 1 and 2 Lecture 15 - Asymptotes and plotting graph of functions
Link NOC:Basic Calculus 1 and 2 Lecture 16 - Optimization and L'Hospital Rule
Link NOC:Basic Calculus 1 and 2 Lecture 17 - L'Hospital Rule continued and Cauchy Mean value theorem
Link NOC:Basic Calculus 1 and 2 Lecture 18 - Approximation of Roots
Link NOC:Basic Calculus 1 and 2 Lecture 19 - Antiderivative and Riemann Integration
Link NOC:Basic Calculus 1 and 2 Lecture 20 - Riemann's criterion for Integrability
Link NOC:Basic Calculus 1 and 2 Lecture 21 - Integration and its properties
Link NOC:Basic Calculus 1 and 2 Lecture 22 - Area and Mean value theorem for integrals
Link NOC:Basic Calculus 1 and 2 Lecture 23 - Fundamental theorem of Calculus
Link NOC:Basic Calculus 1 and 2 Lecture 24 - Integration by parts and Trapezoidal rule
Link NOC:Basic Calculus 1 and 2 Lecture 25 - Simpson's rule and Substitution in integrals
Link NOC:Basic Calculus 1 and 2 Lecture 26 - Area between curves
Link NOC:Basic Calculus 1 and 2 Lecture 27 - Arc Length and Parametric curves
Link NOC:Basic Calculus 1 and 2 Lecture 28 - Polar Co-ordinates
Link NOC:Basic Calculus 1 and 2 Lecture 29 - Area of curves in polar coordinates
Link NOC:Basic Calculus 1 and 2 Lecture 30 - Volume of solids
Link NOC:Basic Calculus 1 and 2 Lecture 31 - Improper Integrals
Link NOC:Basic Calculus 1 and 2 Lecture 32 - Sequences
Link NOC:Basic Calculus 1 and 2 Lecture 33 - Algebra of sequences and Sandwich theorem
Link NOC:Basic Calculus 1 and 2 Lecture 34 - Subsequences
Link NOC:Basic Calculus 1 and 2 Lecture 35 - Series
Link NOC:Basic Calculus 1 and 2 Lecture 36 - Comparison tests for Series
Link NOC:Basic Calculus 1 and 2 Lecture 37 - Ratio and Root test for series
Link NOC:Basic Calculus 1 and 2 Lecture 38 - Integral test and Leibniz test for series
Link NOC:Basic Calculus 1 and 2 Lecture 39 - Revision - I
Link NOC:Basic Calculus 1 and 2 Lecture 40 - Revision - II
Link NOC:Advanced Partial Differential Equations Lecture 1
Link NOC:Advanced Partial Differential Equations Lecture 2
Link NOC:Advanced Partial Differential Equations Lecture 3
Link NOC:Advanced Partial Differential Equations Lecture 4
Link NOC:Advanced Partial Differential Equations Lecture 5
Link NOC:Advanced Partial Differential Equations Lecture 6
Link NOC:Advanced Partial Differential Equations Lecture 7
Link NOC:Advanced Partial Differential Equations Lecture 8
Link NOC:Advanced Partial Differential Equations Lecture 9
Link NOC:Advanced Partial Differential Equations Lecture 10
Link NOC:Advanced Partial Differential Equations Lecture 11
Link NOC:Advanced Partial Differential Equations Lecture 12
Link NOC:Advanced Partial Differential Equations Lecture 13
Link NOC:Advanced Partial Differential Equations Lecture 14
Link NOC:Advanced Partial Differential Equations Lecture 15
Link NOC:Advanced Partial Differential Equations Lecture 16
Link NOC:Advanced Partial Differential Equations Lecture 17
Link NOC:Advanced Partial Differential Equations Lecture 18
Link NOC:Advanced Partial Differential Equations Lecture 19
Link NOC:Advanced Partial Differential Equations Lecture 20
Link NOC:Advanced Partial Differential Equations Lecture 21
Link NOC:Advanced Partial Differential Equations Lecture 22
Link NOC:Advanced Partial Differential Equations Lecture 23
Link NOC:Advanced Partial Differential Equations Lecture 24
Link NOC:Advanced Partial Differential Equations Lecture 25
Link NOC:Advanced Partial Differential Equations Lecture 26
Link NOC:Advanced Partial Differential Equations Lecture 27
Link NOC:Advanced Partial Differential Equations Lecture 28
Link NOC:Advanced Partial Differential Equations Lecture 29
Link NOC:Advanced Partial Differential Equations Lecture 30
Link NOC:Advanced Partial Differential Equations Lecture 31
Link NOC:Advanced Partial Differential Equations Lecture 32
Link NOC:Advanced Partial Differential Equations Lecture 33
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 1 - Data Science - Why, What, and How?
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 2 - Installation and Working with R
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 3 - Installation and Working with R Studio
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 4 - Calculations with R as a Calculator
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 5 - Calculations with Data Vectors
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 6 - Built-in Commands and Bivariate Plots
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 7 - Logical Operators and Selection of Sample
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 8 - Introduction to Probability
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 9 - Sample Space and Events
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 10 - Set Theory and Events using Venn Diagrams
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 11 - Relative Frequency and Probability
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 12 - Probability and Relative Frequency - An Example
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 13 - Axiomatic Definition of Probability
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 14 - Some Rules of Probability
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 15 - Basic Principles of Counting - Ordered Set, Unordered Set, and Permutations
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 16 - Basic Principles of Counting - Combination
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 17 - Conditional Probability
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 18 - Multiplication Theorem of Probability
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 19 - Bayes' Theorem
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 20 - Independent Events
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 21 - Computation of Probability using R
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 22 - Random Variables - Discrete and Continuous
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 23 - Cumulative Distribution and Probability Density Function
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 24 - Discrete Random Variables, Probability Mass Function and Cumulative Distribution Function
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 25 - Expectation of Variables
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 26 - Moments and Variance
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 27 - Data Based Moments and Variance in R Software
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 28 - Skewness and Kurtosis
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 29 - Quantiles and Tschebyschev’s Inequality
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 30 - Degenerate and Discrete Uniform Distributions
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 31 - Discrete Uniform Distribution in R
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 32 - Bernoulli and Binomial Distribution
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 33 - Binomial Distribution in R
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 34 - Poisson Distribution
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 35 - Poisson Distribution in R
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 36 - Geometric Distribution
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 37 - Geometric Distribution in R
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 38 - Continuous Random Variables and Uniform Distribution
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 39 - Normal Distribution
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 40 - Normal Distribution in R
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 41 - Normal Distribution - More Results
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 42 - Exponential Distribution
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 43 - Bivariate Probability Distribution for Discrete Random Variables
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 44 - Bivariate Probability Distribution in R Software
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 45 - Bivariate Probability Distribution for Continuous Random Variables
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 46 - Examples in Bivariate Probability Distribution Functions
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 47 - Covariance and Correlation
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 48 - Covariance and Correlation ‐ Examples and R Software
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 49 - Bivariate Normal Distribution
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 50 - Chi square Distribution
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 51 - t-Distribution
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 52 - F-Distribution
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 53 - Distribution of Sample Mean, Convergence in Probability and Weak Law of Large Numbers
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 54 - Central Limit Theorem
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 55 - Needs for Drawing Statistical Inferences
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 56 - Unbiased Estimators
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 57 - Efficiency of Estimators
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 58 - Cramér–Rao Lower Bound and Efficiency of Estimators
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 59 - Consistency and Sufficiency of Estimators
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 60 - Method of Moments
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 61 - Method of Maximum Likelihood and Rao Blackwell Theorem
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 62 - Basic Concepts of Confidence Interval Estimation
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 63 - Confidence Interval for Mean in One Sample with Known Variance
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 64 - Confidence Interval for Mean and Variance
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 65 - Basics of Tests of Hypothesis and Decision Rules
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 66 - Test Procedures for One Sample Test for Mean with Known Variance
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 67 - One Sample Test for Mean with Unknown Variance
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 68 - Two Sample Test for Mean with Known and Unknown Variances
Link NOC:Essentials of Data Science With R Software 1: Probability and Statistical Inference Lecture 69 - Test of Hypothesis for Variance in One and Two Samples
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 1 - What is Data Science ?
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 2 - Installation and Working with R
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 3 - Calculations with R as a Calculator
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 4 - Calculations with Data Vectors
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 5 - Built-in Commands and Missing Data Handling
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 6 - Operations with Matrices
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 7 - Data Handling
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 8 - Graphics and Plots
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 9 - Sampling, Sampling Unit, Population and Sample
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 10 - Terminologies and Concepts
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 11 - Ensuring Representativeness and Type of Surveys
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 12 - Conducting Surveys and Ensuring Representativeness
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 13 - SRSWOR, SRSWR, and Selection of Unit - 1
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 14 - SRSWOR, SRSWR, and Selection of Unit - 2
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 15 - Probabilities of Selection of Samples
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 16 - SRSWOR and SRSWR with R with sample Package
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 17 - Examples of SRS with R using sample Package
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 18 - Simple Random Sampling : SRS with R using sampling and sample Packages
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 19 - Simple Random Sampling : Estimation of Population Mean
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 20 - Simple Random Sampling : Estimation of Population Variance
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 21 - Simple Random Sampling : Estimation of Population Variance
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 22 - SRS: Confidence Interval Estimation of Population Mean
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 23 - SRS: Estimation of Mean, Variance and Confidence Interval in SRSWOR using R
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 24 - SRS: Estimation of Mean, Variance and Confidence Interval in SRSWR using R
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 25 - Sampling for Proportions and Percentages : Basic Concepts
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 26 - Sampling for Proportions and Percentages : Mean and Variance of Sample Proportion
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 27 - Sampling for Proportions and Percentages : Sampling for Proportions with R
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 28 - Stratified Random Sampling : Drawing the Sample and Sampling Procedure
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 29 - Stratified Random Sampling : Estimation of Population Mean, Population Variance and Confidence Interval
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 30 - Stratified Random Sampling : Sample Allocation and Variances Under Allocation
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 31 - Stratified Random Sampling : Drawing of Sample Using sampling and strata Packages in R
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 32 - Stratified Random Sampling : Drawing of Sample Using survey Package in R
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 33 - Bootstrap Methodology : What is Bootstrap and Methodology
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 34 - Bootstrap Methodology : EDF, Bootstrap Bias and Bootstrap Standard Errors
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 35 - Bootstrap Methodology : Bootstrap Analysis Using boot Package in R
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 36 - Bootstrap Methodology : Bootstrap Confidence Interval
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 37 - Bootstrap Methodology : Bootstrap Confidence Interval Using boot and bootstrap Packages in R
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 38 - Bootstrap Methodology : Example of Bootstrap Analysis Using boot Package
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 39 - Introduction to Linear Models and Regression : Introduction and Basic Concepts
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 40 - Simple Linear Regression Analysis : Basic Concepts and Least Squares Estimation
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 41 - Simple Linear Regression Analysis : Fitting Linear Model With R Software
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 42 - Simple Linear Regression Analysis : Properties of Least Squares Estimators
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 43 - Simple Linear Regression Analysis : Maximum Likelihood and Confidence Interval Estimation
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 44 - Simple Linear Regression Analysis : Test of Hypothesis and Confidence Interval Estimation With R
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 45 - Multiple Linear Regression Analysis : Basic Concepts
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 46 - Multiple Linear Regression Analysis : OLSE, Fitted Model and Residuals
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 47 - Multiple Linear Regression Analysis : Model Fitting With R Software
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 48 - Multiple Linear Regression Analysis : Properties of OLSE and Maximum Likelihood Estimation
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 49 - Multiple Linear Regression Analysis : Test of Hypothesis and Confidence Interval Estimation on Individual Regression Coefficients
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 50 - Analysis of Variance and Implementation in R Software
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 51 - Goodness of Fit and Implementation in R Software
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 52 - Variable Selection using LASSO Regression : Introduction and Basic Concepts
Link NOC:Essentials of Data Science With R Software 2: Sampling Theory and Linear Regression Analysis Lecture 53 - Variable Selection using LASSO Regression : LASSO with R
Link NOC:Measure Theoretic Probability 1 Lecture 1 - Introduction to the course Measure Theoretic Probability 1
Link NOC:Measure Theoretic Probability 1 Lecture 2 - Sigma-fields and Measurable spaces
Link NOC:Measure Theoretic Probability 1 Lecture 3 - Fields and Generating sets for Sigma-fields
Link NOC:Measure Theoretic Probability 1 Lecture 4 - Borel Sigma-field on R and other sets
Link NOC:Measure Theoretic Probability 1 Lecture 5 - Limits of sequences of sets and Monotone classes
Link NOC:Measure Theoretic Probability 1 Lecture 6 - Measures and Measure spaces
Link NOC:Measure Theoretic Probability 1 Lecture 7 - Probability Measures
Link NOC:Measure Theoretic Probability 1 Lecture 8 - Properties of Measures - I
Link NOC:Measure Theoretic Probability 1 Lecture 9 - Properties of Measures - II
Link NOC:Measure Theoretic Probability 1 Lecture 10 - Properties of Measures - III
Link NOC:Measure Theoretic Probability 1 Lecture 11 - Measurable functions
Link NOC:Measure Theoretic Probability 1 Lecture 12 - Borel Measurable functions
Link NOC:Measure Theoretic Probability 1 Lecture 13 - Algebraic properties of Measurable functions
Link NOC:Measure Theoretic Probability 1 Lecture 14 - Limiting behaviour of measurable functions
Link NOC:Measure Theoretic Probability 1 Lecture 15 - Random Variables and Random Vectors
Link NOC:Measure Theoretic Probability 1 Lecture 16 - Law or Distribution of an RV
Link NOC:Measure Theoretic Probability 1 Lecture 17 - Distribution Function of an RV
Link NOC:Measure Theoretic Probability 1 Lecture 18 - Decomposition of Distribution functions
Link NOC:Measure Theoretic Probability 1 Lecture 19 - Construction of RVs with a specified law
Link NOC:Measure Theoretic Probability 1 Lecture 20 - Caratheodery Extension Theorem
Link NOC:Measure Theoretic Probability 1 Lecture 21 - From Distribution Functions to Probability Measures - I
Link NOC:Measure Theoretic Probability 1 Lecture 22 - From Distribution Functions to Probability Measures - II
Link NOC:Measure Theoretic Probability 1 Lecture 23 - Lebesgue-Stieltjes Measures
Link NOC:Measure Theoretic Probability 1 Lecture 24 - Properties of Lebesgue Measure on R
Link NOC:Measure Theoretic Probability 1 Lecture 25 - Distribution Functions and Probability Measures in higher dimensions
Link NOC:Measure Theoretic Probability 1 Lecture 26 - Integration of measurable functions
Link NOC:Measure Theoretic Probability 1 Lecture 27 - Properties of Measure Theoretic Integration - I
Link NOC:Measure Theoretic Probability 1 Lecture 28 - Properties of Measure Theoretic Integration - II
Link NOC:Measure Theoretic Probability 1 Lecture 29 - Monotone Convergence Theorem
Link NOC:Measure Theoretic Probability 1 Lecture 30 - Computation of Expectation for Discrete RVs
Link NOC:Measure Theoretic Probability 1 Lecture 31 - MCT and the Linearity of Measure Theoretic Integration
Link NOC:Measure Theoretic Probability 1 Lecture 32 - Sets of measure zero and Measure Theoretic Integration
Link NOC:Measure Theoretic Probability 1 Lecture 33 - Fatou's Lemma and Dominated Convergence Theorem
Link NOC:Measure Theoretic Probability 1 Lecture 34 - Riemann and Lebesgue integration
Link NOC:Measure Theoretic Probability 1 Lecture 35 - Computations involving Lebesgue Integration
Link NOC:Measure Theoretic Probability 1 Lecture 36 - Decomposition of Measures
Link NOC:Measure Theoretic Probability 1 Lecture 37 - Absolutely Continuous RVs
Link NOC:Measure Theoretic Probability 1 Lecture 38 - Expectation of Absolutely Continuous RVs
Link NOC:Measure Theoretic Probability 1 Lecture 39 - Inequalities involving moments of RVs
Link NOC:Measure Theoretic Probability 1 Lecture 40 - Conclusion to the course Measure Theoretic Probability 1
Link NOC:Foundations of R Software Lecture 0
Link NOC:Foundations of R Software Lecture 1
Link NOC:Foundations of R Software Lecture 2
Link NOC:Foundations of R Software Lecture 3
Link NOC:Foundations of R Software Lecture 4
Link NOC:Foundations of R Software Lecture 5
Link NOC:Foundations of R Software Lecture 6
Link NOC:Foundations of R Software Lecture 7
Link NOC:Foundations of R Software Lecture 8
Link NOC:Foundations of R Software Lecture 9
Link NOC:Foundations of R Software Lecture 10
Link NOC:Foundations of R Software Lecture 11
Link NOC:Foundations of R Software Lecture 12
Link NOC:Foundations of R Software Lecture 13
Link NOC:Foundations of R Software Lecture 14
Link NOC:Foundations of R Software Lecture 15
Link NOC:Foundations of R Software Lecture 16
Link NOC:Foundations of R Software Lecture 17
Link NOC:Foundations of R Software Lecture 18
Link NOC:Foundations of R Software Lecture 19
Link NOC:Foundations of R Software Lecture 20
Link NOC:Foundations of R Software Lecture 21
Link NOC:Foundations of R Software Lecture 22
Link NOC:Foundations of R Software Lecture 23
Link NOC:Foundations of R Software Lecture 24
Link NOC:Foundations of R Software Lecture 25
Link NOC:Foundations of R Software Lecture 26
Link NOC:Foundations of R Software Lecture 27
Link NOC:Foundations of R Software Lecture 28
Link NOC:Foundations of R Software Lecture 29
Link NOC:Foundations of R Software Lecture 30
Link NOC:Foundations of R Software Lecture 31
Link NOC:Foundations of R Software Lecture 32
Link NOC:Foundations of R Software Lecture 33
Link NOC:Foundations of R Software Lecture 34
Link NOC:Foundations of R Software Lecture 35
Link NOC:Foundations of R Software Lecture 36
Link NOC:Foundations of R Software Lecture 37
Link NOC:Foundations of R Software Lecture 38
Link NOC:Foundations of R Software Lecture 39
Link NOC:Foundations of R Software Lecture 40
Link NOC:Foundations of R Software Lecture 41
Link NOC:Foundations of R Software Lecture 42
Link NOC:Foundations of R Software Lecture 43
Link NOC:Foundations of R Software Lecture 44
Link NOC:Foundations of R Software Lecture 45
Link NOC:Foundations of R Software Lecture 46
Link NOC:Foundations of R Software Lecture 47
Link NOC:Foundations of R Software Lecture 48
Link NOC:Foundations of R Software Lecture 49
Link NOC:Foundations of R Software Lecture 50
Link NOC:Foundations of R Software Lecture 51
Link NOC:Foundations of R Software Lecture 52
Link NOC:Foundations of R Software Lecture 53
Link NOC:Foundations of R Software (In Hindi) Lecture 0
Link NOC:Foundations of R Software (In Hindi) Lecture 1
Link NOC:Foundations of R Software (In Hindi) Lecture 2
Link NOC:Foundations of R Software (In Hindi) Lecture 3
Link NOC:Foundations of R Software (In Hindi) Lecture 4
Link NOC:Foundations of R Software (In Hindi) Lecture 5
Link NOC:Foundations of R Software (In Hindi) Lecture 6
Link NOC:Foundations of R Software (In Hindi) Lecture 7
Link NOC:Foundations of R Software (In Hindi) Lecture 8
Link NOC:Foundations of R Software (In Hindi) Lecture 9
Link NOC:Foundations of R Software (In Hindi) Lecture 10
Link NOC:Foundations of R Software (In Hindi) Lecture 11
Link NOC:Foundations of R Software (In Hindi) Lecture 12
Link NOC:Foundations of R Software (In Hindi) Lecture 13
Link NOC:Foundations of R Software (In Hindi) Lecture 14
Link NOC:Foundations of R Software (In Hindi) Lecture 15
Link NOC:Foundations of R Software (In Hindi) Lecture 16
Link NOC:Foundations of R Software (In Hindi) Lecture 17
Link NOC:Foundations of R Software (In Hindi) Lecture 18
Link NOC:Foundations of R Software (In Hindi) Lecture 19
Link NOC:Foundations of R Software (In Hindi) Lecture 20
Link NOC:Foundations of R Software (In Hindi) Lecture 21
Link NOC:Foundations of R Software (In Hindi) Lecture 22
Link NOC:Foundations of R Software (In Hindi) Lecture 23
Link NOC:Foundations of R Software (In Hindi) Lecture 24
Link NOC:Foundations of R Software (In Hindi) Lecture 25
Link NOC:Foundations of R Software (In Hindi) Lecture 26
Link NOC:Foundations of R Software (In Hindi) Lecture 27
Link NOC:Foundations of R Software (In Hindi) Lecture 28
Link NOC:Foundations of R Software (In Hindi) Lecture 29
Link NOC:Foundations of R Software (In Hindi) Lecture 30
Link NOC:Foundations of R Software (In Hindi) Lecture 31
Link NOC:Foundations of R Software (In Hindi) Lecture 32
Link NOC:Foundations of R Software (In Hindi) Lecture 33
Link NOC:Foundations of R Software (In Hindi) Lecture 34
Link NOC:Foundations of R Software (In Hindi) Lecture 35
Link NOC:Foundations of R Software (In Hindi) Lecture 36
Link NOC:Foundations of R Software (In Hindi) Lecture 37
Link NOC:Foundations of R Software (In Hindi) Lecture 38
Link NOC:Foundations of R Software (In Hindi) Lecture 39
Link NOC:Foundations of R Software (In Hindi) Lecture 40
Link NOC:Foundations of R Software (In Hindi) Lecture 41
Link NOC:Foundations of R Software (In Hindi) Lecture 42
Link NOC:Foundations of R Software (In Hindi) Lecture 43
Link NOC:Foundations of R Software (In Hindi) Lecture 44
Link NOC:Foundations of R Software (In Hindi) Lecture 45
Link NOC:Foundations of R Software (In Hindi) Lecture 46
Link NOC:Foundations of R Software (In Hindi) Lecture 47
Link NOC:Foundations of R Software (In Hindi) Lecture 48
Link NOC:Foundations of R Software (In Hindi) Lecture 49
Link NOC:Foundations of R Software (In Hindi) Lecture 50
Link NOC:Foundations of R Software (In Hindi) Lecture 51
Link NOC:Foundations of R Software (In Hindi) Lecture 52
Link NOC:Foundations of R Software (In Hindi) Lecture 53
Link NOC:An Introduction to Hyperbolic Geometry Lecture 1
Link NOC:An Introduction to Hyperbolic Geometry Lecture 2
Link NOC:An Introduction to Hyperbolic Geometry Lecture 3
Link NOC:An Introduction to Hyperbolic Geometry Lecture 4
Link NOC:An Introduction to Hyperbolic Geometry Lecture 5
Link NOC:An Introduction to Hyperbolic Geometry Lecture 6
Link NOC:An Introduction to Hyperbolic Geometry Lecture 7
Link NOC:An Introduction to Hyperbolic Geometry Lecture 8
Link NOC:An Introduction to Hyperbolic Geometry Lecture 9
Link NOC:An Introduction to Hyperbolic Geometry Lecture 10
Link NOC:An Introduction to Hyperbolic Geometry Lecture 11
Link NOC:An Introduction to Hyperbolic Geometry Lecture 12
Link NOC:An Introduction to Hyperbolic Geometry Lecture 13
Link NOC:An Introduction to Hyperbolic Geometry Lecture 14
Link NOC:An Introduction to Hyperbolic Geometry Lecture 15
Link NOC:An Introduction to Hyperbolic Geometry Lecture 16
Link NOC:An Introduction to Hyperbolic Geometry Lecture 17
Link NOC:An Introduction to Hyperbolic Geometry Lecture 18
Link NOC:An Introduction to Hyperbolic Geometry Lecture 19
Link NOC:An Introduction to Hyperbolic Geometry Lecture 20
Link NOC:An Introduction to Hyperbolic Geometry Lecture 21
Link NOC:An Introduction to Hyperbolic Geometry Lecture 22
Link NOC:An Introduction to Hyperbolic Geometry Lecture 23
Link NOC:An Introduction to Hyperbolic Geometry Lecture 24
Link NOC:An Introduction to Hyperbolic Geometry Lecture 25
Link NOC:An Introduction to Hyperbolic Geometry Lecture 26
Link NOC:An Introduction to Hyperbolic Geometry Lecture 27
Link NOC:An Introduction to Hyperbolic Geometry Lecture 28
Link NOC:An Introduction to Hyperbolic Geometry Lecture 29
Link NOC:An Introduction to Hyperbolic Geometry Lecture 30
Link NOC:An Introduction to Hyperbolic Geometry Lecture 31
Link NOC:An Introduction to Hyperbolic Geometry Lecture 32
Link NOC:An Introduction to Hyperbolic Geometry Lecture 33
Link NOC:An Introduction to Hyperbolic Geometry Lecture 34
Link NOC:An Introduction to Hyperbolic Geometry Lecture 35
Link NOC:An Introduction to Hyperbolic Geometry Lecture 36
Link NOC:An Introduction to Hyperbolic Geometry Lecture 37
Link NOC:An Introduction to Hyperbolic Geometry Lecture 38
Link NOC:An Introduction to Hyperbolic Geometry Lecture 39
Link NOC:An Introduction to Hyperbolic Geometry Lecture 40
Link NOC:An Introduction to Hyperbolic Geometry Lecture 41
Link NOC:A Primer to Mathematical Optimization Lecture 1 - Introduction and History of Optimization
Link NOC:A Primer to Mathematical Optimization Lecture 2 - Basics of Linear Algebra
Link NOC:A Primer to Mathematical Optimization Lecture 3 - Definiteness of Matrices
Link NOC:A Primer to Mathematical Optimization Lecture 4 - Sets in R^n
Link NOC:A Primer to Mathematical Optimization Lecture 5 - Limit Superior and Limit Inferior
Link NOC:A Primer to Mathematical Optimization Lecture 6 - Order of Convergence
Link NOC:A Primer to Mathematical Optimization Lecture 7 - Lipschitz and Uniform Continuity
Link NOC:A Primer to Mathematical Optimization Lecture 8 - Partial and Directional Derivatives and Differnentiability (8,9)
Link NOC:A Primer to Mathematical Optimization Lecture 9 - Taylor's Theorem
Link NOC:A Primer to Mathematical Optimization Lecture 10 - Convex Sets and Convexity Preserving Operations
Link NOC:A Primer to Mathematical Optimization Lecture 11 - Sepration Results
Link NOC:A Primer to Mathematical Optimization Lecture 12 - Theorems of Alternatives (13 and 14)
Link NOC:A Primer to Mathematical Optimization Lecture 13 - Convex Functions
Link NOC:A Primer to Mathematical Optimization Lecture 14 - Properties and Zeroth Order Characterization of Convex Function
Link NOC:A Primer to Mathematical Optimization Lecture 15 - First-Order and Second-Order Characterization of Convex Functions
Link NOC:A Primer to Mathematical Optimization Lecture 16 - Convexity Preserving Operations
Link NOC:A Primer to Mathematical Optimization Lecture 17 - Optimality and Coerciveness
Link NOC:A Primer to Mathematical Optimization Lecture 18 - First-Order Optimality Condition (20 Part 1)
Link NOC:A Primer to Mathematical Optimization Lecture 19 - Second-Order Optimality Condition (20 Part 2)
Link NOC:A Primer to Mathematical Optimization Lecture 20 - General Structure of Unconstrained Optimization Algorithms
Link NOC:A Primer to Mathematical Optimization Lecture 21 - Inexact Line Search
Link NOC:A Primer to Mathematical Optimization Lecture 22 - Globel Convergence of Descent Methods (23,24)
Link NOC:A Primer to Mathematical Optimization Lecture 23 - Where Do Descent Methods Converge?
Link NOC:A Primer to Mathematical Optimization Lecture 24 - Scaling of Variables
Link NOC:A Primer to Mathematical Optimization Lecture 25 - Practical Stoping Criteria
Link NOC:A Primer to Mathematical Optimization Lecture 26 - Steepest Descent Method (28,29)
Link NOC:A Primer to Mathematical Optimization Lecture 27 - Newton's Method (30,31,32)
Link NOC:A Primer to Mathematical Optimization Lecture 28 - Quasi Newton Methods (33,34,35)
Link NOC:A Primer to Mathematical Optimization Lecture 29 - Conjugate Direction Methods (36,37)
Link NOC:A Primer to Mathematical Optimization Lecture 30 - Trust Region Methods - Part I
Link NOC:A Primer to Mathematical Optimization Lecture 31 - Trust Region Methods - Part II
Link NOC:A Primer to Mathematical Optimization Lecture 32 - A Revisit to Lagrange Multipliears Method
Link NOC:A Primer to Mathematical Optimization Lecture 33 - Special Cones for Contrained Optimization
Link NOC:A Primer to Mathematical Optimization Lecture 34 - Tangent Cone
Link NOC:A Primer to Mathematical Optimization Lecture 35 - First-Order KKT Optimality Conditions (42,43)
Link NOC:A Primer to Mathematical Optimization Lecture 36 - Second-Order KKT Optimality Conditions
Link NOC:A Primer to Mathematical Optimization Lecture 37 - Constraint Qualifications
Link NOC:A Primer to Mathematical Optimization Lecture 38 - Lagrangian Duality Theory (46 to 50)
Link NOC:A Primer to Mathematical Optimization Lecture 39 - Methods for Linearly Constrained Problems (51,52,53)
Link NOC:A Primer to Mathematical Optimization Lecture 40 - Interior-Point Method for QPP
Link NOC:A Primer to Mathematical Optimization Lecture 41 - Penalty Methods
Link NOC:A Primer to Mathematical Optimization Lecture 42 - Sequential Quadratic Programming Method
Link NOC:Measure Theoretic Probability 2 Lecture 1
Link NOC:Measure Theoretic Probability 2 Lecture 2
Link NOC:Measure Theoretic Probability 2 Lecture 3
Link NOC:Measure Theoretic Probability 2 Lecture 4
Link NOC:Measure Theoretic Probability 2 Lecture 5
Link NOC:Measure Theoretic Probability 2 Lecture 6
Link NOC:Measure Theoretic Probability 2 Lecture 7
Link NOC:Measure Theoretic Probability 2 Lecture 8
Link NOC:Measure Theoretic Probability 2 Lecture 9
Link NOC:Measure Theoretic Probability 2 Lecture 10
Link NOC:Measure Theoretic Probability 2 Lecture 11
Link NOC:Measure Theoretic Probability 2 Lecture 12
Link NOC:Measure Theoretic Probability 2 Lecture 13
Link NOC:Measure Theoretic Probability 2 Lecture 14
Link NOC:Measure Theoretic Probability 2 Lecture 15
Link NOC:Measure Theoretic Probability 2 Lecture 16
Link NOC:Measure Theoretic Probability 2 Lecture 17
Link NOC:Measure Theoretic Probability 2 Lecture 18
Link NOC:Measure Theoretic Probability 2 Lecture 19
Link NOC:Measure Theoretic Probability 2 Lecture 20
Link NOC:Measure Theoretic Probability 2 Lecture 21
Link NOC:Measure Theoretic Probability 2 Lecture 22
Link NOC:Measure Theoretic Probability 2 Lecture 23
Link NOC:Measure Theoretic Probability 2 Lecture 24
Link NOC:Measure Theoretic Probability 2 Lecture 25
Link NOC:Measure Theoretic Probability 2 Lecture 26
Link NOC:Measure Theoretic Probability 2 Lecture 27
Link NOC:Measure Theoretic Probability 2 Lecture 28
Link NOC:Measure Theoretic Probability 2 Lecture 29
Link NOC:Measure Theoretic Probability 2 Lecture 30
Link NOC:Measure Theoretic Probability 2 Lecture 31
Link NOC:Measure Theoretic Probability 2 Lecture 32
Link NOC:Measure Theoretic Probability 2 Lecture 33
Link NOC:Measure Theoretic Probability 2 Lecture 34
Link NOC:Measure Theoretic Probability 2 Lecture 35
Link NOC:Measure Theoretic Probability 2 Lecture 36
Link NOC:Measure Theoretic Probability 2 Lecture 37
Link NOC:Measure Theoretic Probability 2 Lecture 38
Link NOC:Measure Theoretic Probability 2 Lecture 39
Link NOC:Measure Theoretic Probability 2 Lecture 40
Link NOC:Measure Theoretic Probability 2 Lecture 41
Link NOC:Measure Theoretic Probability 2 Lecture 42
Link NOC:Measure Theoretic Probability 2 Lecture 43
Link NOC:Measure Theoretic Probability 2 Lecture 44
Link NOC:Set Theory and Mathematical Logic Lecture 1 - Introduction to Set Theory
Link NOC:Set Theory and Mathematical Logic Lecture 2 - Operations on Sets, and Functions
Link NOC:Set Theory and Mathematical Logic Lecture 3 - Bijective Functions
Link NOC:Set Theory and Mathematical Logic Lecture 4 - Equivalence Relations and Partitions
Link NOC:Set Theory and Mathematical Logic Lecture 5 - Cantor-Schroder-Bernstein Theorem
Link NOC:Set Theory and Mathematical Logic Lecture 6 - Natural Numbers in ZF Set Theory
Link NOC:Set Theory and Mathematical Logic Lecture 7 - Standard Number Systems in ZF Set Theory
Link NOC:Set Theory and Mathematical Logic Lecture 8 - (Finitary) Power Sets and Countability
Link NOC:Set Theory and Mathematical Logic Lecture 9 - Bijections of the set of real numbers: Dedekind cut and Cantor's middle-third set
Link NOC:Set Theory and Mathematical Logic Lecture 10 - Bijections of the real numbers: Continued Fractions
Link NOC:Set Theory and Mathematical Logic Lecture 11 - Principles of Mathematical Induction
Link NOC:Set Theory and Mathematical Logic Lecture 12 - Ordinal Numbers
Link NOC:Set Theory and Mathematical Logic Lecture 13 - Ordinal Arithmetic
Link NOC:Set Theory and Mathematical Logic Lecture 14 - Cardinal Numbers and Cardinal Arithmetic
Link NOC:Set Theory and Mathematical Logic Lecture 15 - Tutorial - Week 4
Link NOC:Set Theory and Mathematical Logic Lecture 16 - Partial Orders
Link NOC:Set Theory and Mathematical Logic Lecture 17 - Lattices
Link NOC:Set Theory and Mathematical Logic Lecture 18 - Equivalents of the Axiom of Choice (AC): Zorn's Lemma (ZL) and Well-ordering theorem (WOT)
Link NOC:Set Theory and Mathematical Logic Lecture 19 - Tutorial - Week 5
Link NOC:Set Theory and Mathematical Logic Lecture 20 - Boolean Algebras
Link NOC:Set Theory and Mathematical Logic Lecture 21 - Stone's Representation Theorems for Boolean Algebras
Link NOC:Set Theory and Mathematical Logic Lecture 22 - Some Exercises on Boolean Algebras
Link NOC:Set Theory and Mathematical Logic Lecture 23 - Ultrafilters in Boolean Algebras
Link NOC:Set Theory and Mathematical Logic Lecture 24 - Introduction to Mathematical Logic
Link NOC:Set Theory and Mathematical Logic Lecture 25 - Propositional Logic: Language, Formulas and Valuations
Link NOC:Set Theory and Mathematical Logic Lecture 26 - Propositional Logic: Logical Equivalence and Lindenbaum-Tarski Algebra
Link NOC:Set Theory and Mathematical Logic Lecture 27 - Tutorial - Week 7
Link NOC:Set Theory and Mathematical Logic Lecture 28 - Propositional Logic: Normal Forms of Formulas and Adequacy of Connectives
Link NOC:Set Theory and Mathematical Logic Lecture 29 - Propositional Logic: Semantic Consequence Relation
Link NOC:Set Theory and Mathematical Logic Lecture 30 - Propositional Logic: Syntactic Consequence Relation
Link NOC:Set Theory and Mathematical Logic Lecture 31 - Deduction Theorem (Continued...)
Link NOC:Set Theory and Mathematical Logic Lecture 32 - Tutorial - Week 8
Link NOC:Set Theory and Mathematical Logic Lecture 33 - Propositional Logic: Consistency and Soundness Theorem
Link NOC:Set Theory and Mathematical Logic Lecture 34 - Propositional Logic: Completeness Theorem - Part I
Link NOC:Set Theory and Mathematical Logic Lecture 35 - Propositional Logic: Completeness Theorem - Part II
Link NOC:Set Theory and Mathematical Logic Lecture 36 - Compactness Theorem and Konig's Lemma
Link NOC:Set Theory and Mathematical Logic Lecture 37 - Tutorial - Week 9
Link NOC:Set Theory and Mathematical Logic Lecture 38 - Introduction to First-Order Predicate Logic
Link NOC:Set Theory and Mathematical Logic Lecture 39 - Predicate Logic: Terms and Formulas
Link NOC:Set Theory and Mathematical Logic Lecture 40 - Predicate Logic: Validity of Formulas
Link NOC:Set Theory and Mathematical Logic Lecture 41 - Tutorial - Week 10
Link NOC:Set Theory and Mathematical Logic Lecture 42 - Predicate Logic Substructures, Semantic Consequence Relation, and Models of Theories
Link NOC:Set Theory and Mathematical Logic Lecture 43 - Predicate Logic: Standard Logical Equivalences, Normal Forms, and Definable Sets
Link NOC:Set Theory and Mathematical Logic Lecture 44 - Tutorial - Week 11
Link NOC:Set Theory and Mathematical Logic Lecture 45 - Hyperreal Numbers
Link NOC:Set Theory and Mathematical Logic Lecture 46 - Predicate Logic: Ultraproduct of Structures and Los's Theorem
Link NOC:Set Theory and Mathematical Logic Lecture 47 - Predicate Logic: Compactness Theorem
Link NOC:Set Theory and Mathematical Logic Lecture 48 - Tutorial - Week 12
Link NOC:Set Theory and Mathematical Logic Lecture 49 - Predicate Logic: Lowenheim-Skolem Theorems
Link NOC:Set Theory and Mathematical Logic Lecture 50 - Predicate Logic: Reduced Products, Categoricity
Link NOC:Set Theory and Mathematical Logic Lecture 51 - Predicate Logic: Categoricity (Continued...) and Quantifier Elimination
Link NOC:Set Theory and Mathematical Logic Lecture 52 - Godel's Incompleteness Theorems
Link NOC:Introduction to Fourier Analysis Lecture 1 - Origin of Fourier series
Link NOC:Introduction to Fourier Analysis Lecture 2 - Convergence of a series and Riemann integration
Link NOC:Introduction to Fourier Analysis Lecture 3 - Riemann integration and periodic functions
Link NOC:Introduction to Fourier Analysis Lecture 4 - Fourier coefficients and series
Link NOC:Introduction to Fourier Analysis Lecture 5 - Complex Fourier series
Link NOC:Introduction to Fourier Analysis Lecture 6 - Riemann Lebesgue lemma and Dirichlet kernel
Link NOC:Introduction to Fourier Analysis Lecture 7 - Convolution of two Riemann integrable functions
Link NOC:Introduction to Fourier Analysis Lecture 8 - Properties of convolution
Link NOC:Introduction to Fourier Analysis Lecture 9 - Cesaro summability and summation by parts
Link NOC:Introduction to Fourier Analysis Lecture 10 - Fejer kernel
Link NOC:Introduction to Fourier Analysis Lecture 11 - Fejer theorem and applications
Link NOC:Introduction to Fourier Analysis Lecture 12 - Good kernels and Poisson kernel
Link NOC:Introduction to Fourier Analysis Lecture 13 - Abel summability
Link NOC:Introduction to Fourier Analysis Lecture 14 - Dirichlet problem
Link NOC:Introduction to Fourier Analysis Lecture 15 - Convergence at jump discontinuity
Link NOC:Introduction to Fourier Analysis Lecture 16 - Orthonormal families
Link NOC:Introduction to Fourier Analysis Lecture 17 - Pythagoras theorem and Parseval identity
Link NOC:Introduction to Fourier Analysis Lecture 18 - Pointwise convergence
Link NOC:Introduction to Fourier Analysis Lecture 19 - Parseval identity applications
Link NOC:Introduction to Fourier Analysis Lecture 20 - Divergent Fourier series
Link NOC:Introduction to Fourier Analysis Lecture 21 - Pointwise convergence of S_N(f)
Link NOC:Introduction to Fourier Analysis Lecture 22 - Isoperimetric problem
Link NOC:Introduction to Fourier Analysis Lecture 23 - Weyl's equidistribution theorem
Link NOC:Introduction to Fourier Analysis Lecture 24 - on Equidistributed sequences
Link NOC:Introduction to Fourier Analysis Lecture 25 - Proof of Weyl's criterion
Link NOC:Introduction to Fourier Analysis Lecture 26 - Fourier analysis on finite groups
Link NOC:Introduction to Fourier Analysis Lecture 27 - Fourier transform on Z(N)
Link NOC:Introduction to Fourier Analysis Lecture 28 - Inversion theorem and Parseval identity
Link NOC:Introduction to Fourier Analysis Lecture 29 - Results on Fourier coefficients of two functions
Link NOC:Introduction to Fourier Analysis Lecture 30 - Fast Fourier transform
Link NOC:Introduction to Fourier Analysis Lecture 31 - Fourier analysis on finite abelian group
Link NOC:Introduction to Fourier Analysis Lecture 32 - Fourier analysis on finite abelian groups
Link NOC:Introduction to Fourier Analysis Lecture 33 - Simultaneously diagonalizable operators and characters
Link NOC:Introduction to Fourier Analysis Lecture 34 - Results of Fourier series on finite abelian group
Link NOC:Introduction to Fourier Analysis Lecture 35 - Applications in Number theory
Link NOC:Introduction to Fourier Analysis Lecture 36 - Fourier transform on R
Link NOC:Introduction to Fourier Analysis Lecture 37 - Properties of Fourier transform
Link NOC:Introduction to Fourier Analysis Lecture 38 - Inversion formula and convolution
Link NOC:Introduction to Fourier Analysis Lecture 39 - Fejer kernel on R
Link NOC:Introduction to Fourier Analysis Lecture 40 - Schwartz space
Link NOC:Introduction to Fourier Analysis Lecture 41 - Convolution and Good kernel in Schwartz space
Link NOC:Introduction to Fourier Analysis Lecture 42 - Multiplication formula and Fourier inversion theorem
Link NOC:Introduction to Fourier Analysis Lecture 43 - Plancherel formula and Poisson summation formula
Link NOC:Introduction to Fourier Analysis Lecture 44 - Application of Poisson summation formula
Link NOC:Introduction to Fourier Analysis Lecture 45 - Weierstrass theorem and Heisenberg uncertainty principle
Link NOC:Introduction to Fourier Analysis Lecture 46 - Hermite operator
Link NOC:Introduction to Fourier Analysis Lecture 47 - Solution of ODE by using Fourier transform
Link NOC:Introduction to Fourier Analysis Lecture 48 - Laplacian equation
Link NOC:Introduction to Fourier Analysis Lecture 49 - Poisson kermal and mean value theorem for harmonic functions
Link NOC:Introduction to Fourier Analysis Lecture 50 - Wave equation
Link NOC:Introduction to Fourier Analysis Lecture 51 - Eigenvalues of Fourier transform
Link NOC:Introduction to Fourier Analysis Lecture 52 - Fourier transform on R^n
Link NOC:Introduction to Fourier Analysis Lecture 53 - Properties of Fourier transform on R^n
Link NOC:Introduction to Fourier Analysis Lecture 54 - Inversion theorem and Plancherel theorem
Link NOC:Introduction to Fourier Analysis Lecture 55 - Wave equation, heat equation and Poisson kernel
Link NOC:Introduction to Fourier Analysis Lecture 56 - Fourier series in higher dimension
Link NOC:Introduction to Fourier Analysis Lecture 57 - Poission summation formula
Link NOC:Introduction to Fourier Analysis Lecture 58 - Application of Poission summation formula
Link NOC:Introduction to Fourier Analysis Lecture 59 - Radon transform
Link NOC:Introduction to Fourier Analysis Lecture 60 - Reconstruction formula
Link NOC:Ordinary Differential Equations Lecture 1 - Vector Spaces
Link NOC:Ordinary Differential Equations Lecture 2 - Linear Transformation
Link NOC:Ordinary Differential Equations Lecture 3 - Matrices
Link NOC:Ordinary Differential Equations Lecture 4 - Calculus in Several Variable
Link NOC:Ordinary Differential Equations Lecture 5 - Lipchitz Continuity
Link NOC:Ordinary Differential Equations Lecture 6 - Cauchy-Schwatz and Gronwall Inequality
Link NOC:Ordinary Differential Equations Lecture 7 - Ordinary Differential Equations: Introduction
Link NOC:Ordinary Differential Equations Lecture 8 - Differential Inequalities
Link NOC:Ordinary Differential Equations Lecture 9 - 2nd Order Constant coefficient linear equations
Link NOC:Ordinary Differential Equations Lecture 10 - Picard Existence and Uniqueness Theorem
Link NOC:Ordinary Differential Equations Lecture 11 - Linear System
Link NOC:Ordinary Differential Equations Lecture 12 - Well-Posedness of a ODE
Link NOC:Ordinary Differential Equations Lecture 13 - Linear System - 1
Link NOC:Ordinary Differential Equations Lecture 14 - Linear System - 2
Link NOC:Ordinary Differential Equations Lecture 15 - Fundamental Matrix
Link NOC:Ordinary Differential Equations Lecture 16 - Exponential of a Linear Operator
Link NOC:Ordinary Differential Equations Lecture 17 - Fundamental theorem of linear Systems
Link NOC:Ordinary Differential Equations Lecture 18 - Higher Dimensional Matrix Exponential - 1
Link NOC:Ordinary Differential Equations Lecture 19 - Higher Dimensional Matrix Exponential - 2
Link NOC:Ordinary Differential Equations Lecture 20 - Method of Eigenvalue
Link NOC:Ordinary Differential Equations Lecture 21 - Method of Eigenvalue (Continued...)
Link NOC:Ordinary Differential Equations Lecture 22 - Maximal Interval of Existence
Link NOC:Ordinary Differential Equations Lecture 23 - Maximal Interval of Existence: Worked out examples
Link NOC:Ordinary Differential Equations Lecture 24 - Periodic Linear System
Link NOC:Ordinary Differential Equations Lecture 25 - Asymptotic behavior of solution to linear system - I
Link NOC:Ordinary Differential Equations Lecture 26 - Asymptotic behavior of solution to linear system - II
Link NOC:Ordinary Differential Equations Lecture 27 - Asymptotic Behavior of Linear Systems - III
Link NOC:Ordinary Differential Equations Lecture 28 - Exact and Adjoint equations
Link NOC:Ordinary Differential Equations Lecture 29 - Sturm Comparison Theory
Link NOC:Ordinary Differential Equations Lecture 30 - Oscillation Theory - 2
Link NOC:Ordinary Differential Equations Lecture 31 - Linear Boundary Value Problem
Link NOC:Ordinary Differential Equations Lecture 32 - Maximum Principle
Link NOC:Ordinary Differential Equations Lecture 33 - Sturm Liouville Theory - 1
Link NOC:Ordinary Differential Equations Lecture 34 - Sturm Liouville Theory - 2
Link NOC:Ordinary Differential Equations Lecture 35 - Periodic Sturm Liouville Problem
Link NOC:Ordinary Differential Equations Lecture 36 - Eigenfunction Expansion
Link NOC:Ordinary Differential Equations Lecture 37 - Stability in the sense of Lyapunov - I
Link NOC:Ordinary Differential Equations Lecture 38 - Stability in the sense of Lyapunov - II
Link NOC:Ordinary Differential Equations Lecture 39 - Lyapunov Direct method
Link NOC:Ordinary Differential Equations Lecture 40 - Linear two-dimensional phase space dynamics (Continued...)
Link NOC:Ordinary Differential Equations Lecture 41 - Phase Portrait for Planar Systems
Link NOC:Category Theory Lecture 1 - Introduction to Category Theory
Link NOC:Category Theory Lecture 2 - Examples of Categories
Link NOC:Category Theory Lecture 3 - Functors
Link NOC:Category Theory Lecture 4 - Natural Transformations and Equivalences of Categories
Link NOC:Category Theory Lecture 5 - Equivalence of Categories and some properties of morphisms
Link NOC:Category Theory Lecture 6 - The Yoneda lemma and Representable functors
Link NOC:Category Theory Lecture 7 - Limits and colimits - Part 1
Link NOC:Category Theory Lecture 8 - Limits and colimits - Part 2
Link NOC:Category Theory Lecture 9 - Limits and colimits - Part 3 - Interaction with functors - Adjuctions - I Definitions
Link NOC:Category Theory Lecture 10 - Adjunctions - II Examples
Link NOC:Category Theory Lecture 11 - Adjunctions - III Triangular identities
Link NOC:Category Theory Lecture 12 - Adjunctions - IV General adjoint functor theorem
Link NOC:Category Theory Lecture 13 - Adjunctions - V Special adjoint functor theorem Filtered colimits-I Basics
Link NOC:Category Theory Lecture 14 - Filtered colimits - II Locally finitely presentable (LFP) categories
Link NOC:Category Theory Lecture 15 - Monads - I Eilenberg-Moore and Kleisli categories
Link NOC:Category Theory Lecture 16 - Monads - II Monadicity theorem
Link NOC:Category Theory Lecture 17 - Monoidal categories and enriched categories
Link NOC:Category Theory Lecture 18 - Abelian categories
Link NOC:Category Theory Lecture 19 - Grothendieck categories and localization
Link NOC:Category Theory Lecture 20 - Freyd-Mitchell embedding theorem Homological algebra I Diagram chasing
Link NOC:Category Theory Lecture 21 - Homological algebra II Chain homotopy, projective resolutions and the derived category
Link NOC:Category Theory Lecture 22 - Model categories
Link NOC:Category Theory Lecture 23 - Topos Theory - I Elementary toposes
Link NOC:Category Theory Lecture 24 - Topos Theory - II Grothendieck toposes
Link Advanced Engineering Mathematics Lecture 1 - Review Groups, Fields and Matrices
Link Advanced Engineering Mathematics Lecture 2 - Vector Spaces, Subspaces, Linearly Dependent/Independent of Vectors
Link Advanced Engineering Mathematics Lecture 3 - Basis, Dimension, Rank and Matrix Inverse
Link Advanced Engineering Mathematics Lecture 4 - Linear Transformation, Isomorphism and Matrix Representation
Link Advanced Engineering Mathematics Lecture 5 - System of Linear Equations, Eigenvalues and Eigenvectors
Link Advanced Engineering Mathematics Lecture 6 - Method to Find Eigenvalues and Eigenvectors, Diagonalization of Matrices
Link Advanced Engineering Mathematics Lecture 7 - Jordan Canonical Form, Cayley Hamilton Theorem
Link Advanced Engineering Mathematics Lecture 8 - Inner Product Spaces, Cauchy-Schwarz Inequality
Link Advanced Engineering Mathematics Lecture 9 - Orthogonality, Gram-Schmidt Orthogonalization Process
Link Advanced Engineering Mathematics Lecture 10 - Spectrum of special matrices,positive/negative definite matrices
Link Advanced Engineering Mathematics Lecture 11 - Concept of Domain, Limit, Continuity and Differentiability
Link Advanced Engineering Mathematics Lecture 12 - Analytic Functions, C-R Equations
Link Advanced Engineering Mathematics Lecture 13 - Harmonic Functions
Link Advanced Engineering Mathematics Lecture 14 - Line Integral in the Complex
Link Advanced Engineering Mathematics Lecture 15 - Cauchy Integral Theorem
Link Advanced Engineering Mathematics Lecture 16 - Cauchy Integral Theorem (Continued.)
Link Advanced Engineering Mathematics Lecture 17 - Cauchy Integral Formula
Link Advanced Engineering Mathematics Lecture 18 - Power and Taylor's Series of Complex Numbers
Link Advanced Engineering Mathematics Lecture 19 - Power and Taylor's Series of Complex Numbers (Continued.)
Link Advanced Engineering Mathematics Lecture 20 - Taylor's, Laurent Series of f(z) and Singularities
Link Advanced Engineering Mathematics Lecture 21 - Classification of Singularities, Residue and Residue Theorem
Link Advanced Engineering Mathematics Lecture 22 - Laplace Transform and its Existence
Link Advanced Engineering Mathematics Lecture 23 - Properties of Laplace Transform
Link Advanced Engineering Mathematics Lecture 24 - Evaluation of Laplace and Inverse Laplace Transform
Link Advanced Engineering Mathematics Lecture 25 - Applications of Laplace Transform to Integral Equations and ODEs
Link Advanced Engineering Mathematics Lecture 26 - Applications of Laplace Transform to PDEs
Link Advanced Engineering Mathematics Lecture 27 - Fourier Series
Link Advanced Engineering Mathematics Lecture 28 - Fourier Series (Continued.)
Link Advanced Engineering Mathematics Lecture 29 - Fourier Integral Representation of a Function
Link Advanced Engineering Mathematics Lecture 30 - Introduction to Fourier Transform
Link Advanced Engineering Mathematics Lecture 31 - Applications of Fourier Transform to PDEs
Link Advanced Engineering Mathematics Lecture 32 - Laws of Probability - I
Link Advanced Engineering Mathematics Lecture 33 - Laws of Probability - II
Link Advanced Engineering Mathematics Lecture 34 - Problems in Probability
Link Advanced Engineering Mathematics Lecture 35 - Random Variables
Link Advanced Engineering Mathematics Lecture 36 - Special Discrete Distributions
Link Advanced Engineering Mathematics Lecture 37 - Special Continuous Distributions
Link Advanced Engineering Mathematics Lecture 38 - Joint Distributions and Sampling Distributions
Link Advanced Engineering Mathematics Lecture 39 - Point Estimation
Link Advanced Engineering Mathematics Lecture 40 - Interval Estimation
Link Advanced Engineering Mathematics Lecture 41 - Basic Concepts of Testing of Hypothesis
Link Advanced Engineering Mathematics Lecture 42 - Tests for Normal Populations
Link Functional Analysis Lecture 1 - Metric Spaces with Examples
Link Functional Analysis Lecture 2 - Holder Inequality and Minkowski Inequality
Link Functional Analysis Lecture 3 - Various Concepts in a Metric Space
Link Functional Analysis Lecture 4 - Separable Metrics Spaces with Examples
Link Functional Analysis Lecture 5 - Convergence, Cauchy Sequence, Completeness
Link Functional Analysis Lecture 6 - Examples of Complete and Incomplete Metric Spaces
Link Functional Analysis Lecture 7 - Completion of Metric Spaces + Tutorial
Link Functional Analysis Lecture 8 - Vector Spaces with Examples
Link Functional Analysis Lecture 9 - Normed Spaces with Examples
Link Functional Analysis Lecture 10 - Banach Spaces and Schauder Basic
Link Functional Analysis Lecture 11 - Finite Dimensional Normed Spaces and Subspaces
Link Functional Analysis Lecture 12 - Compactness of Metric/Normed Spaces
Link Functional Analysis Lecture 13 - Linear Operators-definition and Examples
Link Functional Analysis Lecture 14 - Bounded Linear Operators in a Normed Space
Link Functional Analysis Lecture 15 - Bounded Linear Functionals in a Normed Space
Link Functional Analysis Lecture 16 - Concept of Algebraic Dual and Reflexive Space
Link Functional Analysis Lecture 17 - Dual Basis & Algebraic Reflexive Space
Link Functional Analysis Lecture 18 - Dual Spaces with Examples
Link Functional Analysis Lecture 19 - Tutorial - I
Link Functional Analysis Lecture 20 - Tutorial - II
Link Functional Analysis Lecture 21 - Inner Product & Hilbert Space
Link Functional Analysis Lecture 22 - Further Properties of Inner Product Spaces
Link Functional Analysis Lecture 23 - Projection Theorem, Orthonormal Sets and Sequences
Link Functional Analysis Lecture 24 - Representation of Functionals on a Hilbert Spaces
Link Functional Analysis Lecture 25 - Hilbert Adjoint Operator
Link Functional Analysis Lecture 26 - Self Adjoint, Unitary & Normal Operators
Link Functional Analysis Lecture 27 - Tutorial - III
Link Functional Analysis Lecture 28 - Annihilator in an IPS
Link Functional Analysis Lecture 29 - Total Orthonormal Sets And Sequences
Link Functional Analysis Lecture 30 - Partially Ordered Set and Zorns Lemma
Link Functional Analysis Lecture 31 - Hahn Banach Theorem for Real Vector Spaces
Link Functional Analysis Lecture 32 - Hahn Banach Theorem for Complex V.S. & Normed Spaces
Link Functional Analysis Lecture 33 - Baires Category & Uniform Boundedness Theorems
Link Functional Analysis Lecture 34 - Open Mapping Theorem
Link Functional Analysis Lecture 35 - Closed Graph Theorem
Link Functional Analysis Lecture 36 - Adjoint Operator
Link Functional Analysis Lecture 37 - Strong and Weak Convergence
Link Functional Analysis Lecture 38 - Convergence of Sequence of Operators and Functionals
Link Functional Analysis Lecture 39 - LP - Space
Link Functional Analysis Lecture 40 - LP - Space (Continued.)
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 1 - Motivation with few Examples
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 2 - Single - Step Methods for IVPs
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 3 - Analysis of Single Step Methods
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 4 - Runge - Kutta Methods for IVPs
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 5 - Higher Order Methods/Equations
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 6 - Error - Stability - Convergence of Single Step Methods
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 7 - Tutorial - I
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 8 - Tutorial - II
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 9 - Multi-Step Methods (Explicit)
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 10 - Multi-Step Methods (Implicit)
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 11 - Convergence and Stability of multi step methods
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 12 - General methods for absolute stability
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 13 - Stability Analysis of Multi Step Methods
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 14 - Predictor - Corrector Methods
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 15 - Some Comments on Multi - Step Methods
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 16 - Finite Difference Methods - Linear BVPs
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 17 - Linear/Non - Linear Second Order BVPs
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 18 - BVPS - Derivative Boundary Conditions
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 19 - Higher Order BVPs
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 20 - Shooting Method BVPs
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 21 - Tutorial - III
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 22 - Introduction to First Order PDE
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 23 - Introduction to Second Order PDE
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 24 - Finite Difference Approximations to Parabolic PDEs
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 25 - Implicit Methods for Parabolic PDEs
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 26 - Consistency, Stability and Convergence
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 27 - Other Numerical Methods for Parabolic PDEs
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 28 - Tutorial - IV
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 29 - Matrix Stability Analysis of Finite Difference Scheme
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 30 - Fourier Series Stability Analysis of Finite Difference Scheme
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 31 - Finite Difference Approximations to Elliptic PDEs - I
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 32 - Finite Difference Approximations to Elliptic PDEs - II
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 33 - Finite Difference Approximations to Elliptic PDEs - III
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 34 - Finite Difference Approximations to Elliptic PDEs - IV
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 35 - Finite Difference Approximations to Hyperbolic PDEs - I
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 36 - Finite Difference Approximations to Hyperbolic PDEs - II
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 37 - Method of characteristics for Hyperbolic PDEs - I
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 38 - Method of characterisitcs for Hyperbolic PDEs - II
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 39 - Finite Difference Approximations to 1st order Hyperbolic PDEs
Link Numerical methods of Ordinary and Partial Differential Equations Lecture 40 - Summary, Appendices, Remarks
Link Optimization Lecture 1 - Optimization - Introduction
Link Optimization Lecture 2 - Formulation of LPP
Link Optimization Lecture 3 - Geometry of LPP and Graphical Solution of LPP
Link Optimization Lecture 4 - Solution of LPP : Simplex Method
Link Optimization Lecture 5 - Big - M Method
Link Optimization Lecture 6 - Two - Phase Method
Link Optimization Lecture 7 - Special Cases in Simple Applications
Link Optimization Lecture 8 - Introduction to Duality Theory
Link Optimization Lecture 9 - Dual Simplex Method
Link Optimization Lecture 10 - Post Optimaility Analysis
Link Optimization Lecture 11 - Integer Programming - I
Link Optimization Lecture 12 - Integer Programming - II
Link Optimization Lecture 13 - Introduction to Transportation Problems
Link Optimization Lecture 14 - Solving Various types of Transportation Problems
Link Optimization Lecture 15 - Assignment Problems
Link Optimization Lecture 16 - Project Management
Link Optimization Lecture 17 - Critical Path Analysis
Link Optimization Lecture 18 - PERT
Link Optimization Lecture 19 - Shortest Path Algorithm
Link Optimization Lecture 20 - Travelling Salesman Problem
Link Optimization Lecture 21 - Classical optimization techniques : Single variable optimization
Link Optimization Lecture 22 - Unconstarined multivariable optimization
Link Optimization Lecture 23 - Nonlinear programming with equality constraint
Link Optimization Lecture 24 - Nonlinear programming KKT conditions
Link Optimization Lecture 25 - Numerical optimization : Region elimination techniques
Link Optimization Lecture 26 - Numerical optimization : Region elimination techniques (Continued.)
Link Optimization Lecture 27 - Fibonacci Method
Link Optimization Lecture 28 - Golden Section Methods
Link Optimization Lecture 29 - Interpolation Methods
Link Optimization Lecture 30 - Unconstarined optimization techniques : Direct search method
Link Optimization Lecture 31 - Unconstarined optimization techniques : Indirect search method
Link Optimization Lecture 32 - Nonlinear programming : constrained optimization techniques
Link Optimization Lecture 33 - Interior and Exterior penulty Function Method
Link Optimization Lecture 34 - Separable Programming Problem
Link Optimization Lecture 35 - Introduction to Geometric Programming
Link Optimization Lecture 36 - Constrained Geometric Programming Problem
Link Optimization Lecture 37 - Dynamic Programming Problem
Link Optimization Lecture 38 - Dynamic Programming Problem (Continued.)
Link Optimization Lecture 39 - Multi Objective Decision Making
Link Optimization Lecture 40 - Multi attribute decision making
Link Probability and Statistics Lecture 1 - Algebra of Sets - I
Link Probability and Statistics Lecture 2 - Algebra of Sets - II
Link Probability and Statistics Lecture 3 - Introduction to Probability
Link Probability and Statistics Lecture 4 - Laws of Probability - I
Link Probability and Statistics Lecture 5 - Laws of Probability - II
Link Probability and Statistics Lecture 6 - Problems in Probability
Link Probability and Statistics Lecture 7 - Random Variables
Link Probability and Statistics Lecture 8 - Probability Distributions
Link Probability and Statistics Lecture 9 - Characteristics of Distribution
Link Probability and Statistics Lecture 10 - Special Distributions - I
Link Probability and Statistics Lecture 11 - Special Distributions - II
Link Probability and Statistics Lecture 12 - Special Distributions - III
Link Probability and Statistics Lecture 13 - Special Distributions - IV
Link Probability and Statistics Lecture 14 - Special Distributions - V
Link Probability and Statistics Lecture 15 - Special Distributions - VI
Link Probability and Statistics Lecture 16 - Special Distributions - VII
Link Probability and Statistics Lecture 17 - Functions of a Random Variable
Link Probability and Statistics Lecture 18 - Joint Distributions - I
Link Probability and Statistics Lecture 19 - Joint Distributions - II
Link Probability and Statistics Lecture 20 - Joint Distributions - III
Link Probability and Statistics Lecture 21 - Joint Distributions - IV
Link Probability and Statistics Lecture 22 - Transformations of Random Vectors
Link Probability and Statistics Lecture 23 - Sampling Distributions - I
Link Probability and Statistics Lecture 24 - Sampling Distributions - II
Link Probability and Statistics Lecture 25 - Descriptive Statistics - I
Link Probability and Statistics Lecture 26 - Descriptive Statistics - II
Link Probability and Statistics Lecture 27 - Estimation - I
Link Probability and Statistics Lecture 28 - Estimation - II
Link Probability and Statistics Lecture 29 - Estimation - III
Link Probability and Statistics Lecture 30 - Estimation - IV
Link Probability and Statistics Lecture 31 - Estimation - V
Link Probability and Statistics Lecture 32 - Estimation - VI
Link Probability and Statistics Lecture 33 - Testing of Hypothesis - I
Link Probability and Statistics Lecture 34 - Testing of Hypothesis - II
Link Probability and Statistics Lecture 35 - Testing of Hypothesis - III
Link Probability and Statistics Lecture 36 - Testing of Hypothesis - IV
Link Probability and Statistics Lecture 37 - Testing of Hypothesis - V
Link Probability and Statistics Lecture 38 - Testing of Hypothesis - VI
Link Probability and Statistics Lecture 39 - Testing of Hypothesis - VII
Link Probability and Statistics Lecture 40 - Testing of Hypothesis - VIII
Link Regression Analysis Lecture 1 - Simple Linear Regression
Link Regression Analysis Lecture 2 - Simple Linear Regression (Continued...1)
Link Regression Analysis Lecture 3 - Simple Linear Regression (Continued...2)
Link Regression Analysis Lecture 4 - Simple Linear Regression (Continued...3)
Link Regression Analysis Lecture 5 - Simple Linear Regression (Continued...4)
Link Regression Analysis Lecture 6 - Multiple Linear Regression
Link Regression Analysis Lecture 7 - Multiple Linear Regression (Continued...1)
Link Regression Analysis Lecture 8 - Multiple Linear Regression (Continued...2)
Link Regression Analysis Lecture 9 - Multiple Linear Regression (Continued...3)
Link Regression Analysis Lecture 10 - Selecting the BEST Regression model
Link Regression Analysis Lecture 11 - Selecting the BEST Regression model (Continued...1)
Link Regression Analysis Lecture 12 - Selecting the BEST Regression model (Continued...2)
Link Regression Analysis Lecture 13 - Selecting the BEST Regression model (Continued...3)
Link Regression Analysis Lecture 14 - Multicollinearity
Link Regression Analysis Lecture 15 - Multicollinearity (Continued...1)
Link Regression Analysis Lecture 16 - Multicollinearity (Continued...2)
Link Regression Analysis Lecture 17 - Model Adequacy Checking
Link Regression Analysis Lecture 18 - Model Adequacy Checking (Continued...1)
Link Regression Analysis Lecture 19 - Model Adequacy Checking (Continued...2)
Link Regression Analysis Lecture 20 - Test for Influential Observations
Link Regression Analysis Lecture 21 - Transformations and Weighting to correct model inadequacies
Link Regression Analysis Lecture 22 - Transformations and Weighting to correct model inadequacies (Continued...1)
Link Regression Analysis Lecture 23 - Transformations and Weighting to correct model inadequacies (Continued...2)
Link Regression Analysis Lecture 24 - Dummy Variables
Link Regression Analysis Lecture 25 - Dummy Variables (Continued...1)
Link Regression Analysis Lecture 26 - Dummy Variables (Continued...2)
Link Regression Analysis Lecture 27 - Polynomial Regression Models
Link Regression Analysis Lecture 28 - Polynomial Regression Models (Continued...1)
Link Regression Analysis Lecture 29 - Polynomial Regression Models (Continued...2)
Link Regression Analysis Lecture 30 - Generalized Linear Models
Link Regression Analysis Lecture 31 - Generalized Linear Models (Continued.)
Link Regression Analysis Lecture 32 - Non-Linear Estimation
Link Regression Analysis Lecture 33 - Regression Models with Autocorrelated Errors
Link Regression Analysis Lecture 34 - Regression Models with Autocorrelated Errors (Continued.)
Link Regression Analysis Lecture 35 - Measurement Errors & Calibration Problem
Link Regression Analysis Lecture 36 - Tutorial - I
Link Regression Analysis Lecture 37 - Tutorial - II
Link Regression Analysis Lecture 38 - Tutorial - III
Link Regression Analysis Lecture 39 - Tutorial - IV
Link Regression Analysis Lecture 40 - Tutorial - V
Link Statistical Inference Lecture 1 - Introduction and Motivation
Link Statistical Inference Lecture 2 - Basic Concepts of Point Estimations - I
Link Statistical Inference Lecture 3 - Basic Concepts of Point Estimations - II
Link Statistical Inference Lecture 4 - Finding Estimators - I
Link Statistical Inference Lecture 5 - Finding Estimators - II
Link Statistical Inference Lecture 6 - Finding Estimators - III
Link Statistical Inference Lecture 7 - Properties of MLEs
Link Statistical Inference Lecture 8 - Lower Bounds for Variance - I
Link Statistical Inference Lecture 9 - Lower Bounds for Variance - II
Link Statistical Inference Lecture 10 - Lower Bounds for Variance - III
Link Statistical Inference Lecture 11 - Lower Bounds for Variance - IV
Link Statistical Inference Lecture 12 - Sufficiency
Link Statistical Inference Lecture 13 - Sufficiency and Information
Link Statistical Inference Lecture 14 - Minimal Sufficiency, Completeness
Link Statistical Inference Lecture 15 - UMVU Estimation, Ancillarity
Link Statistical Inference Lecture 16 - Invariance - I
Link Statistical Inference Lecture 17 - Invariance - II
Link Statistical Inference Lecture 18 - Bayes and Minimax Estimation - I
Link Statistical Inference Lecture 19 - Bayes and Minimax Estimation - II
Link Statistical Inference Lecture 20 - Bayes and Minimax Estimation - III
Link Statistical Inference Lecture 21 - Testing of Hypotheses : Basic Concepts
Link Statistical Inference Lecture 22 - Neyman Pearson Fundamental Lemma
Link Statistical Inference Lecture 23 - Applications of NP lemma
Link Statistical Inference Lecture 24 - UMP Tests
Link Statistical Inference Lecture 25 - UMP Tests (Continued.)
Link Statistical Inference Lecture 26 - UMP Unbiased Tests
Link Statistical Inference Lecture 27 - UMP Unbiased Tests (Continued.)
Link Statistical Inference Lecture 28 - UMP Unbiased Tests : Applications
Link Statistical Inference Lecture 29 - Unbiased Tests for Normal Populations
Link Statistical Inference Lecture 30 - Unbiased Tests for Normal Populations (Continued.)
Link Statistical Inference Lecture 31 - Likelihood Ratio Tests - I
Link Statistical Inference Lecture 32 - Likelihood Ratio Tests - II
Link Statistical Inference Lecture 33 - Likelihood Ratio Tests - III
Link Statistical Inference Lecture 34 - Likelihood Ratio Tests - IV
Link Statistical Inference Lecture 35 - Invariant Tests
Link Statistical Inference Lecture 36 - Test for Goodness of Fit
Link Statistical Inference Lecture 37 - Sequential Procedure
Link Statistical Inference Lecture 38 - Sequential Procedure (Continued.)
Link Statistical Inference Lecture 39 - Confidence Intervals
Link Statistical Inference Lecture 40 - Confidence Intervals (Continued.)
Link A Basic Course in Real Analysis Lecture 1 - Rational Numbers and Rational Cuts
Link A Basic Course in Real Analysis Lecture 2 - Irrational numbers, Dedekind's Theorem
Link A Basic Course in Real Analysis Lecture 3 - Continuum and Exercises
Link A Basic Course in Real Analysis Lecture 4 - Continuum and Exercises (Continued.)
Link A Basic Course in Real Analysis Lecture 5 - Cantor's Theory of Irrational Numbers
Link A Basic Course in Real Analysis Lecture 6 - Cantor's Theory of Irrational Numbers (Continued.)
Link A Basic Course in Real Analysis Lecture 7 - Equivalence of Dedekind and Cantor's Theory
Link A Basic Course in Real Analysis Lecture 8 - Finite, Infinite, Countable and Uncountable Sets of Real Numbers
Link A Basic Course in Real Analysis Lecture 9 - Types of Sets with Examples, Metric Space
Link A Basic Course in Real Analysis Lecture 10 - Various properties of open set, closure of a set
Link A Basic Course in Real Analysis Lecture 11 - Ordered set, Least upper bound, greatest lower bound of a set
Link A Basic Course in Real Analysis Lecture 12 - Compact Sets and its properties
Link A Basic Course in Real Analysis Lecture 13 - Weiersstrass Theorem, Heine Borel Theorem, Connected set
Link A Basic Course in Real Analysis Lecture 14 - Tutorial - II
Link A Basic Course in Real Analysis Lecture 15 - Concept of limit of a sequence
Link A Basic Course in Real Analysis Lecture 16 - Some Important limits, Ratio tests for sequences of Real Numbers
Link A Basic Course in Real Analysis Lecture 17 - Cauchy theorems on limit of sequences with examples
Link A Basic Course in Real Analysis Lecture 18 - Fundamental theorems on limits, Bolzano-Weiersstrass Theorem
Link A Basic Course in Real Analysis Lecture 19 - Theorems on Convergent and divergent sequences
Link A Basic Course in Real Analysis Lecture 20 - Cauchy sequence and its properties
Link A Basic Course in Real Analysis Lecture 21 - Infinite series of real numbers
Link A Basic Course in Real Analysis Lecture 22 - Comparison tests for series, Absolutely convergent and Conditional convergent series
Link A Basic Course in Real Analysis Lecture 23 - Tests for absolutely convergent series
Link A Basic Course in Real Analysis Lecture 24 - Raabe's test, limit of functions, Cluster point
Link A Basic Course in Real Analysis Lecture 25 - Some results on limit of functions
Link A Basic Course in Real Analysis Lecture 26 - Limit Theorems for functions
Link A Basic Course in Real Analysis Lecture 27 - Extension of limit concept (one sided limits)
Link A Basic Course in Real Analysis Lecture 28 - Continuity of Functions
Link A Basic Course in Real Analysis Lecture 29 - Properties of Continuous Functions
Link A Basic Course in Real Analysis Lecture 30 - Boundedness Theorem, Max-Min Theorem and Bolzano's theorem
Link A Basic Course in Real Analysis Lecture 31 - Uniform Continuity and Absolute Continuity
Link A Basic Course in Real Analysis Lecture 32 - Types of Discontinuities, Continuity and Compactness
Link A Basic Course in Real Analysis Lecture 33 - Continuity and Compactness (Continued.), Connectedness
Link A Basic Course in Real Analysis Lecture 34 - Differentiability of real valued function, Mean Value Theorem
Link A Basic Course in Real Analysis Lecture 35 - Mean Value Theorem (Continued.)
Link A Basic Course in Real Analysis Lecture 36 - Application of MVT , Darboux Theorem, L Hospital Rule
Link A Basic Course in Real Analysis Lecture 37 - L'Hospital Rule and Taylor's Theorem
Link A Basic Course in Real Analysis Lecture 38 - Tutorial - III
Link A Basic Course in Real Analysis Lecture 39 - Riemann/Riemann Stieltjes Integral
Link A Basic Course in Real Analysis Lecture 40 - Existence of Reimann Stieltjes Integral
Link A Basic Course in Real Analysis Lecture 41 - Properties of Reimann Stieltjes Integral
Link A Basic Course in Real Analysis Lecture 42 - Properties of Reimann Stieltjes Integral (Continued.)
Link A Basic Course in Real Analysis Lecture 43 - Definite and Indefinite Integral
Link A Basic Course in Real Analysis Lecture 44 - Fundamental Theorems of Integral Calculus
Link A Basic Course in Real Analysis Lecture 45 - Improper Integrals
Link A Basic Course in Real Analysis Lecture 46 - Convergence Test for Improper Integrals
Link Statistical Methods for Scientists and Engineers Lecture 1 - Foundations of Probability
Link Statistical Methods for Scientists and Engineers Lecture 2 - Laws of Probability
Link Statistical Methods for Scientists and Engineers Lecture 3 - Random Variables
Link Statistical Methods for Scientists and Engineers Lecture 4 - Moments and Special Distributions
Link Statistical Methods for Scientists and Engineers Lecture 5 - Moments and Special Distributions (Continued...)
Link Statistical Methods for Scientists and Engineers Lecture 6 - Special Distributions (Continued...)
Link Statistical Methods for Scientists and Engineers Lecture 7 - Special Distributions (Continued...)
Link Statistical Methods for Scientists and Engineers Lecture 8 - Sampling Distributions
Link Statistical Methods for Scientists and Engineers Lecture 9 - Parametric Methods - I
Link Statistical Methods for Scientists and Engineers Lecture 10 - Parametric Methods - II
Link Statistical Methods for Scientists and Engineers Lecture 11 - Parametric Methods - III
Link Statistical Methods for Scientists and Engineers Lecture 12 - Parametric Methods - IV
Link Statistical Methods for Scientists and Engineers Lecture 13 - Parametric Methods - V
Link Statistical Methods for Scientists and Engineers Lecture 14 - Parametric Methods - VI
Link Statistical Methods for Scientists and Engineers Lecture 15 - Parametric Methods - VII
Link Statistical Methods for Scientists and Engineers Lecture 16 - Multivariate Analysis - I
Link Statistical Methods for Scientists and Engineers Lecture 17 - Multivariate Analysis - II
Link Statistical Methods for Scientists and Engineers Lecture 18 - Multivariate Analysis - III
Link Statistical Methods for Scientists and Engineers Lecture 19 - Multivariate Analysis - IV
Link Statistical Methods for Scientists and Engineers Lecture 20 - Multivariate Analysis - V
Link Statistical Methods for Scientists and Engineers Lecture 21 - Multivariate Analysis - VI
Link Statistical Methods for Scientists and Engineers Lecture 22 - Multivariate Analysis - VII
Link Statistical Methods for Scientists and Engineers Lecture 23 - Multivariate Analysis - VIII
Link Statistical Methods for Scientists and Engineers Lecture 24 - Multivariate Analysis - IX
Link Statistical Methods for Scientists and Engineers Lecture 25 - Multivariate Analysis - X
Link Statistical Methods for Scientists and Engineers Lecture 26 - Multivariate Analysis - XI
Link Statistical Methods for Scientists and Engineers Lecture 27 - Multivariate Analysis - XII
Link Statistical Methods for Scientists and Engineers Lecture 28 - Non parametric Methods - I
Link Statistical Methods for Scientists and Engineers Lecture 29 - Non parametric Methods - II
Link Statistical Methods for Scientists and Engineers Lecture 30 - Non parametric Methods - III
Link Statistical Methods for Scientists and Engineers Lecture 31 - Non parametric Methods - IV
Link Statistical Methods for Scientists and Engineers Lecture 32 - Nonparametric Methods - V
Link Statistical Methods for Scientists and Engineers Lecture 33 - Nonparametric Methods - VI
Link Statistical Methods for Scientists and Engineers Lecture 34 - Nonparametric Methods - VII
Link Statistical Methods for Scientists and Engineers Lecture 35 - Nonparametric Methods - VIII
Link Statistical Methods for Scientists and Engineers Lecture 36 - Nonparametric Methods - IX
Link Statistical Methods for Scientists and Engineers Lecture 37 - Nonparametric Methods - X
Link Statistical Methods for Scientists and Engineers Lecture 38 - Nonparametric Methods - XI
Link Statistical Methods for Scientists and Engineers Lecture 39 - Nonparametric Methods - XII
Link Statistical Methods for Scientists and Engineers Lecture 40 - Nonparametric Methods - XIII
Link NOC:Probability and Statistics Lecture 1 - Sets, Classes, Collection
Link NOC:Probability and Statistics Lecture 2 - Sequence of Sets
Link NOC:Probability and Statistics Lecture 3 - Ring, Field (Algebra)
Link NOC:Probability and Statistics Lecture 4 - Sigma-Ring, Sigma-Field, Monotone Class
Link NOC:Probability and Statistics Lecture 5 - Random Experiment, Events
Link NOC:Probability and Statistics Lecture 6 - Definitions of Probability
Link NOC:Probability and Statistics Lecture 7 - Properties of Probability Function - I
Link NOC:Probability and Statistics Lecture 8 - Properties of Probability Function - II
Link NOC:Probability and Statistics Lecture 9 - Conditional Probability
Link NOC:Probability and Statistics Lecture 10 - Independence of Events
Link NOC:Probability and Statistics Lecture 11 - Problems in Probability - I
Link NOC:Probability and Statistics Lecture 12 - Problems in Probability - II
Link NOC:Probability and Statistics Lecture 13 - Random Variables
Link NOC:Probability and Statistics Lecture 14 - Probability Distribution of a Random Variable - I
Link NOC:Probability and Statistics Lecture 15 - Probability Distribution of a Random Variable - II
Link NOC:Probability and Statistics Lecture 16 - Moments
Link NOC:Probability and Statistics Lecture 17 - Characteristics of Distributions - I
Link NOC:Probability and Statistics Lecture 18 - Characteristics of Distributions - II
Link NOC:Probability and Statistics Lecture 19 - Special Discrete Distributions - I
Link NOC:Probability and Statistics Lecture 20 - Special Discrete Distributions - II
Link NOC:Probability and Statistics Lecture 21 - Special Discrete Distributions - III
Link NOC:Probability and Statistics Lecture 22 - Poisson Process - I
Link NOC:Probability and Statistics Lecture 23 - Poisson Process - II
Link NOC:Probability and Statistics Lecture 24 - Special Continuous Distributions - I
Link NOC:Probability and Statistics Lecture 25 - Special Continuous Distributions - II
Link NOC:Probability and Statistics Lecture 26 - Special Continuous Distributions - III
Link NOC:Probability and Statistics Lecture 27 - Special Continuous Distributions - IV
Link NOC:Probability and Statistics Lecture 28 - Special Continuous Distributions - V
Link NOC:Probability and Statistics Lecture 29 - Normal Distribution
Link NOC:Probability and Statistics Lecture 30 - Problems on Normal Distribution
Link NOC:Probability and Statistics Lecture 31 - Problems on Special Distributions - I
Link NOC:Probability and Statistics Lecture 32 - Problems on Special Distributions - II
Link NOC:Probability and Statistics Lecture 33 - Function of a random variable - I
Link NOC:Probability and Statistics Lecture 34 - Function of a random variable - II
Link NOC:Probability and Statistics Lecture 35 - Joint Distributions - I
Link NOC:Probability and Statistics Lecture 36 - Joint Distributions - II
Link NOC:Probability and Statistics Lecture 37 - Independence, Product Moments
Link NOC:Probability and Statistics Lecture 38 - Linearity Property of Correlation and Examples
Link NOC:Probability and Statistics Lecture 39 - Bivariate Normal Distribution - I
Link NOC:Probability and Statistics Lecture 40 - Bivariate Normal Distribution - II
Link NOC:Probability and Statistics Lecture 41 - Additive Properties of Distributions - I
Link NOC:Probability and Statistics Lecture 42 - Additive Properties of Distributions - II
Link NOC:Probability and Statistics Lecture 43 - Transformation of Random Variables
Link NOC:Probability and Statistics Lecture 44 - Distribution of Order Statistics
Link NOC:Probability and Statistics Lecture 45 - Basic Concepts
Link NOC:Probability and Statistics Lecture 46 - Chi-Square Distribution
Link NOC:Probability and Statistics Lecture 47 - Chi-Square Distribution (Continued...), t-Distribution
Link NOC:Probability and Statistics Lecture 48 - F-Distribution
Link NOC:Probability and Statistics Lecture 49 - Descriptive Statistics - I
Link NOC:Probability and Statistics Lecture 50 - Descriptive Statistics - II
Link NOC:Probability and Statistics Lecture 51 - Descriptive Statistics - III
Link NOC:Probability and Statistics Lecture 52 - Descriptive Statistics - IV
Link NOC:Probability and Statistics Lecture 53 - Introduction to Estimation
Link NOC:Probability and Statistics Lecture 54 - Unbiased and Consistent Estimators
Link NOC:Probability and Statistics Lecture 55 - LSE, MME
Link NOC:Probability and Statistics Lecture 56 - Examples on MME, MLE
Link NOC:Probability and Statistics Lecture 57 - Examples on MLE - I
Link NOC:Probability and Statistics Lecture 58 - Examples on MLE - II, MSE
Link NOC:Probability and Statistics Lecture 59 - UMVUE, Sufficiency, Completeness
Link NOC:Probability and Statistics Lecture 60 - Rao - Blackwell Theorem and Its Applications
Link NOC:Probability and Statistics Lecture 61 - Confidence Intervals - I
Link NOC:Probability and Statistics Lecture 62 - Confidence Intervals - II
Link NOC:Probability and Statistics Lecture 63 - Confidence Intervals - III
Link NOC:Probability and Statistics Lecture 64 - Confidence Intervals - IV
Link NOC:Probability and Statistics Lecture 65 - Basic Definitions
Link NOC:Probability and Statistics Lecture 66 - Two Types of Errors
Link NOC:Probability and Statistics Lecture 67 - Neyman-Pearson Fundamental Lemma
Link NOC:Probability and Statistics Lecture 68 - Applications of N-P Lemma - I
Link NOC:Probability and Statistics Lecture 69 - Applications of N-P Lemma - II
Link NOC:Probability and Statistics Lecture 70 - Testing for Normal Mean
Link NOC:Probability and Statistics Lecture 71 - Testing for Normal Variance
Link NOC:Probability and Statistics Lecture 72 - Large Sample Test for Variance and Two Sample Problem
Link NOC:Probability and Statistics Lecture 73 - Paired t-Test
Link NOC:Probability and Statistics Lecture 74 - Examples
Link NOC:Probability and Statistics Lecture 75 - Testing Equality of Proportions
Link NOC:Probability and Statistics Lecture 76 - Chi-Square Test for Goodness Fit - I
Link NOC:Probability and Statistics Lecture 77 - Chi-Square Test for Goodness Fit - II
Link NOC:Probability and Statistics Lecture 78 - Testing for Independence in rxc Contingency Table - I
Link NOC:Probability and Statistics Lecture 79 - Testing for Independence in rxc Contingency Table - II
Link NOC:Applied Multivariate Statistical Modeling Lecture 1 - Introduction to Multivariate Statistical Modeling
Link NOC:Applied Multivariate Statistical Modeling Lecture 2 - Introduction to Multivariate Statistical Modeling: Data types, models, and modeling
Link NOC:Applied Multivariate Statistical Modeling Lecture 3 - Statistical approaches to model building
Link NOC:Applied Multivariate Statistical Modeling Lecture 4 - Statistical approaches to model building (Continued...)
Link NOC:Applied Multivariate Statistical Modeling Lecture 5 - Univariate Descriptive Statistics
Link NOC:Applied Multivariate Statistical Modeling Lecture 6 - Univariate Descriptive Statistics (Continued...)
Link NOC:Applied Multivariate Statistical Modeling Lecture 7 - Normal Distribution and Chi-squared Distribution
Link NOC:Applied Multivariate Statistical Modeling Lecture 8 - t-distribution, F-distribution, and Central Limit Theorem
Link NOC:Applied Multivariate Statistical Modeling Lecture 9 - Univariate Inferential Statistics: Estimation
Link NOC:Applied Multivariate Statistical Modeling Lecture 10 - Univariate Inferential Statistics: Estimation (Continued...)
Link NOC:Applied Multivariate Statistical Modeling Lecture 11 - Univariate Inferential Statistics: Hypothesis Testing
Link NOC:Applied Multivariate Statistical Modeling Lecture 12 - Hypothesis Testing (Continued...): Decision Making Scenarios
Link NOC:Applied Multivariate Statistical Modeling Lecture 13 - Multivariate Descriptive Statistics: Mean Vector
Link NOC:Applied Multivariate Statistical Modeling Lecture 14 - Multivariate Descriptive Statistics: Covariance Matrix
Link NOC:Applied Multivariate Statistical Modeling Lecture 15 - Multivariate Descriptive Statistics: Correlation Matrix
Link NOC:Applied Multivariate Statistical Modeling Lecture 16 - Multivariate Descriptive Statistics: Relationship between correlation and covariance matrices
Link NOC:Applied Multivariate Statistical Modeling Lecture 17 - Multivariate Normal Distribution
Link NOC:Applied Multivariate Statistical Modeling Lecture 18 - Multivariate Normal Distribution (Continued...)
Link NOC:Applied Multivariate Statistical Modeling Lecture 19 - Multivariate Normal Distribution (Continued...): Geometrical Interpretation
Link NOC:Applied Multivariate Statistical Modeling Lecture 20 - Multivariate Normal Distribution (Continued...): Examining data for multivariate normal distribution
Link NOC:Applied Multivariate Statistical Modeling Lecture 21 - Multivariate Inferential Statistics: Basics and Hotelling T-square statistic
Link NOC:Applied Multivariate Statistical Modeling Lecture 22 - Multivariate Inferential Statistics: Confidence Region
Link NOC:Applied Multivariate Statistical Modeling Lecture 23 - Multivariate Inferential Statistics: Simultaneous confidence interval and Hypothesis testing
Link NOC:Applied Multivariate Statistical Modeling Lecture 24 - Multivariate Inferential Statistics: Hypothesis testing for equality of two population mean vectors
Link NOC:Applied Multivariate Statistical Modeling Lecture 25 - Analysis of Variance (ANOVA)
Link NOC:Applied Multivariate Statistical Modeling Lecture 26 - Analysis of Variance (ANOVA): Decomposition of Total sum of squares
Link NOC:Applied Multivariate Statistical Modeling Lecture 27 - Analysis of Variance (ANOVA): Estimation of Parameters and Model Adequacy tests
Link NOC:Applied Multivariate Statistical Modeling Lecture 28 - Two-way and Three-way Analysis of Variance (ANOVA)
Link NOC:Applied Multivariate Statistical Modeling Lecture 29 - Tutorial ANOVA
Link NOC:Applied Multivariate Statistical Modeling Lecture 30 - Tutorial ANOVA (Continued...)
Link NOC:Applied Multivariate Statistical Modeling Lecture 31 - Multivariate Analysis of Variance (MANOVA): Conceptual Model
Link NOC:Applied Multivariate Statistical Modeling Lecture 32 - Multivariate Analysis of Variance (MANOVA): Assumptions and Decomposition of total sum square and cross products (SSCP)
Link NOC:Applied Multivariate Statistical Modeling Lecture 33 - Multivariate Analysis of Variance (MANOVA): Decomposition of total sum square and cross products (SSCP) (Continued...)
Link NOC:Applied Multivariate Statistical Modeling Lecture 34 - Multivariate Analysis of Variance (MANOVA): Estimation and Hypothesis testing
Link NOC:Applied Multivariate Statistical Modeling Lecture 35 - MANOVA Case Study
Link NOC:Applied Multivariate Statistical Modeling Lecture 36 - Multiple Linear Regression: Introduction
Link NOC:Applied Multivariate Statistical Modeling Lecture 37 - Multiple Linear Regression: Assumptions and Estimation of model parameters
Link NOC:Applied Multivariate Statistical Modeling Lecture 38 - Multiple Linear Regression: Sampling Distribution of parameter estimates
Link NOC:Applied Multivariate Statistical Modeling Lecture 39 - Multiple Linear Regression: Sampling Distribution of parameter estimates (Continued...)
Link NOC:Applied Multivariate Statistical Modeling Lecture 40 - Multiple Linear Regression: Model Adequacy Tests
Link NOC:Applied Multivariate Statistical Modeling Lecture 41 - Multiple Linear Regression: Model Adequacy Tests (Continued...)
Link NOC:Applied Multivariate Statistical Modeling Lecture 42 - Multiple Linear Regression: Test of Assumptions
Link NOC:Applied Multivariate Statistical Modeling Lecture 43 - MLR-Model diagnostics
Link NOC:Applied Multivariate Statistical Modeling Lecture 44 - MLR-case study
Link NOC:Applied Multivariate Statistical Modeling Lecture 45 - Multivariate Linear Regression: Conceptual model and assumptions
Link NOC:Applied Multivariate Statistical Modeling Lecture 46 - Multivariate Linear Regression: Estimation of parameters
Link NOC:Applied Multivariate Statistical Modeling Lecture 47 - Multivariate Linear Regression: Estimation of parameters (Continued...)
Link NOC:Applied Multivariate Statistical Modeling Lecture 48 - Multiple Linear Regression: Sampling Distribution of parameter estimates
Link NOC:Applied Multivariate Statistical Modeling Lecture 49 - Multivariate Linear Regression: Model Adequacy Tests
Link NOC:Applied Multivariate Statistical Modeling Lecture 50 - Multiple Linear Regression: Model Adequacy Tests (Continued...)
Link NOC:Applied Multivariate Statistical Modeling Lecture 51 - Regression modeling using SPSS
Link NOC:Applied Multivariate Statistical Modeling Lecture 52 - Principal Component Analysis (PCA): Conceptual Model
Link NOC:Applied Multivariate Statistical Modeling Lecture 53 - Principal Component Analysis (PCA): Extraction of Principal components (PCs)
Link NOC:Applied Multivariate Statistical Modeling Lecture 54 - Principal Component Analysis (PCA): Model Adequacy and Interpretation
Link NOC:Applied Multivariate Statistical Modeling Lecture 55 - Principal Component Analysis (PCA): Model Adequacy and Interpretation (Continued...)
Link NOC:Applied Multivariate Statistical Modeling Lecture 56 - Factor Analysis: Basics and Orthogonal factor models
Link NOC:Applied Multivariate Statistical Modeling Lecture 57 - Factor Analysis: Types of models and key questions
Link NOC:Applied Multivariate Statistical Modeling Lecture 58 - Factor Analysis: Parameter Estimation
Link NOC:Applied Multivariate Statistical Modeling Lecture 59 - Factor Analysis: Parameter Estimation (Continued...)
Link NOC:Applied Multivariate Statistical Modeling Lecture 60 - Factor Analysis: Model Adequacy tests and factor rotation
Link NOC:Applied Multivariate Statistical Modeling Lecture 61 - Factor Analysis: Factor scores and case study
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 1 - Introduction to PDE
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 2 - Classification of PDE
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 3 - Principle of Linear Superposition
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 4 - Standard Eigen Value Problem and Special ODEs
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 5 - Adjoint Operator
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 6 - Generalized Sturm - Louiville Problem
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 7 - Properties of Adjoint Operator
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 8 - Separation of Variables: Rectangular Coordinate Systems
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 9 - Solution of 3 Dimensional Parabolic Problem
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 10 - Solution of 4 Dimensional Parabolic problem
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 11 - Solution of 4 Dimensional Parabolic Problem (Continued...)
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 12 - Solution of Elliptical PDE
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 13 - Solution of Hyperbolic PDE
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 14 - Orthogonality of Bessel Function and 2 Dimensional Cylindrical Coordinate System
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 15 - Cylindrical Co-ordinate System - 3 Dimensional Problem
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 16 - Spherical Polar Coordinate System
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 17 - Spherical Polar Coordinate System (Continued...)
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 18 - Example of Generalized 3 Dimensional Problem
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 19 - Example of Application Oriented Problems
Link NOC:Partial Differential Equations (PDE) for Engineers - Solution by Separation of Variables Lecture 20 - Examples of Application Oriented Problems (Continued...)
Link NOC:Introductory Course in Real Analysis Lecture 1 - Countable and Uncountable sets
Link NOC:Introductory Course in Real Analysis Lecture 2 - Properties of Countable and Uncountable sets
Link NOC:Introductory Course in Real Analysis Lecture 3 - Examples of Countable and Uncountable sets
Link NOC:Introductory Course in Real Analysis Lecture 4 - Concepts of Metric Space
Link NOC:Introductory Course in Real Analysis Lecture 5 - Open ball, Closed ball, Limit point of a set
Link NOC:Introductory Course in Real Analysis Lecture 6 - Tutorial-I
Link NOC:Introductory Course in Real Analysis Lecture 7 - Some theorems on Open and Closed sets
Link NOC:Introductory Course in Real Analysis Lecture 8 - Ordered set, Least upper bound, Greatest lower bound of a set
Link NOC:Introductory Course in Real Analysis Lecture 9 - Ordered set, Least upper bound, Greatest lower bound of a set (Continued...)
Link NOC:Introductory Course in Real Analysis Lecture 10 - Compact Set
Link NOC:Introductory Course in Real Analysis Lecture 11 - Properties of Compact sets
Link NOC:Introductory Course in Real Analysis Lecture 12 - Tutorial-II
Link NOC:Introductory Course in Real Analysis Lecture 13 - Heine Borel Theorem
Link NOC:Introductory Course in Real Analysis Lecture 14 - Weierstrass Theorem
Link NOC:Introductory Course in Real Analysis Lecture 15 - Cantor set and its properties
Link NOC:Introductory Course in Real Analysis Lecture 16 - Derived set and Dense set
Link NOC:Introductory Course in Real Analysis Lecture 17 - Limit of a sequence and monotone sequence
Link NOC:Introductory Course in Real Analysis Lecture 18 - Tutorial-III
Link NOC:Introductory Course in Real Analysis Lecture 19 - Some Important limits of sequences
Link NOC:Introductory Course in Real Analysis Lecture 20 - Ratio Test Cauchy’s theorems on limits of sequences of real numbers
Link NOC:Introductory Course in Real Analysis Lecture 21 - Fundamental theorems on limits
Link NOC:Introductory Course in Real Analysis Lecture 22 - Some results on limits and Bolzano-Weierstrass Theorem
Link NOC:Introductory Course in Real Analysis Lecture 23 - Criteria for convergent sequence
Link NOC:Introductory Course in Real Analysis Lecture 24 - Tutorial-IV
Link NOC:Introductory Course in Real Analysis Lecture 25 - Criteria for Divergent Sequence
Link NOC:Introductory Course in Real Analysis Lecture 26 - Cauchy Sequence
Link NOC:Introductory Course in Real Analysis Lecture 27 - Cauchy Convergence Criteria for Sequences
Link NOC:Introductory Course in Real Analysis Lecture 28 - Infinite Series of Real Numbers
Link NOC:Introductory Course in Real Analysis Lecture 29 - Convergence Criteria for Series of Positive Real Numbers
Link NOC:Introductory Course in Real Analysis Lecture 30 - Tutorial-V
Link NOC:Introductory Course in Real Analysis Lecture 31 - Comparison Test for Series
Link NOC:Introductory Course in Real Analysis Lecture 32 - Absolutely and Conditionally Convergent Series
Link NOC:Introductory Course in Real Analysis Lecture 33 - Rearrangement Theorem and Test for Convergence of Series
Link NOC:Introductory Course in Real Analysis Lecture 34 - Ratio and Integral Test for Convergence of Series
Link NOC:Introductory Course in Real Analysis Lecture 35 - Raabe's Test for Convergence of Series
Link NOC:Introductory Course in Real Analysis Lecture 36 - Tutorial-VI
Link NOC:Introductory Course in Real Analysis Lecture 37 - Limit of Functions and Cluster Point
Link NOC:Introductory Course in Real Analysis Lecture 38 - Limit of Functions (Continued...)
Link NOC:Introductory Course in Real Analysis Lecture 39 - Divergence Criteria for Limit
Link NOC:Introductory Course in Real Analysis Lecture 40 - Various Properties of Limit of Functions
Link NOC:Introductory Course in Real Analysis Lecture 41 - Left and Right Hand Limits for Functions
Link NOC:Introductory Course in Real Analysis Lecture 42 - Tutorial-VII
Link NOC:Introductory Course in Real Analysis Lecture 43 - Limit of Functions at Infinity
Link NOC:Introductory Course in Real Analysis Lecture 44 - Continuous Functions (Cauchy's Definition)
Link NOC:Introductory Course in Real Analysis Lecture 45 - Continuous Functions (Heine's Definition)
Link NOC:Introductory Course in Real Analysis Lecture 46 - Properties of Continuous Functions
Link NOC:Introductory Course in Real Analysis Lecture 47 - Properties of Continuous Functions (Continued...)
Link NOC:Introductory Course in Real Analysis Lecture 48 - Tutorial-VIII
Link NOC:Introductory Course in Real Analysis Lecture 49 - Boundness Theorem and Max-Min Theorem
Link NOC:Introductory Course in Real Analysis Lecture 50 - Location of Root and Bolzano's Theorem
Link NOC:Introductory Course in Real Analysis Lecture 51 - Uniform Continuity and Related Theorems
Link NOC:Introductory Course in Real Analysis Lecture 52 - Absolute Continuity and Related Theorems
Link NOC:Introductory Course in Real Analysis Lecture 53 - Types of Discontinuities
Link NOC:Introductory Course in Real Analysis Lecture 54 - Tutorial-IX
Link NOC:Introductory Course in Real Analysis Lecture 55 - Types of Discontinuities (Continued...)
Link NOC:Introductory Course in Real Analysis Lecture 56 - Relation between Continuity and Compact Sets
Link NOC:Introductory Course in Real Analysis Lecture 57 - Differentiability of Real Valued Functions
Link NOC:Introductory Course in Real Analysis Lecture 58 - Local Max. - Min. Cauchy's and Lagrange's Mean Value Theorem
Link NOC:Introductory Course in Real Analysis Lecture 59 - Rolle's Mean Value Theorems and Its Applications
Link NOC:Introductory Course in Real Analysis Lecture 60 - Tutorial-X
Link NOC:Introductory Course in Real Analysis Lecture 61
Link NOC:Introductory Course in Real Analysis Lecture 62
Link NOC:Introductory Course in Real Analysis Lecture 63
Link NOC:Introductory Course in Real Analysis Lecture 64
Link NOC:Introductory Course in Real Analysis Lecture 65
Link NOC:Introductory Course in Real Analysis Lecture 66
Link NOC:Introductory Course in Real Analysis Lecture 67
Link NOC:Introductory Course in Real Analysis Lecture 68
Link NOC:Introductory Course in Real Analysis Lecture 69
Link NOC:Introductory Course in Real Analysis Lecture 70
Link NOC:Introductory Course in Real Analysis Lecture 71
Link NOC:Introductory Course in Real Analysis Lecture 72
Link NOC:Introductory Course in Real Analysis Lecture 73
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 1 - Preliminary concepts: Fluid kinematics, stress, strain
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 2 - Cauchy’s equation of motion and Navier-Stokes equations
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 3 - Reduced forms of Navier-Stokes equations and Boundary conditions
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 4 - Exact solutions of Navier-Stokes equations in particular cases
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 5 - Dimensional Analysis – Non-dimensionalization of Navier-Stokes’s equations
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 6 - Stream function formulation of Navier-Stokes equations
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 7 - Stokes flow past a cylinder
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 8 - Stokes flow past a sphere
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 9 - Elementary Lubrication Theory
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 10 - Hydrodynamics of Squeeze flow
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 11 - Solution of arbitrary Stokes flows
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 12 - Mechanics of Swimming Microorganisms
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 13 - Viscous flow past a spherical drop
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 14 - Migration of a viscous drop under Marangoni effects
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 15 - Singularities of Stokes flows
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 16 - Introduction to porous media
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 17 - Flow through porous media – elementary geometries
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 18 - Flow through composite porous channels
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 19 - Modeling transport of particles inside capillaries
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 20 - Modeling transport of microparticles – some applications
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 21 - Introduction to Elctrokietics
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 22 - Basics on Electrostatics
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 23 - Transport Equations for Electrokinetics, Part-I
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 24 - Transport Equations for Electrokinetics, Part-II
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 25 - Electric Double Layer
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 26 - Electroosmotic flow (EOF) of ionized fluid
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 27 - EOF in micro-channel
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 28 - Non-linear EOF, Overlapping Debye Layer
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 29 - Two-dimensional EOF
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 30 - EOF near heterogeneous surface potential
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 31 - Electroosmosis in hydrophobic surface
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 32 - Numerical Methods for Boundary Value Problems (BVP)
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 33 - Numerical Methods for nonlinear BVP
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 34 - Numerical Methods for coupled set of BVP
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 35 - Numerical Methods for PDEs
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 36 - Numerical Methods for transport equations, Part-I
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 37 - Numerical Methods for transport equations, Part-II
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 38 - Electrophoresis of charged colloids, Part-I
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 39 - Electrophoresis of charged colloids, Part-II
Link NOC:Modeling Transport Phenomena of Microparticles Lecture 40 - Gel Electrophoresis
Link NOC:Constrained and Unconstrained Optimization Lecture 1 - Introduction to Optimization
Link NOC:Constrained and Unconstrained Optimization Lecture 2 - Assumptions and Mathematical Modeling of LPP
Link NOC:Constrained and Unconstrained Optimization Lecture 3 - Geometrey of LPP
Link NOC:Constrained and Unconstrained Optimization Lecture 4 - Graphical Solution of LPP - I
Link NOC:Constrained and Unconstrained Optimization Lecture 5 - Graphical Solution of LPP - II
Link NOC:Constrained and Unconstrained Optimization Lecture 6 - Solution of LPP: Simplex Method
Link NOC:Constrained and Unconstrained Optimization Lecture 7 - Simplex Method
Link NOC:Constrained and Unconstrained Optimization Lecture 8 - Introduction to BIG-M Method
Link NOC:Constrained and Unconstrained Optimization Lecture 9 - Algorithm of BIG-M Method
Link NOC:Constrained and Unconstrained Optimization Lecture 10 - Problems on BIG-M Method
Link NOC:Constrained and Unconstrained Optimization Lecture 11 - Two Phase Method: Introduction
Link NOC:Constrained and Unconstrained Optimization Lecture 12 - Two Phase Method: Problem Solution
Link NOC:Constrained and Unconstrained Optimization Lecture 13 - Special Cases of LPP
Link NOC:Constrained and Unconstrained Optimization Lecture 14 - Degeneracy in LPP
Link NOC:Constrained and Unconstrained Optimization Lecture 15 - Sensitivity Analysis - I
Link NOC:Constrained and Unconstrained Optimization Lecture 16 - Sensitivity Analysis - II
Link NOC:Constrained and Unconstrained Optimization Lecture 17 - Problems on Sensitivity Analysis
Link NOC:Constrained and Unconstrained Optimization Lecture 18 - Introduction to Duality Theory - I
Link NOC:Constrained and Unconstrained Optimization Lecture 19 - Introduction to Duality Theory - II
Link NOC:Constrained and Unconstrained Optimization Lecture 20 - Dual Simplex Method
Link NOC:Constrained and Unconstrained Optimization Lecture 21 - Examples on Dual Simplex Method
Link NOC:Constrained and Unconstrained Optimization Lecture 22 - Interger Linear Programming
Link NOC:Constrained and Unconstrained Optimization Lecture 23 - Interger Linear Programming
Link NOC:Constrained and Unconstrained Optimization Lecture 24 - IPP: Branch and BBound Method
Link NOC:Constrained and Unconstrained Optimization Lecture 25 - Mixed Integer Programming Problem
Link NOC:Constrained and Unconstrained Optimization Lecture 26
Link NOC:Constrained and Unconstrained Optimization Lecture 27
Link NOC:Constrained and Unconstrained Optimization Lecture 28
Link NOC:Constrained and Unconstrained Optimization Lecture 29
Link NOC:Constrained and Unconstrained Optimization Lecture 30
Link NOC:Constrained and Unconstrained Optimization Lecture 31 - Introduction to Nonlinear programming
Link NOC:Constrained and Unconstrained Optimization Lecture 32 - Graphical Solution of NLP
Link NOC:Constrained and Unconstrained Optimization Lecture 33 - Types of NLP
Link NOC:Constrained and Unconstrained Optimization Lecture 34 - One dimentional unconstrained optimization
Link NOC:Constrained and Unconstrained Optimization Lecture 35 - Unconstrained Optimization
Link NOC:Constrained and Unconstrained Optimization Lecture 36 - Region Elimination Technique - 1
Link NOC:Constrained and Unconstrained Optimization Lecture 37 - Region Elimination Technique - 2
Link NOC:Constrained and Unconstrained Optimization Lecture 38 - Region Elimination Technique - 3
Link NOC:Constrained and Unconstrained Optimization Lecture 39 - Unconstrained Optimization
Link NOC:Constrained and Unconstrained Optimization Lecture 40 - Unconstrained Optimization
Link NOC:Constrained and Unconstrained Optimization Lecture 41 - Multivariate Unconstrained Optimization - 1
Link NOC:Constrained and Unconstrained Optimization Lecture 42 - Multivariate Unconstrained Optimization - 2
Link NOC:Constrained and Unconstrained Optimization Lecture 43 - Unconstrained Optimization
Link NOC:Constrained and Unconstrained Optimization Lecture 44 - NLP with Equality Constrained - 1
Link NOC:Constrained and Unconstrained Optimization Lecture 45 - NLP with Equality Constrained - 2
Link NOC:Constrained and Unconstrained Optimization Lecture 46 - Constrained NLP - 1
Link NOC:Constrained and Unconstrained Optimization Lecture 47 - Constrained NLP - 2
Link NOC:Constrained and Unconstrained Optimization Lecture 48 - Constrained Optimization
Link NOC:Constrained and Unconstrained Optimization Lecture 49 - Constrained Optimization
Link NOC:Constrained and Unconstrained Optimization Lecture 50 - KKT
Link NOC:Constrained and Unconstrained Optimization Lecture 51 - Constrained Optimization
Link NOC:Constrained and Unconstrained Optimization Lecture 52 - Constrained Optimization
Link NOC:Constrained and Unconstrained Optimization Lecture 53 - Feasible Direction
Link NOC:Constrained and Unconstrained Optimization Lecture 54 - Penalty and barrier method
Link NOC:Constrained and Unconstrained Optimization Lecture 55 - Penalty method
Link NOC:Constrained and Unconstrained Optimization Lecture 56 - Penalty and barrier method
Link NOC:Constrained and Unconstrained Optimization Lecture 57 - Penalty and barrier method
Link NOC:Constrained and Unconstrained Optimization Lecture 58 - Dynamic programming
Link NOC:Constrained and Unconstrained Optimization Lecture 59 - Multi-Objective decision making
Link NOC:Constrained and Unconstrained Optimization Lecture 60 - Multi-Attribute decision making
Link NOC:Matrix Solver Lecture 1 - Introduction to Matrix Algebra - I
Link NOC:Matrix Solver Lecture 2 - Introduction to Matrix Algebra - II
Link NOC:Matrix Solver Lecture 3 - System of Linear Equations
Link NOC:Matrix Solver Lecture 4 - Determinant of a Matrix
Link NOC:Matrix Solver Lecture 5 - Determinant of a Matrix (Continued...)
Link NOC:Matrix Solver Lecture 6 - Gauss Elimination
Link NOC:Matrix Solver Lecture 7 - Gauss Elimination (Continued...)
Link NOC:Matrix Solver Lecture 8 - LU Decomposition
Link NOC:Matrix Solver Lecture 9 - Gauss-Jordon Method
Link NOC:Matrix Solver Lecture 10 - Representation of Physical Systems as Matrix Equations
Link NOC:Matrix Solver Lecture 11 - Tridiagonal Matrix Algorithm
Link NOC:Matrix Solver Lecture 12 - Equations with Singular Matrices
Link NOC:Matrix Solver Lecture 13 - Introduction to Vector Space
Link NOC:Matrix Solver Lecture 14 - Vector Subspace
Link NOC:Matrix Solver Lecture 15 - Column Space and Nullspace of a Matrix
Link NOC:Matrix Solver Lecture 16 - Finding Null Space of a Matrix
Link NOC:Matrix Solver Lecture 17 - Solving Ax=b when A is Singular
Link NOC:Matrix Solver Lecture 18 - Linear Independence and Spanning of a Subspace
Link NOC:Matrix Solver Lecture 19 - Basis and Dimension of a Vector Space
Link NOC:Matrix Solver Lecture 20 - Four Fundamental Subspaces of a Matrix
Link NOC:Matrix Solver Lecture 21 - Left and right inverse of a matrix
Link NOC:Matrix Solver Lecture 22 - Orthogonality between the subspaces
Link NOC:Matrix Solver Lecture 23 - Best estimate
Link NOC:Matrix Solver Lecture 24 - Projection operation and linear transformation
Link NOC:Matrix Solver Lecture 25 - Creating orthogonal basis vectors
Link NOC:Matrix Solver Lecture 26 - Gram-Schmidt and modified Gram-Schmidt algorithms
Link NOC:Matrix Solver Lecture 27 - Comparing GS and modified GS
Link NOC:Matrix Solver Lecture 28 - Introduction to eigenvalues and eigenvectors
Link NOC:Matrix Solver Lecture 29 - Eigenvlues and eigenvectors for real symmetric matrix
Link NOC:Matrix Solver Lecture 30 - Positive definiteness of a matrix
Link NOC:Matrix Solver Lecture 31 - Positive definiteness of a matrix (Continued...)
Link NOC:Matrix Solver Lecture 32 - Basic Iterative Methods: Jacobi and Gauss-Siedel
Link NOC:Matrix Solver Lecture 33 - Basic Iterative Methods: Matrix Representation
Link NOC:Matrix Solver Lecture 34 - Convergence Rate and Convergence Factor for Iterative Methods
Link NOC:Matrix Solver Lecture 35 - Numerical Experiments on Convergence
Link NOC:Matrix Solver Lecture 36 - Steepest Descent Method: Finding Minima of a Functional
Link NOC:Matrix Solver Lecture 37 - Steepest Descent Method: Gradient Search
Link NOC:Matrix Solver Lecture 38 - Steepest Descent Method: Algorithm and Convergence
Link NOC:Matrix Solver Lecture 39 - Introduction to General Projection Methods
Link NOC:Matrix Solver Lecture 40 - Residue Norm and Minimum Residual Algorithm
Link NOC:Matrix Solver Lecture 41 - Developing computer programs for basic iterative methods
Link NOC:Matrix Solver Lecture 42 - Developing computer programs for projection based methods
Link NOC:Matrix Solver Lecture 43 - Introduction to Krylov subspace methods
Link NOC:Matrix Solver Lecture 44 - Krylov subspace methods for linear systems
Link NOC:Matrix Solver Lecture 45 - Iterative methods for solving linear systems using Krylov subspace methods
Link NOC:Matrix Solver Lecture 46 - Conjugate gradient methods
Link NOC:Matrix Solver Lecture 47 - Conjugate gradient methods (Continued...)
Link NOC:Matrix Solver Lecture 48 - Conjugate gradient methods (Continued...) and Introduction to GMRES
Link NOC:Matrix Solver Lecture 49 - GMRES (Continued...)
Link NOC:Matrix Solver Lecture 50 - Lanczos Biorthogonalization and BCG Algorithm
Link NOC:Matrix Solver Lecture 51 - Numerical issues in BICG and polynomial based formulation
Link NOC:Matrix Solver Lecture 52 - Conjugate gradient squared and Biconjugate gradient stabilized
Link NOC:Matrix Solver Lecture 53 - Line relaxation method
Link NOC:Matrix Solver Lecture 54 - Block relaxation method
Link NOC:Matrix Solver Lecture 55 - Domain Decomposition and Parallel Computing
Link NOC:Matrix Solver Lecture 56 - Preconditioners
Link NOC:Matrix Solver Lecture 57 - Preconditioned conjugate gradient
Link NOC:Matrix Solver Lecture 58 - Preconditioned GMRES
Link NOC:Matrix Solver Lecture 59 - Multigrid methods - I
Link NOC:Matrix Solver Lecture 60 - Multigrid methods - II
Link NOC:Introduction to Abstract and Linear Algebra Lecture 1 - Set Theory
Link NOC:Introduction to Abstract and Linear Algebra Lecture 2 - Set Operations
Link NOC:Introduction to Abstract and Linear Algebra Lecture 3 - Set Operations (Continued...)
Link NOC:Introduction to Abstract and Linear Algebra Lecture 4 - Set of sets
Link NOC:Introduction to Abstract and Linear Algebra Lecture 5 - Binary relation
Link NOC:Introduction to Abstract and Linear Algebra Lecture 6 - Equivalence relation
Link NOC:Introduction to Abstract and Linear Algebra Lecture 7 - Mapping
Link NOC:Introduction to Abstract and Linear Algebra Lecture 8 - Permutation
Link NOC:Introduction to Abstract and Linear Algebra Lecture 9 - Binary Composition
Link NOC:Introduction to Abstract and Linear Algebra Lecture 10 - Groupoid
Link NOC:Introduction to Abstract and Linear Algebra Lecture 11 - Group
Link NOC:Introduction to Abstract and Linear Algebra Lecture 12 - Order of an element
Link NOC:Introduction to Abstract and Linear Algebra Lecture 13 - Subgroup
Link NOC:Introduction to Abstract and Linear Algebra Lecture 14 - Cyclic Group
Link NOC:Introduction to Abstract and Linear Algebra Lecture 15 - Subgroup Operations
Link NOC:Introduction to Abstract and Linear Algebra Lecture 16 - Left Cosets
Link NOC:Introduction to Abstract and Linear Algebra Lecture 17 - Right Cosets
Link NOC:Introduction to Abstract and Linear Algebra Lecture 18 - Normal Subgroup
Link NOC:Introduction to Abstract and Linear Algebra Lecture 19 - Rings
Link NOC:Introduction to Abstract and Linear Algebra Lecture 20 - Field
Link NOC:Introduction to Abstract and Linear Algebra Lecture 21 - Vector Spaces
Link NOC:Introduction to Abstract and Linear Algebra Lecture 22 - Sub-Spaces
Link NOC:Introduction to Abstract and Linear Algebra Lecture 23 - Linear Span
Link NOC:Introduction to Abstract and Linear Algebra Lecture 24 - Basis of a Vector Space
Link NOC:Introduction to Abstract and Linear Algebra Lecture 25 - Dimension of a Vector space
Link NOC:Introduction to Abstract and Linear Algebra Lecture 26 - Complement of subspace
Link NOC:Introduction to Abstract and Linear Algebra Lecture 27 - Linear Transformation
Link NOC:Introduction to Abstract and Linear Algebra Lecture 28 - Linear Transformation (Continued...)
Link NOC:Introduction to Abstract and Linear Algebra Lecture 29 - More on linear mapping
Link NOC:Introduction to Abstract and Linear Algebra Lecture 30 - Linear Space
Link NOC:Introduction to Abstract and Linear Algebra Lecture 31 - Rank of a matrix
Link NOC:Introduction to Abstract and Linear Algebra Lecture 32 - Rank of a matrix (Continued...)
Link NOC:Introduction to Abstract and Linear Algebra Lecture 33 - System of linear equations
Link NOC:Introduction to Abstract and Linear Algebra Lecture 34 - Row rank and Column rank
Link NOC:Introduction to Abstract and Linear Algebra Lecture 35 - Eigen value of a matrix
Link NOC:Introduction to Abstract and Linear Algebra Lecture 36 - Eigen Vector
Link NOC:Introduction to Abstract and Linear Algebra Lecture 37 - Geometric multiplicity
Link NOC:Introduction to Abstract and Linear Algebra Lecture 38 - More on eigen value
Link NOC:Introduction to Abstract and Linear Algebra Lecture 39 - Similar matrices
Link NOC:Introduction to Abstract and Linear Algebra Lecture 40 - Diagonalisable
Link NOC:Engineering Mathematics-I Lecture 1 - Rolle’s Theorem
Link NOC:Engineering Mathematics-I Lecture 2 - Mean Value Theorems
Link NOC:Engineering Mathematics-I Lecture 3 - Indeterminate Forms - Part 1
Link NOC:Engineering Mathematics-I Lecture 4 - Indeterminate Forms - Part 2
Link NOC:Engineering Mathematics-I Lecture 5 - Taylor Polynomial and Taylor Series
Link NOC:Engineering Mathematics-I Lecture 6 - Limit of Functions of Two Variables
Link NOC:Engineering Mathematics-I Lecture 7 - Evaluation of Limit of Functions of Two Variables
Link NOC:Engineering Mathematics-I Lecture 8 - Continuity of Functions of Two Variables
Link NOC:Engineering Mathematics-I Lecture 9 - Partial Derivatives of Functions of Two Variables
Link NOC:Engineering Mathematics-I Lecture 10 - Partial Derivatives of Higher Order
Link NOC:Engineering Mathematics-I Lecture 11 - Derivative and Differentiability
Link NOC:Engineering Mathematics-I Lecture 12 - Differentiability of Functions of Two Variables
Link NOC:Engineering Mathematics-I Lecture 13 - Differentiability of Functions of Two Variables (Continued...)
Link NOC:Engineering Mathematics-I Lecture 14 - Differentiability of Functions of Two Variables (Continued...)
Link NOC:Engineering Mathematics-I Lecture 15 - Composite and Homogeneous Functions
Link NOC:Engineering Mathematics-I Lecture 16 - Taylor’s Theorem for Functions of Two Variables
Link NOC:Engineering Mathematics-I Lecture 17 - Maxima and Minima of Functions of Two Variables
Link NOC:Engineering Mathematics-I Lecture 18 - Maxima and Minima of Functions of Two Variables (Continued...)
Link NOC:Engineering Mathematics-I Lecture 19 - Maxima and Minima of Functions of Two Variables (Continued...)
Link NOC:Engineering Mathematics-I Lecture 20 - Constrained Maxima and Minima
Link NOC:Engineering Mathematics-I Lecture 21 - Improper Integrals
Link NOC:Engineering Mathematics-I Lecture 22 - Improper Integrals (Continued...)
Link NOC:Engineering Mathematics-I Lecture 23 - Improper Integrals (Continued...)
Link NOC:Engineering Mathematics-I Lecture 24 - Improper Integrals (Continued...)
Link NOC:Engineering Mathematics-I Lecture 25 - Beta and Gamma Function
Link NOC:Engineering Mathematics-I Lecture 26 - Beta and Gamma Function (Continued...)
Link NOC:Engineering Mathematics-I Lecture 27 - Differentiation Under Integral Sign
Link NOC:Engineering Mathematics-I Lecture 28 - Double Integrals
Link NOC:Engineering Mathematics-I Lecture 29 - Double Integrals (Continued...)
Link NOC:Engineering Mathematics-I Lecture 30 - Double Integrals (Continued...)
Link NOC:Engineering Mathematics-I Lecture 31 - Integral Calculus Double Integrals in Polar Form
Link NOC:Engineering Mathematics-I Lecture 32 - Integral Calculus Double Integrals: Change of Variables
Link NOC:Engineering Mathematics-I Lecture 33 - Integral Calculus Double Integrals: Surface Area
Link NOC:Engineering Mathematics-I Lecture 34 - Integral Calculus Triple Integrals
Link NOC:Engineering Mathematics-I Lecture 35 - Integral Calculus Triple Integrals (Continued...)
Link NOC:Engineering Mathematics-I Lecture 36 - System of Linear Equations
Link NOC:Engineering Mathematics-I Lecture 37 - System of Linear Equations Gauss Elimination
Link NOC:Engineering Mathematics-I Lecture 38 - System of Linear Equations Gauss Elimination (Continued...)
Link NOC:Engineering Mathematics-I Lecture 39 - Linear Algebra - Vector Spaces
Link NOC:Engineering Mathematics-I Lecture 40 - Linear Independence of Vectors
Link NOC:Engineering Mathematics-I Lecture 41 - Vector Spaces Spanning Set
Link NOC:Engineering Mathematics-I Lecture 42 - Vector Spaces Basis and Dimension
Link NOC:Engineering Mathematics-I Lecture 43 - Rank of a Matrix
Link NOC:Engineering Mathematics-I Lecture 44 - Linear Transformations
Link NOC:Engineering Mathematics-I Lecture 45 - Linear Transformations (Continued....)
Link NOC:Engineering Mathematics-I Lecture 46 - Eigenvalues and Eigenvectors
Link NOC:Engineering Mathematics-I Lecture 47 - Eigenvalues and Eigenvectors (Continued...)
Link NOC:Engineering Mathematics-I Lecture 48 - Eigenvalues and Eigenvectors (Continued...)
Link NOC:Engineering Mathematics-I Lecture 49 - Eigenvalues and Eigenvectors (Continued...)
Link NOC:Engineering Mathematics-I Lecture 50 - Eigenvalues and Eigenvectors: Diagonalization
Link NOC:Engineering Mathematics-I Lecture 51 - Differential Equations - Introduction
Link NOC:Engineering Mathematics-I Lecture 52 - First Order Differential Equations
Link NOC:Engineering Mathematics-I Lecture 53 - Exact Differential Equations
Link NOC:Engineering Mathematics-I Lecture 54 - Exact Differential Equations (Continued...)
Link NOC:Engineering Mathematics-I Lecture 55 - First Order Linear Differential Equations
Link NOC:Engineering Mathematics-I Lecture 56 - Higher Order Linear Differential Equations
Link NOC:Engineering Mathematics-I Lecture 57 - Solution of Higher Order Homogeneous Linear Equations
Link NOC:Engineering Mathematics-I Lecture 58 - Solution of Higher Order Non-Homogeneous Linear Equations
Link NOC:Engineering Mathematics-I Lecture 59 - Solution of Higher Order Non-Homogeneous Linear Equations (Continued...)
Link NOC:Engineering Mathematics-I Lecture 60 - Cauchy-Euler Equations
Link NOC:Integral and Vector Calculus Lecture 1 - Partition, Riemann intergrability and One example
Link NOC:Integral and Vector Calculus Lecture 2 - Partition, Riemann intergrability and One example (Continued...)
Link NOC:Integral and Vector Calculus Lecture 3 - Condition of integrability
Link NOC:Integral and Vector Calculus Lecture 4 - Theorems on Riemann integrations
Link NOC:Integral and Vector Calculus Lecture 5 - Examples
Link NOC:Integral and Vector Calculus Lecture 6 - Examples (Continued...)
Link NOC:Integral and Vector Calculus Lecture 7 - Reduction formula
Link NOC:Integral and Vector Calculus Lecture 8 - Reduction formula (Continued...)
Link NOC:Integral and Vector Calculus Lecture 9 - Improper Integral
Link NOC:Integral and Vector Calculus Lecture 10 - Improper Integral (Continued...)
Link NOC:Integral and Vector Calculus Lecture 11 - Improper Integral (Continued...)
Link NOC:Integral and Vector Calculus Lecture 12 - Improper Integral (Continued...)
Link NOC:Integral and Vector Calculus Lecture 13 - Introduction to Beta and Gamma Function
Link NOC:Integral and Vector Calculus Lecture 14 - Beta and Gamma Function
Link NOC:Integral and Vector Calculus Lecture 15 - Differentiation under Integral Sign
Link NOC:Integral and Vector Calculus Lecture 16 - Differentiation under Integral Sign (Continued...)
Link NOC:Integral and Vector Calculus Lecture 17 - Double Integral
Link NOC:Integral and Vector Calculus Lecture 18 - Double Integral over a Region E
Link NOC:Integral and Vector Calculus Lecture 19 - Examples of Integral over a Region E
Link NOC:Integral and Vector Calculus Lecture 20 - Change of variables in a Double Integral
Link NOC:Integral and Vector Calculus Lecture 21 - Change of order of Integration
Link NOC:Integral and Vector Calculus Lecture 22 - Triple Integral
Link NOC:Integral and Vector Calculus Lecture 23 - Triple Integral (Continued...)
Link NOC:Integral and Vector Calculus Lecture 24 - Area of Plane Region
Link NOC:Integral and Vector Calculus Lecture 25 - Area of Plane Region (Continued...)
Link NOC:Integral and Vector Calculus Lecture 26 - Rectification
Link NOC:Integral and Vector Calculus Lecture 27 - Rectification (Continued...)
Link NOC:Integral and Vector Calculus Lecture 28 - Surface Integral
Link NOC:Integral and Vector Calculus Lecture 29 - Surface Integral (Continued...)
Link NOC:Integral and Vector Calculus Lecture 30 - Surface Integral (Continued...)
Link NOC:Integral and Vector Calculus Lecture 31 - Volume Integral, Gauss Divergence Theorem
Link NOC:Integral and Vector Calculus Lecture 32 - Vector Calculus
Link NOC:Integral and Vector Calculus Lecture 33 - Limit, Continuity, Differentiability
Link NOC:Integral and Vector Calculus Lecture 34 - Successive Differentiation
Link NOC:Integral and Vector Calculus Lecture 35 - Integration of Vector Function
Link NOC:Integral and Vector Calculus Lecture 36 - Gradient of a Function
Link NOC:Integral and Vector Calculus Lecture 37 - Divergence and Curl
Link NOC:Integral and Vector Calculus Lecture 38 - Divergence and Curl Examples
Link NOC:Integral and Vector Calculus Lecture 39 - Divergence and Curl important Identities
Link NOC:Integral and Vector Calculus Lecture 40 - Level Surface Relevant Theorems
Link NOC:Integral and Vector Calculus Lecture 41 - Directional Derivative (Concept and Few Results)
Link NOC:Integral and Vector Calculus Lecture 42 - Directional Derivative (Concept and Few Results) (Continued...)
Link NOC:Integral and Vector Calculus Lecture 43 - Directional Derivatives, Level Surfaces
Link NOC:Integral and Vector Calculus Lecture 44 - Application to Mechanics
Link NOC:Integral and Vector Calculus Lecture 45 - Equation of Tangent, Unit Tangent Vector
Link NOC:Integral and Vector Calculus Lecture 46 - Unit Normal, Unit binormal, Equation of Normal Plane
Link NOC:Integral and Vector Calculus Lecture 47 - Introduction and Derivation of Serret-Frenet Formula, few results
Link NOC:Integral and Vector Calculus Lecture 48 - Example on binormal, normal tangent, Serret-Frenet Formula
Link NOC:Integral and Vector Calculus Lecture 49 - Osculating Plane, Rectifying plane, Normal plane
Link NOC:Integral and Vector Calculus Lecture 50 - Application to Mechanics, Velocity, speed, acceleration
Link NOC:Integral and Vector Calculus Lecture 51 - Angular Momentum, Newton's Law
Link NOC:Integral and Vector Calculus Lecture 52 - Example on derivation of equation of motion of particle
Link NOC:Integral and Vector Calculus Lecture 53 - Line Integral
Link NOC:Integral and Vector Calculus Lecture 54 - Surface integral
Link NOC:Integral and Vector Calculus Lecture 55 - Surface integral (Continued...)
Link NOC:Integral and Vector Calculus Lecture 56 - Green's Theorem and Example
Link NOC:Integral and Vector Calculus Lecture 57 - Volume integral, Gauss theorem
Link NOC:Integral and Vector Calculus Lecture 58 - Gauss divergence theorem
Link NOC:Integral and Vector Calculus Lecture 59 - Stoke's Theorem
Link NOC:Integral and Vector Calculus Lecture 60 - Overview of Course
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 1 - Introduction to Integral Transform and Laplace Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 2 - Existence of Laplace Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 3 - Shifting Properties of Laplace Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 4 - Laplace Transform of Derivatives and Integration of a Function - I
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 5 - Laplace Transform of Derivatives and Integration of a Function - II
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 6 - Explanation of properties of Laplace Transform using Examples
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 7 - Laplace Transform of Periodic Function
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 8 - Laplace Transform of some special Functions
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 9 - Error Function, Dirac Delta Function and their Laplace Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 10 - Bessel Function and its Laplace Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 11 - Introduction to Inverse Laplace Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 12 - Properties of Inverse Laplace Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 13 - Convolution and its Applications
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 14 - Evaluation of Integrals using Laplace Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 15 - Solution of Ordinary Differential Equations with constant coefficients using Laplace Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 16 - Solution of Ordinary Differential Equations with variable coefficients using Laplace Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 17 - Solution of Simultaneous Ordinary Differential Equations using Laplace Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 18 - Introduction to Integral Equation and its Solution Process
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 19 - Introduction to Fourier Series
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 20 - Fourier Series for Even and Odd Functions
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 21 - Fourier Series of Functions having arbitrary period - I
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 22 - Fourier Series of Functions having arbitrary period - II
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 23 - Half Range Fourier Series
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 24 - Parseval's Theorem and its Applications
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 25 - Complex form of Fourier Series
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 26 - Fourier Integral Representation
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 27 - Introduction to Fourier Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 28 - Derivation of Fourier Cosine Transform and Fourier Sine Transform of Functions
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 29 - Evaluation of Fourier Transform of various functions
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 30 - Linearity Property and Shifting Properties of Fourier Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 31 - Change of Scale and Modulation Properties of Fourier Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 32 - Fourier Transform of Derivative and Integral of a Function
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 33 - Applications of Properties of Fourier Transform - I
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 34 - Applications of Properties of Fourier Transform - II
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 35 - Fourier Transform of Convolution of two functions
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 36 - Parseval's Identity and its Application
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 37 - Evaluation of Definite Integrals using Properties of Fourier Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 38 - Fourier Transform of Dirac Delta Function
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 39 - Representation of a function as Fourier Integral
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 40 - Applications of Fourier Transform to Ordinary Differential Equations - I
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 41 - Applications of Fourier Transform to Ordinary Differential Equations - II
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 42 - Solution of Integral Equations using Fourier Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 43 - Introduction to Partial Differential Equations
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 44 - Solution of Partial Differential Equations using Laplace Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 45 - Solution of Heat Equation and Wave Equation using Laplace Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 46 - Criteria for choosing Fourier Transform, Fourier Sine Transform, Fourier Cosine Transform in solving Partial Differential Equations
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 47 - Solution of Partial Differential Equations using Fourier Cosine Transform and Fourier Sine Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 48 - Solution of Partial Differential Equations using Fourier Transform - I
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 49 - Solution of Partial Differential Equations using Fourier Transform - II
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 50 - Solving problems on Partial Differential Equations using Transform Techniques
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 51 - Introduction to Finite Fourier Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 52 - Solution of Boundary Value Problems using Finite Fourier Transform - I
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 53 - Solution of Boundary Value Problems using Finite Fourier Transform - II
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 54 - Introduction to Mellin Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 55 - Properties of Mellin Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 56 - Examples of Mellin Transform - I
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 57 - Examples of Mellin Transform - II
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 58 - Introduction to Z-Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 59 - Properties of Z-Transform
Link NOC:Transform Calculus and its applications in Differential Equations Lecture 60 - Evaluation of Z-Transform of some functions
Link NOC:Statistical Inference (2019) Lecture 1 - Introduction and Motivation - I
Link NOC:Statistical Inference (2019) Lecture 2 - Introduction and Motivation - II
Link NOC:Statistical Inference (2019) Lecture 3 - Basic Concepts of Point Estimations - I
Link NOC:Statistical Inference (2019) Lecture 4 - Basic Concepts of Point Estimations - II
Link NOC:Statistical Inference (2019) Lecture 5 - Basic Concepts of Point Estimations - III
Link NOC:Statistical Inference (2019) Lecture 6 - Basic Concepts of Point Estimations - IV
Link NOC:Statistical Inference (2019) Lecture 7 - Finding Estimators - I
Link NOC:Statistical Inference (2019) Lecture 8 - Finding Estimators - II
Link NOC:Statistical Inference (2019) Lecture 9 - Finding Estimators - III
Link NOC:Statistical Inference (2019) Lecture 10 - Finding Estimators - IV
Link NOC:Statistical Inference (2019) Lecture 11 - Finding Estimators - V
Link NOC:Statistical Inference (2019) Lecture 12 - Finding Estimators - VI
Link NOC:Statistical Inference (2019) Lecture 13 - Properties of MLEs - I
Link NOC:Statistical Inference (2019) Lecture 14 - Properties of MLEs - II
Link NOC:Statistical Inference (2019) Lecture 15 - Lower Bounds for Variance - I
Link NOC:Statistical Inference (2019) Lecture 16 - Lower Bounds for Variance - II
Link NOC:Statistical Inference (2019) Lecture 17 - Lower Bounds for Variance - III
Link NOC:Statistical Inference (2019) Lecture 18 - Lower Bounds for Variance - IV
Link NOC:Statistical Inference (2019) Lecture 19 - Lower Bounds for Variance - V
Link NOC:Statistical Inference (2019) Lecture 20 - Lower Bounds for Variance - VI
Link NOC:Statistical Inference (2019) Lecture 21 - Lower Bounds for Variance - VII
Link NOC:Statistical Inference (2019) Lecture 22 - Lower Bounds for Variance - VIII
Link NOC:Statistical Inference (2019) Lecture 23 - Sufficiency - I
Link NOC:Statistical Inference (2019) Lecture 24 - Sufficiency - II
Link NOC:Statistical Inference (2019) Lecture 25 - Sufficiency and Information - I
Link NOC:Statistical Inference (2019) Lecture 26 - Sufficiency and Information - II
Link NOC:Statistical Inference (2019) Lecture 27 - Minimal Sufficiency, Completeness - I
Link NOC:Statistical Inference (2019) Lecture 28 - Minimal Sufficiency, Completeness - II
Link NOC:Statistical Inference (2019) Lecture 29 - UMVU Estimation, Ancillarity - I
Link NOC:Statistical Inference (2019) Lecture 30 - UMVU Estimation, Ancillarity - II
Link NOC:Statistical Inference (2019) Lecture 31 - Testing of Hypotheses : Basic Concepts - I
Link NOC:Statistical Inference (2019) Lecture 32 - Testing of Hypotheses : Basic Concepts - II
Link NOC:Statistical Inference (2019) Lecture 33 - Neyman Pearson Fundamental Lemma - I
Link NOC:Statistical Inference (2019) Lecture 34 - Neyman Pearson Fundamental Lemma - II
Link NOC:Statistical Inference (2019) Lecture 35 - Application of NP-Lemma - I
Link NOC:Statistical Inference (2019) Lecture 36 - Application of NP-Lemma - II
Link NOC:Statistical Inference (2019) Lecture 37 - UMP Tests - I
Link NOC:Statistical Inference (2019) Lecture 38 - UMP Tests - II
Link NOC:Statistical Inference (2019) Lecture 39 - UMP Tests - III
Link NOC:Statistical Inference (2019) Lecture 40 - UMP Tests - IV
Link NOC:Statistical Inference (2019) Lecture 41 - UMP Unbiased Tests - I
Link NOC:Statistical Inference (2019) Lecture 42 - UMP Unbiased Tests - II
Link NOC:Statistical Inference (2019) Lecture 43 - UMP Unbiased Tests - III
Link NOC:Statistical Inference (2019) Lecture 44 - UMP Unbiased Tests - IV
Link NOC:Statistical Inference (2019) Lecture 45 - Applications of UMP Unbiased Tests - I
Link NOC:Statistical Inference (2019) Lecture 46 - Applications of UMP Unbiased Tests - II
Link NOC:Statistical Inference (2019) Lecture 47 - Unbiased Test for Normal Populations - I
Link NOC:Statistical Inference (2019) Lecture 48 - Unbiased Test for Normal Populations - II
Link NOC:Statistical Inference (2019) Lecture 49 - Unbiased Test for Normal Populations - III
Link NOC:Statistical Inference (2019) Lecture 50 - Unbiased Test for Normal Populations - IV
Link NOC:Statistical Inference (2019) Lecture 51 - Likelihood Ratio Tests - I
Link NOC:Statistical Inference (2019) Lecture 52 - Likelihood Ratio Tests - II
Link NOC:Statistical Inference (2019) Lecture 53 - Likelihood Ratio Tests - III
Link NOC:Statistical Inference (2019) Lecture 54 - Likelihood Ratio Tests - IV
Link NOC:Statistical Inference (2019) Lecture 55 - Likelihood Ratio Tests - V
Link NOC:Statistical Inference (2019) Lecture 56 - Likelihood Ratio Tests - VI
Link NOC:Statistical Inference (2019) Lecture 57 - Likelihood Ratio Tests - VII
Link NOC:Statistical Inference (2019) Lecture 58 - Likelihood Ratio Tests - VIII
Link NOC:Statistical Inference (2019) Lecture 59 - Test for Goodness of Fit - I
Link NOC:Statistical Inference (2019) Lecture 60 - Test for Goodness of Fit - II
Link NOC:Statistical Inference (2019) Lecture 61 - Interval Estimation - I
Link NOC:Statistical Inference (2019) Lecture 62 - Interval Estimation - II
Link NOC:Statistical Inference (2019) Lecture 63 - Interval Estimation - III
Link NOC:Statistical Inference (2019) Lecture 64 - Interval Estimation - IV
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 1 - Strum-Liouville Problems, Linear BVP
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 2 - Strum-Liouville Problems, Linear BVP (Continued...)
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 3 - Solution of BVPs by Eigen function expansion
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 4 - Solution of BVPs by Eigen function expansion (Continued...)
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 5 - Solutions of linear parabolic, hyperbolic and elliptic PDEs with finite domain by Eigen function expansions
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 6 - Solutions of linear parabolic, hyperbolic and elliptic PDEs with finite domain by Eigen function expansions (Continued...)
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 7 - Green's Function for BVP and Dirichlet Problem
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 8 - Green's Function for BVP and Dirichlet Problem (Continued...)
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 9 - Numerical Techniques for IVP; Shooting Method for BVP
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 10 - Numerical Techniques for IVP; Shooting Method for BVP (Continued...)
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 11 - Finite difference methods for linear BVP; Thomas Algorithm
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 12 - Finite difference methods for linear BVP; Thomas Algorithm (Continued...)
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 13 - Finite difference method for Higher-order BVP; Block tri-diagonal System
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 14 - Finite difference method for Higher-order BVP; Block tri-diagonal System (Continued...)
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 15 - Iterative methods for nonlinear BVP; Control volume formulation
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 16 - Iterative methods for nonlinear BVP; Control volume formulation (Continued...)
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 17 - Implicit scheme; Truncation error; Crank-Nicolson scheme
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 18 - Implicit scheme; Truncation error; Crank-Nicolson scheme (Continued...)
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 19 - Stability analysis of numerical schemes
Link NOC:Mathematical Methods for Boundary Value Problems Lecture 20 - Alternating-Direction-Implicit Scheme; Successive-Over-Relaxation technique for Poisson equations
Link NOC:Engineering Mathematics-II Lecture 1 - Vector Functions
Link NOC:Engineering Mathematics-II Lecture 2 - Vector and Scalar Fields
Link NOC:Engineering Mathematics-II Lecture 3 - Divergence and Curl of a Vector Field
Link NOC:Engineering Mathematics-II Lecture 4 - Line Integrals
Link NOC:Engineering Mathematics-II Lecture 5 - Conservative Vector Field
Link NOC:Engineering Mathematics-II Lecture 6 - Green’s Theorem
Link NOC:Engineering Mathematics-II Lecture 7 - Surface Integral - I
Link NOC:Engineering Mathematics-II Lecture 8 - Surface Integral - II
Link NOC:Engineering Mathematics-II Lecture 9 - Stokes’ Theorem
Link NOC:Engineering Mathematics-II Lecture 10 - Divergence Theorem
Link NOC:Engineering Mathematics-II Lecture 11 - Complex Numbers and Functions
Link NOC:Engineering Mathematics-II Lecture 12 - Differentiability of Complex Functions
Link NOC:Engineering Mathematics-II Lecture 13 - Analytic Functions
Link NOC:Engineering Mathematics-II Lecture 14 - Line Integral
Link NOC:Engineering Mathematics-II Lecture 15 - Cauchy Integral Theorem
Link NOC:Engineering Mathematics-II Lecture 16 - Cauchy Integral Formula
Link NOC:Engineering Mathematics-II Lecture 17 - Taylor’s Series
Link NOC:Engineering Mathematics-II Lecture 18 - Laurent’s Series
Link NOC:Engineering Mathematics-II Lecture 19 - Singularities
Link NOC:Engineering Mathematics-II Lecture 20 - Residue
Link NOC:Engineering Mathematics-II Lecture 21 - Iterative Methods for Solving System of Linear Equations
Link NOC:Engineering Mathematics-II Lecture 22 - Iterative Methods for Solving System of Linear Equations (Continued...)
Link NOC:Engineering Mathematics-II Lecture 23 - Iterative Methods for Solving System of Linear Equations (Continued...)
Link NOC:Engineering Mathematics-II Lecture 24 - Roots of Algebraic and Transcendental Equations
Link NOC:Engineering Mathematics-II Lecture 25 - Roots of Algebraic and Transcendental Equations (Continued...)
Link NOC:Engineering Mathematics-II Lecture 26 - Polynomial Interpolation
Link NOC:Engineering Mathematics-II Lecture 27 - Polynomial Interpolation (Continued...)
Link NOC:Engineering Mathematics-II Lecture 28 - Polynomial Interpolation (Continued...)
Link NOC:Engineering Mathematics-II Lecture 29 - Polynomial Interpolation (Continued...)
Link NOC:Engineering Mathematics-II Lecture 30 - Numerical Integration
Link NOC:Engineering Mathematics-II Lecture 31 - Trigonometric Polynomials and Series
Link NOC:Engineering Mathematics-II Lecture 32 - Derivation of Fourier Series
Link NOC:Engineering Mathematics-II Lecture 33 - Fourier Series -Evaluation
Link NOC:Engineering Mathematics-II Lecture 34 - Convergence of Fourier Series - I
Link NOC:Engineering Mathematics-II Lecture 35 - Convergence of Fourier Series - II
Link NOC:Engineering Mathematics-II Lecture 36 - Fourier Series for Even and Odd Functions
Link NOC:Engineering Mathematics-II Lecture 37 - Half Range Fourier Expansions
Link NOC:Engineering Mathematics-II Lecture 38 - Differentiation and Integration of Fourier Series
Link NOC:Engineering Mathematics-II Lecture 39 - Bessel’s Inequality and Parseval’s Identity
Link NOC:Engineering Mathematics-II Lecture 40 - Complex Form of Fourier Series
Link NOC:Engineering Mathematics-II Lecture 41 - Fourier Integral Representation of a Function
Link NOC:Engineering Mathematics-II Lecture 42 - Fourier Sine and Cosine Integrals
Link NOC:Engineering Mathematics-II Lecture 43 - Fourier Cosine and Sine Transform
Link NOC:Engineering Mathematics-II Lecture 44 - Fourier Transform
Link NOC:Engineering Mathematics-II Lecture 45 - Properties of Fourier Transform
Link NOC:Engineering Mathematics-II Lecture 46 - Evaluation of Fourier Transform - Part 1
Link NOC:Engineering Mathematics-II Lecture 47 - Evaluation of Fourier Transform - Part 2
Link NOC:Engineering Mathematics-II Lecture 48 - Introduction to Partial Differential Equations
Link NOC:Engineering Mathematics-II Lecture 49 - Applications of Fourier Transform to PDEs - Part 1
Link NOC:Engineering Mathematics-II Lecture 50 - Applications of Fourier Transform to PDEs - Part 2
Link NOC:Engineering Mathematics-II Lecture 51 - Laplace Transform of Some Elementary Functions
Link NOC:Engineering Mathematics-II Lecture 52 - Existence of Laplace Transform
Link NOC:Engineering Mathematics-II Lecture 53 - Inverse Laplace Transform
Link NOC:Engineering Mathematics-II Lecture 54 - Properties of Laplace Transform
Link NOC:Engineering Mathematics-II Lecture 55 - Properties of Laplace Transform (Continued...)
Link NOC:Engineering Mathematics-II Lecture 56 - Properties of Laplace Transform (Continued...)
Link NOC:Engineering Mathematics-II Lecture 57 - Laplace Transform of Special Functions
Link NOC:Engineering Mathematics-II Lecture 58 - Laplace Transform of Special Functions (Continued...)
Link NOC:Engineering Mathematics-II Lecture 59 - Applications of Laplace Transform
Link NOC:Engineering Mathematics-II Lecture 60 - Applications of Laplace Transform (Continued...)
Link NOC:Advanced Calculus For Engineers Lecture 1 - Rolle's Theorem
Link NOC:Advanced Calculus For Engineers Lecture 2 - Mean Value Theorem
Link NOC:Advanced Calculus For Engineers Lecture 3 - Taylor's Formula (Single Variable)
Link NOC:Advanced Calculus For Engineers Lecture 4 - Indeterminate Forms - Part 1
Link NOC:Advanced Calculus For Engineers Lecture 5 - Indeterminate Forms - Part 2
Link NOC:Advanced Calculus For Engineers Lecture 6 - Introduction to Limit
Link NOC:Advanced Calculus For Engineers Lecture 7 - Evaluation of Limit
Link NOC:Advanced Calculus For Engineers Lecture 8 - Continuity
Link NOC:Advanced Calculus For Engineers Lecture 9 - First Order Partial Derivatives
Link NOC:Advanced Calculus For Engineers Lecture 10 - Higher Order Partial Derivatives
Link NOC:Advanced Calculus For Engineers Lecture 11 - Differentiability - Part 1
Link NOC:Advanced Calculus For Engineers Lecture 12 - Differentiability - Part 2
Link NOC:Advanced Calculus For Engineers Lecture 13 - Differentiability - Part 3
Link NOC:Advanced Calculus For Engineers Lecture 14 - Differentiability - Part 4
Link NOC:Advanced Calculus For Engineers Lecture 15 - Composite and Homogeneous Functions
Link NOC:Advanced Calculus For Engineers Lecture 16 - Taylor's Theorem (Multivariable)
Link NOC:Advanced Calculus For Engineers Lecture 17 - Maxima and Minima - Part 1
Link NOC:Advanced Calculus For Engineers Lecture 18 - Maxima and Minima - Part 2
Link NOC:Advanced Calculus For Engineers Lecture 19 - Maxima and Minima - Part 3
Link NOC:Advanced Calculus For Engineers Lecture 20 - Maxima and Minima - Part 4
Link NOC:Advanced Calculus For Engineers Lecture 21 - Formation of Differential Equations
Link NOC:Advanced Calculus For Engineers Lecture 22 - First Order and First Degree DE
Link NOC:Advanced Calculus For Engineers Lecture 23 - Exact Differential Equations
Link NOC:Advanced Calculus For Engineers Lecture 24 - Integrating Factor
Link NOC:Advanced Calculus For Engineers Lecture 25 - Linear Differential Equations
Link NOC:Advanced Calculus For Engineers Lecture 26 - Introduction to Higher Order DEs
Link NOC:Advanced Calculus For Engineers Lecture 27 - Complementary Function
Link NOC:Advanced Calculus For Engineers Lecture 28 - Particular Integral
Link NOC:Advanced Calculus For Engineers Lecture 29 - Cauchy-Euler Equations
Link NOC:Advanced Calculus For Engineers Lecture 30 - Method of Variation of Parameters
Link NOC:Advanced Calculus For Engineers Lecture 31 - Improper Integral - Part 1
Link NOC:Advanced Calculus For Engineers Lecture 32 - Improper Integral - Part 2
Link NOC:Advanced Calculus For Engineers Lecture 33 - Improper Integral - Part 3
Link NOC:Advanced Calculus For Engineers Lecture 34 - Improper Integral - Part 4
Link NOC:Advanced Calculus For Engineers Lecture 35 - Beta and Gamma Function - Part 1
Link NOC:Advanced Calculus For Engineers Lecture 36 - Beta and Gamma Function - Part 2
Link NOC:Advanced Calculus For Engineers Lecture 37 - Differentiation under the Integral Sign
Link NOC:Advanced Calculus For Engineers Lecture 38 - Double Integrals - Part 1
Link NOC:Advanced Calculus For Engineers Lecture 39 - Double Integrals - Part 2
Link NOC:Advanced Calculus For Engineers Lecture 40 - Double Integrals - Part 3
Link NOC:Advanced Calculus For Engineers Lecture 41 - Double Integrals - Part 4
Link NOC:Advanced Calculus For Engineers Lecture 42 - Double Integrals - Part 5
Link NOC:Advanced Calculus For Engineers Lecture 43 - Double Integrals - Part 6
Link NOC:Advanced Calculus For Engineers Lecture 44 - Triple Integrals - Part 1
Link NOC:Advanced Calculus For Engineers Lecture 45 - Triple Integrals - Part 2
Link NOC:Advanced Calculus For Engineers Lecture 46 - Vector Functions
Link NOC:Advanced Calculus For Engineers Lecture 47 - Vector and Scalar Fields
Link NOC:Advanced Calculus For Engineers Lecture 48 - Divergence and Curl of a Vector Field
Link NOC:Advanced Calculus For Engineers Lecture 49 - Line Integrals
Link NOC:Advanced Calculus For Engineers Lecture 50 - Conservative Vector Fields
Link NOC:Advanced Calculus For Engineers Lecture 51 - Green's Theorem
Link NOC:Advanced Calculus For Engineers Lecture 52 - Surface Integrals - Part 1
Link NOC:Advanced Calculus For Engineers Lecture 53 - Surface Integrals - Part 2
Link NOC:Advanced Calculus For Engineers Lecture 54 - Stokes' Theorem
Link NOC:Advanced Calculus For Engineers Lecture 55 - Divergence Theorem
Link NOC:Advanced Calculus For Engineers Lecture 56 - Application of Derivatives
Link NOC:Advanced Calculus For Engineers Lecture 57 - Application of Derivatives (Continued...)
Link NOC:Advanced Calculus For Engineers Lecture 58 - Properties of Gradient, Divergence and Curl
Link NOC:Advanced Calculus For Engineers Lecture 59 - Properties of Gradient, Divergence and Curl (Continued...)
Link NOC:Advanced Calculus For Engineers Lecture 60 - Curl and Integrals
Link NOC:Rings and Modules Lecture 1 - Introduction to Rings
Link NOC:Rings and Modules Lecture 2 - Rings, Subrings
Link NOC:Rings and Modules Lecture 3 - Ring Homomorphism, Ideals
Link NOC:Rings and Modules Lecture 4 - Properties of Ideals
Link NOC:Rings and Modules Lecture 5 - Properties of Ideals (Continued...)
Link NOC:Rings and Modules Lecture 6 - Quotient Ring, Isomorphism Theorem
Link NOC:Rings and Modules Lecture 7 - Isomorphism Theorem, Homomorphism Theorem
Link NOC:Rings and Modules Lecture 8 - Homomorphism Theorem
Link NOC:Rings and Modules Lecture 9 - Integral Domain, Quotient Ring
Link NOC:Rings and Modules Lecture 10 - Quotient Ring
Link NOC:Rings and Modules Lecture 11 - Prime ideals, Maximal ideals
Link NOC:Rings and Modules Lecture 12 - Maximal ideals
Link NOC:Rings and Modules Lecture 13 - Hillbert’s Nullstellensatz
Link NOC:Rings and Modules Lecture 14 - Hillbert’s Nullstellensatz (Continued...)
Link NOC:Rings and Modules Lecture 15 - Application of Hillbert’s Nullstellensatz
Link NOC:Rings and Modules Lecture 16 - Unique Factorization domian
Link NOC:Rings and Modules Lecture 17 - Properties of Unique Factorization domain
Link NOC:Rings and Modules Lecture 18 - Principal ideal domain
Link NOC:Rings and Modules Lecture 19 - Properties of PID and ED
Link NOC:Rings and Modules Lecture 20 - Properties of PID and ED (Continued...)
Link NOC:Rings and Modules Lecture 21 - Prime elements of Z[i]
Link NOC:Rings and Modules Lecture 22 - Prime elements of Z[i] (Continued...)
Link NOC:Rings and Modules Lecture 23 - Application in Z[i]
Link NOC:Rings and Modules Lecture 24 - Polynomial Rings over UFD
Link NOC:Rings and Modules Lecture 25 - Gauss's Lemma
Link NOC:Rings and Modules Lecture 26 - Polynomial Ring over UFD and Irreducibility Criterion
Link NOC:Rings and Modules Lecture 27 - Irreducibility Criterion
Link NOC:Rings and Modules Lecture 28 - Chinese Remainder Theorem
Link NOC:Rings and Modules Lecture 29 - Nilradical and Jacobson radical
Link NOC:Rings and Modules Lecture 30 - Examples and Problems
Link NOC:Rings and Modules Lecture 31 - Definition of Modules and Examples
Link NOC:Rings and Modules Lecture 32 - Definition of Modules and Examples (Continued...)
Link NOC:Rings and Modules Lecture 33 - Submodules,direct sum and direct product of modules
Link NOC:Rings and Modules Lecture 34 - Direct sum and direct product of modules, free modules
Link NOC:Rings and Modules Lecture 35 - Finitely generated modules, free modules vs Vector spaces
Link NOC:Rings and Modules Lecture 36 - Free modules vs Vector spaces
Link NOC:Rings and Modules Lecture 37 - Vector spaces vs free modules and Examples
Link NOC:Rings and Modules Lecture 38 - Quotient modules and module homomorphisms
Link NOC:Rings and Modules Lecture 39 - Module homomorphism, Epimorphism theorem
Link NOC:Rings and Modules Lecture 40 - Epimorphism theorem
Link NOC:Rings and Modules Lecture 41 - Maximal submodules, minimal submodules
Link NOC:Rings and Modules Lecture 42 - Freeness of submodules of a free module over a PID
Link NOC:Rings and Modules Lecture 43 - Torsion modules, freeness of torsion-free modules over a PID
Link NOC:Rings and Modules Lecture 44 - Rank of a module, p-submodules over a PID
Link NOC:Rings and Modules Lecture 45 - Structure of a torsion module over a PID
Link NOC:Rings and Modules Lecture 46 - Structure theorem, chain conditions
Link NOC:Rings and Modules Lecture 47 - Artinian modules, Artinian rings
Link NOC:Rings and Modules Lecture 48 - Noetherian modules, Noetherian rings
Link NOC:Rings and Modules Lecture 49 - Ascending chain condition, Noetherian modules
Link NOC:Rings and Modules Lecture 50 - Examples of Noetherian and Artinian modules and rings
Link NOC:Rings and Modules Lecture 51 - Composition series, Modules of finite length
Link NOC:Rings and Modules Lecture 52 - Jordan-Holderâ's theorem
Link NOC:Rings and Modules Lecture 53 - Artinian rings
Link NOC:Rings and Modules Lecture 54 - Noetherian rings
Link NOC:Rings and Modules Lecture 55 - Hilbert basis theorem
Link NOC:Rings and Modules Lecture 56 - Cohenâ's theorem on Noetherianness
Link NOC:Rings and Modules Lecture 57 - Nakayama lemma
Link NOC:Rings and Modules Lecture 58 - Nil and Jacobson radicals in Artinian rings
Link NOC:Rings and Modules Lecture 59 - Structure theorem
Link NOC:Rings and Modules Lecture 60 - Comparison between Artinian and Noetherian rings
Link NOC:Advanced Computational Techniques Lecture 1 - Polynomial Interpolation
Link NOC:Advanced Computational Techniques Lecture 2 - Polynomial Interpolation
Link NOC:Advanced Computational Techniques Lecture 3 - Polynomial Interpolation
Link NOC:Advanced Computational Techniques Lecture 4 - Spline Interpolation
Link NOC:Advanced Computational Techniques Lecture 5 - Spline Interpolation
Link NOC:Advanced Computational Techniques Lecture 6 - Numerical Quadrature
Link NOC:Advanced Computational Techniques Lecture 7 - Numerical Quadrature (Continued...)
Link NOC:Advanced Computational Techniques Lecture 8 - Least Squares Approximation
Link NOC:Advanced Computational Techniques Lecture 9 - Linear System of Equations
Link NOC:Advanced Computational Techniques Lecture 10 - Linear System of Equations (Continued... )
Link NOC:Advanced Computational Techniques Lecture 11 - Initial Value Problems (IVP)
Link NOC:Advanced Computational Techniques Lecture 12 - Initial Value Problems (Continued...)
Link NOC:Advanced Computational Techniques Lecture 13 - Initial Value Problems (Continued...)
Link NOC:Advanced Computational Techniques Lecture 14 - Initial Value Problems (Continued...)
Link NOC:Advanced Computational Techniques Lecture 15 - Linear Boundary Value Problem (BVP)
Link NOC:Advanced Computational Techniques Lecture 16 - Linear Boundary Value Problem (BVP) (Continued...)
Link NOC:Advanced Computational Techniques Lecture 17 - Non-linear BVP, Iterative Method
Link NOC:Advanced Computational Techniques Lecture 18 - Linear Parabolic PDE
Link NOC:Advanced Computational Techniques Lecture 19 - Hyperbolic PDE
Link NOC:Advanced Computational Techniques Lecture 20 - Non-linear advection-diffusion equation
Link NOC:Applied Linear Algebra in AI and ML Lecture 1 - Vector Spaces
Link NOC:Applied Linear Algebra in AI and ML Lecture 2 - Vector Subspaces
Link NOC:Applied Linear Algebra in AI and ML Lecture 3 - Linear Span and Linear Dependence
Link NOC:Applied Linear Algebra in AI and ML Lecture 4 - Linear Independence
Link NOC:Applied Linear Algebra in AI and ML Lecture 5 - Basis and Dimension
Link NOC:Applied Linear Algebra in AI and ML Lecture 6 - Linear Functionals
Link NOC:Applied Linear Algebra in AI and ML Lecture 7 - Norm of Vector - Part I
Link NOC:Applied Linear Algebra in AI and ML Lecture 8 - Norm of Vector - Part II
Link NOC:Applied Linear Algebra in AI and ML Lecture 9 - Linear Functions
Link NOC:Applied Linear Algebra in AI and ML Lecture 10 - Affine Functions and Examples
Link NOC:Applied Linear Algebra in AI and ML Lecture 11 - Examples of Linear and Affine Functions
Link NOC:Applied Linear Algebra in AI and ML Lecture 12 - Function Composition
Link NOC:Applied Linear Algebra in AI and ML Lecture 13 - System of Linear Equations
Link NOC:Applied Linear Algebra in AI and ML Lecture 14 - Left Invertibility
Link NOC:Applied Linear Algebra in AI and ML Lecture 15 - Invertibility of Matrices
Link NOC:Applied Linear Algebra in AI and ML Lecture 16 - Triangular Systems
Link NOC:Applied Linear Algebra in AI and ML Lecture 17 - LU Decomposition - Part I
Link NOC:Applied Linear Algebra in AI and ML Lecture 18 - LU Decomposition - Part II
Link NOC:Applied Linear Algebra in AI and ML Lecture 19 - QR Decomposition (Rotators) - Part I
Link NOC:Applied Linear Algebra in AI and ML Lecture 20 - QR Decomposition (Rotators) - Part II
Link NOC:Applied Linear Algebra in AI and ML Lecture 21 - QR Decomposition (Reflectors) - Part I
Link NOC:Applied Linear Algebra in AI and ML Lecture 22 - QR Decomposition (Reflectors) - Part II
Link NOC:Applied Linear Algebra in AI and ML Lecture 23 - Matrix Norms
Link NOC:Applied Linear Algebra in AI and ML Lecture 24 - Sensitivity Analysis
Link NOC:Applied Linear Algebra in AI and ML Lecture 25 - Condition Number of a Matrix
Link NOC:Applied Linear Algebra in AI and ML Lecture 26 - Sensitivity Analysis - II
Link NOC:Applied Linear Algebra in AI and ML Lecture 27 - Sensitivity Analysis - III
Link NOC:Applied Linear Algebra in AI and ML Lecture 28 - Least Squares - Part I
Link NOC:Applied Linear Algebra in AI and ML Lecture 29 - Least Squares - Part II
Link NOC:Applied Linear Algebra in AI and ML Lecture 30 - Least Squares - Part III
Link NOC:Applied Linear Algebra in AI and ML Lecture 31 - Least Squares Data Fitting
Link NOC:Applied Linear Algebra in AI and ML Lecture 32 - Examples of LS data fitting
Link NOC:Applied Linear Algebra in AI and ML Lecture 33 - Classification using Least Squares
Link NOC:Applied Linear Algebra in AI and ML Lecture 34 - Examples of LS classification
Link NOC:Applied Linear Algebra in AI and ML Lecture 35 - Constrained Least Squares
Link NOC:Applied Linear Algebra in AI and ML Lecture 36 - Multiobjective Least Squares
Link NOC:Applied Linear Algebra in AI and ML Lecture 37 - Eigenvalues and Eigenvectors - Part I
Link NOC:Applied Linear Algebra in AI and ML Lecture 38 - Eigenvalues and Eigenvectors - Part II
Link NOC:Applied Linear Algebra in AI and ML Lecture 39 - Spectral Decomposition Theorem
Link NOC:Applied Linear Algebra in AI and ML Lecture 40 - Positive Definite Matrices
Link NOC:Applied Linear Algebra in AI and ML Lecture 41 - Singular Value Decomposition (SVD)
Link NOC:Applied Linear Algebra in AI and ML Lecture 42 - Proof of SVD
Link NOC:Applied Linear Algebra in AI and ML Lecture 43 - Properties of SVD
Link NOC:Applied Linear Algebra in AI and ML Lecture 44 - Another Proof of SVD
Link NOC:Applied Linear Algebra in AI and ML Lecture 45 - Low Rank Approximations
Link NOC:Applied Linear Algebra in AI and ML Lecture 46 - Principal Component Analysis
Link NOC:Applied Linear Algebra in AI and ML Lecture 47 - SVD and Pseudo - Inverse
Link NOC:Applied Linear Algebra in AI and ML Lecture 48 - SVD and the Least Squares Problem
Link NOC:Applied Linear Algebra in AI and ML Lecture 49 - Sensitivity Analysis of the Least Squares Problem
Link NOC:Applied Linear Algebra in AI and ML Lecture 50 - Power Method
Link NOC:Applied Linear Algebra in AI and ML Lecture 51 - Directed Graphs and Properties
Link NOC:Applied Linear Algebra in AI and ML Lecture 52 - Page Ranking Algorithm
Link NOC:Applied Linear Algebra in AI and ML Lecture 53 - Inverse Eigen Value Problem
Link NOC:Applied Linear Algebra in AI and ML Lecture 54 - Fastest Mixing Markov Chains on Graphs - Part I
Link NOC:Applied Linear Algebra in AI and ML Lecture 55 - Fastest Mixing Markov Chains on Graphs - Part II
Link NOC:Applied Linear Algebra in AI and ML Lecture 56 - Sparse Solution and Underdetermined Systems
Link NOC:Applied Linear Algebra in AI and ML Lecture 57 - Structured Low Rank Approximations - Part I
Link NOC:Applied Linear Algebra in AI and ML Lecture 58 - Structured Low Rank Approximations - Part II
Link NOC:Applied Linear Algebra in AI and ML Lecture 59 - Structured Low Rank Approximations - Part III
Link NOC:Applied Linear Algebra in AI and ML Lecture 60 - Recap
Link NOC:Advanced Engineering Mathematics (2023) Lecture 1 - Introduction on functions of a single variable
Link NOC:Advanced Engineering Mathematics (2023) Lecture 2 - Basic definitions
Link NOC:Advanced Engineering Mathematics (2023) Lecture 3 - Mean value Theorems
Link NOC:Advanced Engineering Mathematics (2023) Lecture 4 - Extremum of function of single variable
Link NOC:Advanced Engineering Mathematics (2023) Lecture 5 - Examples
Link NOC:Advanced Engineering Mathematics (2023) Lecture 6 - Introduction on functions of two variable
Link NOC:Advanced Engineering Mathematics (2023) Lecture 7 - Basic definitions
Link NOC:Advanced Engineering Mathematics (2023) Lecture 8 - Partial differentiation
Link NOC:Advanced Engineering Mathematics (2023) Lecture 9 - Extremum of function of two variable
Link NOC:Advanced Engineering Mathematics (2023) Lecture 10 - Examples
Link NOC:Advanced Engineering Mathematics (2023) Lecture 11 - Convergence and divergence test
Link NOC:Advanced Engineering Mathematics (2023) Lecture 12 - Beta function, Gamma function
Link NOC:Advanced Engineering Mathematics (2023) Lecture 13 - Differentiation under integral sign
Link NOC:Advanced Engineering Mathematics (2023) Lecture 14 - Line integral, integration in R^2 (Double integral)
Link NOC:Advanced Engineering Mathematics (2023) Lecture 15 - Examples
Link NOC:Advanced Engineering Mathematics (2023) Lecture 16 - Double integral
Link NOC:Advanced Engineering Mathematics (2023) Lecture 17 - Integration in R3
Link NOC:Advanced Engineering Mathematics (2023) Lecture 18 - Triple integral
Link NOC:Advanced Engineering Mathematics (2023) Lecture 19 - Examples
Link NOC:Advanced Engineering Mathematics (2023) Lecture 20 - Introduction to Differential equation
Link NOC:Advanced Engineering Mathematics (2023) Lecture 21 - Exact form
Link NOC:Advanced Engineering Mathematics (2023) Lecture 22 - Second order differential equation
Link NOC:Advanced Engineering Mathematics (2023) Lecture 23 - Iterative method (bisection and fixed point)
Link NOC:Advanced Engineering Mathematics (2023) Lecture 24 - Newton-Raphson, Jacobi and Gauss-Seidel method
Link NOC:Advanced Engineering Mathematics (2023) Lecture 25 - Finite difference method
Link NOC:Advanced Engineering Mathematics (2023) Lecture 26 - Newton's forward and backward interpolation
Link NOC:Advanced Engineering Mathematics (2023) Lecture 27 - Numerical integration
Link NOC:Advanced Engineering Mathematics (2023) Lecture 28 - Vector space and Subspace
Link NOC:Advanced Engineering Mathematics (2023) Lecture 29 - Basis and dimension
Link NOC:Advanced Engineering Mathematics (2023) Lecture 30 - Rank of a matrix
Link NOC:Advanced Engineering Mathematics (2023) Lecture 31 - Gauss-Elimination Method
Link NOC:Advanced Engineering Mathematics (2023) Lecture 32 - Linear Transformation
Link NOC:Advanced Engineering Mathematics (2023) Lecture 33 - Examples
Link NOC:Advanced Engineering Mathematics (2023) Lecture 34 - Matrix Representation
Link NOC:Advanced Engineering Mathematics (2023) Lecture 35 - Eigenvalues and Eigenvectors
Link NOC:Advanced Engineering Mathematics (2023) Lecture 36 - Cayley-Hamilton Theorem
Link NOC:Advanced Engineering Mathematics (2023) Lecture 37 - Diagonalisation of a Matrix
Link NOC:Advanced Engineering Mathematics (2023) Lecture 38 - Examples and applications
Link NOC:Advanced Engineering Mathematics (2023) Lecture 39 - Types of matrices
Link NOC:Advanced Engineering Mathematics (2023) Lecture 40 - Equivalent Matrices and Elementary Matrices
Link NOC:Advanced Engineering Mathematics (2023) Lecture 41 - Introduction to the vector function
Link NOC:Advanced Engineering Mathematics (2023) Lecture 42 - Differentiation and integration of the vector function
Link NOC:Advanced Engineering Mathematics (2023) Lecture 43 - Partial differentiation of vector function
Link NOC:Advanced Engineering Mathematics (2023) Lecture 44 - Directional derivative of a vector function
Link NOC:Advanced Engineering Mathematics (2023) Lecture 45 - Examples on directional derivative, tangent plane and normal
Link NOC:Advanced Engineering Mathematics (2023) Lecture 46 - Divergence and curl of a vector function
Link NOC:Advanced Engineering Mathematics (2023) Lecture 47 - Application to mechanics of vector calculus
Link NOC:Advanced Engineering Mathematics (2023) Lecture 48 - Serret-Frenet formula and more applications to mechanics
Link NOC:Advanced Engineering Mathematics (2023) Lecture 49 - Examples on finding unit vectors, curvature and torsion
Link NOC:Advanced Engineering Mathematics (2023) Lecture 50 - Application of vector calculus to the particle dynamics
Link NOC:Advanced Engineering Mathematics (2023) Lecture 51 - Line integral of vector function
Link NOC:Advanced Engineering Mathematics (2023) Lecture 52 - Surface integral of vector function
Link NOC:Advanced Engineering Mathematics (2023) Lecture 53 - Volume integral of vector function and Gauss Divergence Theorem
Link NOC:Advanced Engineering Mathematics (2023) Lecture 54 - Green's theorem and Stoke's theorem
Link NOC:Advanced Engineering Mathematics (2023) Lecture 55 - Verification and application of Divergencen theorem, Green's theorem and Stoke's theorem
Link NOC:Advanced Engineering Mathematics (2023) Lecture 56 - Basic properties of a complex valued function
Link NOC:Advanced Engineering Mathematics (2023) Lecture 57 - Analytic Complex valued function
Link NOC:Advanced Engineering Mathematics (2023) Lecture 58 - Complex Integration and theorems
Link NOC:Advanced Engineering Mathematics (2023) Lecture 59 - Application of Cauchy's integral formula
Link NOC:Advanced Engineering Mathematics (2023) Lecture 60 - Regular and Singular point of a complex valued function
Link NOC:Essentials of Topology Lecture 1 - Introduction
Link NOC:Essentials of Topology Lecture 2 - Sets and Functions - I
Link NOC:Essentials of Topology Lecture 3 - Sets and Functions - II
Link NOC:Essentials of Topology Lecture 4 - Sets and Functions - III
Link NOC:Essentials of Topology Lecture 5 - Sets and Functions - IV
Link NOC:Essentials of Topology Lecture 6 - Metric Spaces
Link NOC:Essentials of Topology Lecture 7 - Topological Spaces
Link NOC:Essentials of Topology Lecture 8 - Topological Spaces (Examples)
Link NOC:Essentials of Topology Lecture 9 - Typologies on R - I
Link NOC:Essentials of Topology Lecture 10 - Typologies on R - II
Link NOC:Essentials of Topology Lecture 11 - Comparison of topologies
Link NOC:Essentials of Topology Lecture 12 - Closed sets
Link NOC:Essentials of Topology Lecture 13 - Basis for a topology - I
Link NOC:Essentials of Topology Lecture 14 - Basis for a topology - II
Link NOC:Essentials of Topology Lecture 15 - A topology on R^2
Link NOC:Essentials of Topology Lecture 16 - Subbasis and Neighborhood
Link NOC:Essentials of Topology Lecture 17 - Limit points of sets
Link NOC:Essentials of Topology Lecture 18 - Closure of sets
Link NOC:Essentials of Topology Lecture 19 - Interior and boundary of sets
Link NOC:Essentials of Topology Lecture 20 - Subspaces
Link NOC:Essentials of Topology Lecture 21 - Product topology
Link NOC:Essentials of Topology Lecture 22 - Product and Box topologies
Link NOC:Essentials of Topology Lecture 23 - The Quotient topology
Link NOC:Essentials of Topology Lecture 24 - Krakowski closure/interior operator
Link NOC:Essentials of Topology Lecture 25 - Countability axioms - I
Link NOC:Essentials of Topology Lecture 26 - Countability axioms - II
Link NOC:Essentials of Topology Lecture 27 - Countability axioms - III
Link NOC:Essentials of Topology Lecture 28 - Continuous functions - I
Link NOC:Essentials of Topology Lecture 29 - Continuous functions - II
Link NOC:Essentials of Topology Lecture 30 - Continuous functions - III
Link NOC:Essentials of Topology Lecture 31 - Continuous functions - IV
Link NOC:Essentials of Topology Lecture 32 - Homeomorphisms - I
Link NOC:Essentials of Topology Lecture 33 - Homeomorphisms - II
Link NOC:Essentials of Topology Lecture 34 - Homeomorphisms - III
Link NOC:Essentials of Topology Lecture 35 - Connectedness - I
Link NOC:Essentials of Topology Lecture 36 - Connectedness - II
Link NOC:Essentials of Topology Lecture 37 - Connectedness - III
Link NOC:Essentials of Topology Lecture 38 - Connectedness - IV
Link NOC:Essentials of Topology Lecture 39 - Connectedness - V
Link NOC:Essentials of Topology Lecture 40 - Connectedness - VI
Link NOC:Essentials of Topology Lecture 41 - Connectedness - VII
Link NOC:Essentials of Topology Lecture 42 - Connectedness - VIII
Link NOC:Essentials of Topology Lecture 43 - Path connectedness - I
Link NOC:Essentials of Topology Lecture 44 - Path connectedness - II
Link NOC:Essentials of Topology Lecture 45 - Path connectedness - III
Link NOC:Essentials of Topology Lecture 46 - Path components and Local connectedness
Link NOC:Essentials of Topology Lecture 47 - Local connectedness
Link NOC:Essentials of Topology Lecture 48 - Local path connectedness
Link NOC:Essentials of Topology Lecture 49 - Compactness - I
Link NOC:Essentials of Topology Lecture 50 - Compactness - II
Link NOC:Essentials of Topology Lecture 51 - Compactness - III
Link NOC:Essentials of Topology Lecture 52 - Compactness - IV
Link NOC:Essentials of Topology Lecture 53 - Compactness - V
Link NOC:Essentials of Topology Lecture 54 - Compactness - VI
Link NOC:Essentials of Topology Lecture 55 - Compactness - VII
Link NOC:Essentials of Topology Lecture 56 - Compactness - VIII
Link NOC:Essentials of Topology Lecture 57 - Compactness - IX
Link NOC:Essentials of Topology Lecture 58 - Compactness - X
Link NOC:Essentials of Topology Lecture 59 - One-point compactifications - I
Link NOC:Essentials of Topology Lecture 60 - One-point compactifications - II
Link NOC:Essentials of Topology Lecture 61 - Separation axioms - I
Link NOC:Essentials of Topology Lecture 62 - Separation axioms - II
Link NOC:Essentials of Topology Lecture 63 - Separation axioms - III
Link NOC:Essentials of Topology Lecture 64 - Separation axioms - IV
Link NOC:Essentials of Topology Lecture 65 - Separation axioms - V
Link NOC:Essentials of Topology Lecture 66 - Separation axioms - VI
Link NOC:Essentials of Topology Lecture 67 - Separation axioms - VII
Link NOC:Essentials of Topology Lecture 68 - Separation axioms - VIII
Link NOC:Essentials of Topology Lecture 69 - Tychonoff theorem - I
Link NOC:Essentials of Topology Lecture 70 - Tychonoff theorem - II
Link NOC:Essentials of Topology Lecture 71 - Stone-Cech compactification - I
Link NOC:Essentials of Topology Lecture 72 - Stone-Cech compactification - II
Link NOC:Numerical Linear Algebra and Application Lecture 1 - Linear Algebra and Introduction
Link NOC:Numerical Linear Algebra and Application Lecture 2 - Computational Difficulties
Link NOC:Numerical Linear Algebra and Application Lecture 3 - Computational Error
Link NOC:Numerical Linear Algebra and Application Lecture 4 - Stability
Link NOC:Numerical Linear Algebra and Application Lecture 5 - Gaussian Elimination
Link NOC:Numerical Linear Algebra and Application Lecture 6 - LU Factorization
Link NOC:Numerical Linear Algebra and Application Lecture 7 - Iterative refinement
Link NOC:Numerical Linear Algebra and Application Lecture 8 - QR Factorization
Link NOC:Numerical Linear Algebra and Application Lecture 9 - Gram-Schmidt Orthogonalization
Link NOC:Numerical Linear Algebra and Application Lecture 10 - Cholesky Decomposition
Link NOC:Numerical Linear Algebra and Application Lecture 11 - Projections
Link NOC:Numerical Linear Algebra and Application Lecture 12 - House-Holder Reflectors
Link NOC:Numerical Linear Algebra and Application Lecture 13 - Image Compression
Link NOC:Numerical Linear Algebra and Application Lecture 14 - Singular Value Decomposition
Link NOC:Numerical Linear Algebra and Application Lecture 15 - Least Square Solutions
Link NOC:Numerical Linear Algebra and Application Lecture 16 - Pseudo-Inverse
Link NOC:Numerical Linear Algebra and Application Lecture 17 - Normal Equations
Link NOC:Numerical Linear Algebra and Application Lecture 18 - Eigenvalue problems
Link NOC:Numerical Linear Algebra and Application Lecture 19 - Gershgorin Theorem
Link NOC:Numerical Linear Algebra and Application Lecture 20 - Similarity Transforms
Link NOC:Numerical Linear Algebra and Application Lecture 21 - Eigenvalues
Link NOC:Numerical Linear Algebra and Application Lecture 22 - Sensitivity Vectors
Link NOC:Numerical Linear Algebra and Application Lecture 23 - Power method
Link NOC:Numerical Linear Algebra and Application Lecture 24 - Schur Decomposition
Link NOC:Numerical Linear Algebra and Application Lecture 25 - Jordan Canonical form
Link NOC:Numerical Linear Algebra and Application Lecture 26 - QR Iteration
Link NOC:Numerical Linear Algebra and Application Lecture 27 - Heisenberg transformation
Link NOC:Numerical Linear Algebra and Application Lecture 28 - Rayleigh Quotient
Link NOC:Numerical Linear Algebra and Application Lecture 29 - Symmetric eigenvalue problem
Link NOC:Numerical Linear Algebra and Application Lecture 30 - Jacobi Method
Link NOC:Numerical Linear Algebra and Application Lecture 31 - Divide and Conquer
Link NOC:Numerical Linear Algebra and Application Lecture 32 - Computing the Singular Value Decomposition
Link NOC:Numerical Linear Algebra and Application Lecture 33 - Golub-Kahan-Reinsch Algorithm
Link NOC:Numerical Linear Algebra and Application Lecture 34 - Chan SVD Algorithm
Link NOC:Numerical Linear Algebra and Application Lecture 35 - Generalized SVD
Link NOC:Numerical Linear Algebra and Application Lecture 36 - Generalized and Quadratic Eigenvalue Problems
Link NOC:Numerical Linear Algebra and Application Lecture 37 - Generalized Schur Decomposition (QZ Decomposition)
Link NOC:Numerical Linear Algebra and Application Lecture 38 - Iterative Methods for Large Linear Systems: Jacobi
Link NOC:Numerical Linear Algebra and Application Lecture 39 - Iterative methods for large linear systems: Gauss-Seidel Method
Link NOC:Numerical Linear Algebra and Application Lecture 40 - Iterative methods for large linear systems: SOR method
Link NOC:Numerical Linear Algebra and Application Lecture 41 - Convergence of iterative algorithms
Link NOC:Numerical Linear Algebra and Application Lecture 42 - Krylov subspace methods
Link NOC:Numerical Linear Algebra and Application Lecture 43 - Lanczos
Link NOC:Numerical Linear Algebra and Application Lecture 44 - Arnoldi
Link NOC:Numerical Linear Algebra and Application Lecture 45 - Stability of the Cholesky QR Algorithm
Link NOC:Numerical Linear Algebra and Application Lecture 46 - Conditioning of the eigenvalues
Link NOC:Numerical Linear Algebra and Application Lecture 47 - Symmetric definite pencil
Link NOC:Numerical Linear Algebra and Application Lecture 48 - AI applications
Link NOC:Numerical Linear Algebra and Application Lecture 49 - Sensitive systems
Link NOC:Numerical Linear Algebra and Application Lecture 50 - Real Life Systems
Link NOC:Numerical Linear Algebra and Application Lecture 51 - Transient thermal systems
Link NOC:Numerical Linear Algebra and Application Lecture 52 - Left Inverse
Link NOC:Numerical Linear Algebra and Application Lecture 53 - Right Inverse
Link NOC:Numerical Linear Algebra and Application Lecture 54 - Generalized Inverse
Link NOC:Numerical Linear Algebra and Application Lecture 55 - Applications
Link NOC:Numerical Linear Algebra and Application Lecture 56 - Applications (Continued...)
Link NOC:Numerical Linear Algebra and Application Lecture 57 - Applications (Continued...)
Link NOC:Numerical Linear Algebra and Application Lecture 58 - Applications (Continued...)
Link NOC:Numerical Linear Algebra and Application Lecture 59 - Applications (Continued...)
Link NOC:Numerical Linear Algebra and Application Lecture 60 - Applications of the Matrices in Real Life Systems
Link NOC:Numerical Linear Algebra and Application Lecture 61 - Matrices and Its Fundamentals: Recalling Examples
Link NOC:Numerical Linear Algebra and Application Lecture 62 - Properties of Matrices: Recalling and Revision, Examples
Link NOC:Numerical Linear Algebra and Application Lecture 63 - Matrices: Finite Digit Arithmetic: recalling and Examples
Link NOC:Mathematics for Machine Learning Lecture 1 - Introduction to Machine Learning
Link NOC:Mathematics for Machine Learning Lecture 2 - Few Instances of Learning
Link NOC:Mathematics for Machine Learning Lecture 3 - Loss Function Optimization
Link NOC:Mathematics for Machine Learning Lecture 4 - Phases of Machine Learning Systems
Link NOC:Mathematics for Machine Learning Lecture 5 - Single-layer and multi-layer neurons
Link NOC:Mathematics for Machine Learning Lecture 6 - Introduction to Convexity
Link NOC:Mathematics for Machine Learning Lecture 7 - Study on Convex Function
Link NOC:Mathematics for Machine Learning Lecture 8 - Formation of Convex Hull
Link NOC:Mathematics for Machine Learning Lecture 9 - Optimization of Functions
Link NOC:Mathematics for Machine Learning Lecture 10 - Convex Optimization Problem
Link NOC:Mathematics for Machine Learning Lecture 11 - Directional derivative, Gradient, Jacobian, Firest Order Taylor Formula
Link NOC:Mathematics for Machine Learning Lecture 12 - Gradient, Jacobian, First order Taylor formula
Link NOC:Mathematics for Machine Learning Lecture 13 - Gradient Descent Optimization Technique
Link NOC:Mathematics for Machine Learning Lecture 14 - Gradient Descent, Interpretation from Taylor approximation
Link NOC:Mathematics for Machine Learning Lecture 15 - Sub-Gradient Descent Optimization Technique
Link NOC:Mathematics for Machine Learning Lecture 16 - Introduction to Underfitting and Overfitting
Link NOC:Mathematics for Machine Learning Lecture 17 - Relation of Bias and Variance to Underfitting and Overfitting
Link NOC:Mathematics for Machine Learning Lecture 18 - Bias-Variance Trade-off
Link NOC:Mathematics for Machine Learning Lecture 19 - Ridge Regression
Link NOC:Mathematics for Machine Learning Lecture 20 - LASSO Regression
Link NOC:Mathematics for Machine Learning Lecture 21 - Stochastic Gradient descent
Link NOC:Mathematics for Machine Learning Lecture 22 - Stochastic Gradient descent (Continued...)
Link NOC:Mathematics for Machine Learning Lecture 23 - Variants of Gradient descent
Link NOC:Mathematics for Machine Learning Lecture 24 - Momentum based Gradient descent
Link NOC:Mathematics for Machine Learning Lecture 25 - Accelerated Gradient descent
Link NOC:Mathematics for Machine Learning Lecture 26 - Linear Predictors (Logistic Regression)
Link NOC:Mathematics for Machine Learning Lecture 27 - Linear Predictors (Logistic Regression) (Continued....)
Link NOC:Mathematics for Machine Learning Lecture 28 - Linear Predictors (Logistic Regression) (Continued....)
Link NOC:Mathematics for Machine Learning Lecture 29 - Linear Predictors (Logistic Regression) (Continued....)
Link NOC:Mathematics for Machine Learning Lecture 30 - Linear Predictors (Support Vector Machines)
Link NOC:Mathematics for Machine Learning Lecture 31 - Introduction to Theory of Estimation
Link NOC:Mathematics for Machine Learning Lecture 32 - Probability Theory
Link NOC:Mathematics for Machine Learning Lecture 33 - Discrete Probability Distribution
Link NOC:Mathematics for Machine Learning Lecture 34 - Continuous Probability Distribution
Link NOC:Mathematics for Machine Learning Lecture 35 - Maximum likelihood Estimation
Link NOC:Mathematics for Machine Learning Lecture 36 - MLE for Discrete Probability Distribution
Link NOC:Mathematics for Machine Learning Lecture 37 - MLE for Continuous Probability Distribution
Link NOC:Mathematics for Machine Learning Lecture 38 - Properties of Estimators
Link NOC:Mathematics for Machine Learning Lecture 39 - MLE for Linear and Logistic Regression
Link NOC:Mathematics for Machine Learning Lecture 40 - MLE for Naïve Bayes Model
Link NOC:Mathematics for Machine Learning Lecture 41 - Eigen value and eigen vector, Linearly independent vectors
Link NOC:Mathematics for Machine Learning Lecture 42 - Orthogonal Basis, Eigen value decomposition
Link NOC:Mathematics for Machine Learning Lecture 43 - Orthogonal Basis, Eigen value decomposition (Continued...)
Link NOC:Mathematics for Machine Learning Lecture 44 - Principal Component Analysis
Link NOC:Mathematics for Machine Learning Lecture 45 - Principal Component Analysis (Continued...)
Link NOC:Mathematics for Machine Learning Lecture 46 - Introduction to Dynamical System
Link NOC:Mathematics for Machine Learning Lecture 47 - Dynamical System and Control
Link NOC:Mathematics for Machine Learning Lecture 48 - Discrete Fourier Transform
Link NOC:Mathematics for Machine Learning Lecture 49 - Inverse Fourier Transform
Link NOC:Mathematics for Machine Learning Lecture 50 - Applications: Discrete Fourier Transform
Link NOC:Mathematics for Machine Learning Lecture 51 - Introduction to Mixture models
Link NOC:Mathematics for Machine Learning Lecture 52 - Introduction to Gaussian Mixture Models
Link NOC:Mathematics for Machine Learning Lecture 53 - EM Algorithm
Link NOC:Mathematics for Machine Learning Lecture 54 - EM Algorithm (Continued...)
Link NOC:Mathematics for Machine Learning Lecture 55 - A brief application to predict HMM parameters
Link NOC:Mathematics for Machine Learning Lecture 56 - Conditional probability, Bayes theorem
Link NOC:Mathematics for Machine Learning Lecture 57 - Bayes Decision Rule
Link NOC:Mathematics for Machine Learning Lecture 58 - Bayes Decision Rule (Continued...)
Link NOC:Mathematics for Machine Learning Lecture 59 - Bayes Decision Rule (Bayesian minimum risk classifier)
Link NOC:Mathematics for Machine Learning Lecture 60 - Bayes Decision Rule (Linear Discriminant Analysis)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 1 - Introduction to ODEs
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 2 - Introduction to ODEs (Continued...)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 3 - Existence of local solution. Theorems and Examples
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 4 - Continuation of solutions upto the boundary. Global existence of Solution
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 5 - Continuation of solution and dependence on initital data
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 6 - Dependence on Initial data : Examples
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 7 - Regular Perturbations and linearisation
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 8 - Linear System of equations and their stability
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 9 - Linear System of equations and their stability (Continued...)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 10 - Stability Analysis
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 11 - Stability Analysis (Continued...)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 12 - Stability of linear systems with constant and periodic co-efficient Matrix
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 13 - Stability of linear systems with constant and periodic co-efficient Matrix (Continued...)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 14 - Stability of nonlinear system, linearization and Lyapunov functions
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 15 - Stability and Lyapunov functions
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 16 - Stability and Lyapunov functions (Continued...)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 17 - Chaotic Theory - Introduction
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 18 - Chaotic Theory - Introduction (Continued...)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 19 - Lorenz equation, attractor, Lyapunov exponent
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 20 - Lorenz equation, attractor, Lyapunov exponent (Continued...)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 21 - Local divergence, Lyapunov exponents and related topics
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 22 - Local divergence, Lyapunov exponents and related topics (Continued...)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 23 - Strange and Chaotic attractors
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 24 - Strange and Chaotic attractors
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 25 - Fractal Dimension and Reconstruction
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 26 - Fractal Dimension and Reconstruction (Continued...)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 27 - Stiff Differential Equations: Introduction
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 28 - Stiff Differential Equations: Slow and fast time scales
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 29 - Stiff differential equations: Introduction
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 30 - Increment function, A-stable
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 31 - BDF methods and their implementation, Bifurcation Theory: Introduction
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 32 - Bifurcation Theory
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 33 - One dimensional bifurcation for scalar equations
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 34 - One dimensional bifurcations for planar systems
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 35 - Few definitions related to Hopf bifurcation
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 36 - Few definitions related to Hopf bifurcation (Continued...)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 37 - Mathematical models with second order equations - Undamped free oscillations
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 38 - Damped free oscillations
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 39 - Undamped and Damped Forced Oscillations
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 40 - Undamped and Damped Forced Oscillations (Continued...)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 41 - Higher order linear ODEs
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 42 - Higher order linear ODEs (Continued...)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 43 - Linear Differential Equations of Higher Order with Constant Coefficients
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 44 - Linear Differential Equations of Higher Order with Constant Coefficients (Continued...)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 45 - Higher order linear ODEs - Particular Integrals
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 46 - Higher order linear ODEs - Particular Integrals (Continued...)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 47 - Higher order linear ODEs - Variable Coefficients
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 48 - Higher order linear ODEs - Variation of Parameters
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 49 - Series Solution
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 50 - Series Solution (Continued...)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 51 - Series Solution - Frobenius Method
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 52 - Series Solution - Frobenius method (Continued...)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 53 - Special functions
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 54 - Special functions (Continued...)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 55 - Sturm-Liouville Problem - Eigenvalues and Eigenfunctions
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 56 - Sturm-Liouville Problem - Eigenvalues and Eigenfunctions (Continued...)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 57 - Laplace Transform and Its Applications (Continued...)
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 58 - Laplace Transform
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 59 - Laplace Transform and Its Applications
Link NOC:Advanced Theory of Ordinary Differential Equations Lecture 60 - Laplace Transform and Its Applications (Continued...)
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 1 - The Idea of a Riemann Surface
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 2 - Simple Examples of Riemann Surfaces
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 3 - Maximal Atlases and Holomorphic Maps of Riemann Surfaces
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 4 - A Riemann Surface Structure on a Cylinder
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 5 - A Riemann Surface Structure on a Torus
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 6 - Riemann Surface Structures on Cylinders and Tori via Covering Spaces
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 7 - Moebius Transformations Make up Fundamental Groups of Riemann Surfaces
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 8 - Homotopy and the First Fundamental Group
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 9 - A First Classification of Riemann Surfaces
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 10 - The Importance of the Path-lifting Property
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 11 - Fundamental groups as Fibres of the Universal covering Space
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 12 - The Monodromy Action
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 13 - The Universal covering as a Hausdorff Topological Space
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 14 - The Construction of the Universal Covering Map
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 15 - Completion of the Construction of the Universal Covering: Universality of the Universal Covering
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 16 - Completion of the Construction of the Universal Covering: The Fundamental Group of the base as the Deck Transformation Group
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 17 - The Riemann Surface Structure on the Topological Covering of a Riemann Surface
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 18 - Riemann Surfaces with Universal Covering the Plane or the Sphere
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 19 - Classifying Complex Cylinders: Riemann Surfaces with Universal Covering the Complex Plane
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 20 - Characterizing Moebius Transformations with a Single Fixed Point
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 21 - Characterizing Moebius Transformations with Two Fixed Points
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 22 - Torsion-freeness of the Fundamental Group of a Riemann Surface
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 23 - Characterizing Riemann Surface Structures on Quotients of the Upper Half-Plane with Abelian Fundamental Groups
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 24 - Classifying Annuli up to Holomorphic Isomorphism
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 25 - Orbits of the Integral Unimodular Group in the Upper Half-Plane
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 26 - Galois Coverings are precisely Quotients by Properly Discontinuous Free Actions
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 27 - Local Actions at the Region of Discontinuity of a Kleinian Subgroup of Moebius Transformations
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 28 - Quotients by Kleinian Subgroups give rise to Riemann Surfaces
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 29 - The Unimodular Group is Kleinian
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 30 - The Necessity of Elliptic Functions for the Classification of Complex Tori
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 31 - The Uniqueness Property of the Weierstrass Phe-function associated to a Lattice in the Plane
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 32 - The First Order Degree Two Cubic Ordinary Differential Equation satisfied by the Weierstrass Phe-function
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 33 - The Values of the Weierstrass Phe-function at the Zeros of its Derivative are nonvanishing Analytic Functions on the Upper Half-Plane
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 34 - The Construction of a Modular Form of Weight Two on the Upper Half-Plane
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 35 - The Fundamental Functional Equations satisfied by the Modular Form of Weight Two on the Upper Half-Plane
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 36 - The Weight Two Modular Form assumes Real Values on the Imaginary Axis in the Upper Half-plane
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 37 - The Weight Two Modular Form Vanishes at Infinity
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 38 - The Weight Two Modular Form Decays Exponentially in a Neighbourhood of Infinity
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 39 - A Suitable Restriction of the Weight Two Modular Form is a Holomorphic Conformal Isomorphism onto the Upper Half-Plane
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 40 - The J-Invariant of a Complex Torus (or) of an Algebraic Elliptic Curve
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 41 - A Fundamental Region in the Upper Half-Plane for the Elliptic Modular J-Invariant
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 42 - The Fundamental Region in the Upper Half-Plane for the Unimodular Group
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 43 - A Region in the Upper Half-Plane Meeting Each Unimodular Orbit Exactly Once
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 44 - Moduli of Elliptic Curves
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 45 - Punctured Complex Tori are Elliptic Algebraic Affine Plane Cubic Curves in Complex 2-Space
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 46 - The Natural Riemann Surface Structure on an Algebraic Affine Nonsingular Plane Curve
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 47 - Complex Projective 2-Space as a Compact Complex Manifold of Dimension Two
Link An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves Lecture 48 - Complex Tori are the same as Elliptic Algebraic Projective Curves
Link Linear Algebra Lecture 1 - Introduction to the Course Contents
Link Linear Algebra Lecture 2 - Linear Equations
Link Linear Algebra Lecture 3a - Equivalent Systems of Linear Equations I : Inverses of Elementary Row-operations, Row-equivalent matrices
Link Linear Algebra Lecture 3b - Equivalent Systems of Linear Equations II : Homogeneous Equations, Examples
Link Linear Algebra Lecture 4 - Row-reduced Echelon Matrices
Link Linear Algebra Lecture 5 - Row-reduced Echelon Matrices and Non-homogeneous Equations
Link Linear Algebra Lecture 6 - Elementary Matrices, Homogeneous Equations and Non-homogeneous Equations
Link Linear Algebra Lecture 7 - Invertible matrices, Homogeneous Equations Non-homogeneous Equations
Link Linear Algebra Lecture 8 - Vector spaces
Link Linear Algebra Lecture 9 - Elementary Properties in Vector Spaces. Subspaces
Link Linear Algebra Lecture 10 - Subspaces (Continued...), Spanning Sets, Linear Independence, Dependence
Link Linear Algebra Lecture 11 - Basis for a vector space
Link Linear Algebra Lecture 12 - Dimension of a vector space
Link Linear Algebra Lecture 13 - Dimensions of Sums of Subspaces
Link Linear Algebra Lecture 14 - Linear Transformations
Link Linear Algebra Lecture 15 - The Null Space and the Range Space of a Linear Transformation
Link Linear Algebra Lecture 16 - The Rank-Nullity-Dimension Theorem. Isomorphisms Between Vector Spaces
Link Linear Algebra Lecture 17 - Isomorphic Vector Spaces, Equality of the Row-rank and the Column-rank - I
Link Linear Algebra Lecture 18 - Equality of the Row-rank and the Column-rank - II
Link Linear Algebra Lecture 19 - The Matrix of a Linear Transformation
Link Linear Algebra Lecture 20 - Matrix for the Composition and the Inverse. Similarity Transformation
Link Linear Algebra Lecture 21 - Linear Functionals. The Dual Space. Dual Basis - I
Link Linear Algebra Lecture 22 - Dual Basis II. Subspace Annihilators - I
Link Linear Algebra Lecture 23 - Subspace Annihilators - II
Link Linear Algebra Lecture 24 - The Double Dual. The Double Annihilator
Link Linear Algebra Lecture 25 - The Transpose of a Linear Transformation. Matrices of a Linear Transformation and its Transpose
Link Linear Algebra Lecture 26 - Eigenvalues and Eigenvectors of Linear Operators
Link Linear Algebra Lecture 27 - Diagonalization of Linear Operators. A Characterization
Link Linear Algebra Lecture 28 - The Minimal Polynomial
Link Linear Algebra Lecture 29 - The Cayley-Hamilton Theorem
Link Linear Algebra Lecture 30 - Invariant Subspaces
Link Linear Algebra Lecture 31 - Triangulability, Diagonalization in Terms of the Minimal Polynomial
Link Linear Algebra Lecture 32 - Independent Subspaces and Projection Operators
Link Linear Algebra Lecture 33 - Direct Sum Decompositions and Projection Operators - I
Link Linear Algebra Lecture 34 - Direct Sum Decompositions and Projection Operators - II
Link Linear Algebra Lecture 35 - The Primary Decomposition Theorem and Jordan Decomposition
Link Linear Algebra Lecture 36 - Cyclic Subspaces and Annihilators
Link Linear Algebra Lecture 37 - The Cyclic Decomposition Theorem - I
Link Linear Algebra Lecture 38 - The Cyclic Decomposition Theorem - II. The Rational Form
Link Linear Algebra Lecture 39 - Inner Product Spaces
Link Linear Algebra Lecture 40 - Norms on Vector spaces. The Gram-Schmidt Procedure I
Link Linear Algebra Lecture 41 - The Gram-Schmidt Procedure II. The QR Decomposition
Link Linear Algebra Lecture 42 - Bessel's Inequality, Parseval's Indentity, Best Approximation
Link Linear Algebra Lecture 43 - Best Approximation: Least Squares Solutions
Link Linear Algebra Lecture 44 - Orthogonal Complementary Subspaces, Orthogonal Projections
Link Linear Algebra Lecture 45 - Projection Theorem. Linear Functionals
Link Linear Algebra Lecture 46 - The Adjoint Operator
Link Linear Algebra Lecture 47 - Properties of the Adjoint Operation. Inner Product Space Isomorphism
Link Linear Algebra Lecture 48 - Unitary Operators
Link Linear Algebra Lecture 49 - Unitary operators - II. Self-Adjoint Operators - I.
Link Linear Algebra Lecture 50 - Self-Adjoint Operators - II - Spectral Theorem
Link Linear Algebra Lecture 51 - Normal Operators - Spectral Theorem
Link Mathematical Logic Lecture 1 - Sets and Strings
Link Mathematical Logic Lecture 2 - Syntax of Propositional Logic
Link Mathematical Logic Lecture 3 - Unique Parsing
Link Mathematical Logic Lecture 4 - Semantics of PL
Link Mathematical Logic Lecture 5 - Consequences and Equivalences
Link Mathematical Logic Lecture 6 - Five results about PL
Link Mathematical Logic Lecture 7 - Calculations and Informal Proofs
Link Mathematical Logic Lecture 8 - More Informal Proofs
Link Mathematical Logic Lecture 9 - Normal forms
Link Mathematical Logic Lecture 10 - SAT and 3SAT
Link Mathematical Logic Lecture 11 - Horn-SAT and Resolution
Link Mathematical Logic Lecture 12 - Resolution
Link Mathematical Logic Lecture 13 - Adequacy of Resolution
Link Mathematical Logic Lecture 14 - Adequacy and Resolution Strategies
Link Mathematical Logic Lecture 15 - Propositional Calculus (PC)
Link Mathematical Logic Lecture 16 - Some Results about PC
Link Mathematical Logic Lecture 17 - Arguing with Proofs
Link Mathematical Logic Lecture 18 - Adequacy of PC
Link Mathematical Logic Lecture 19 - Compactness & Analytic Tableau
Link Mathematical Logic Lecture 20 - Examples of Tableau Proofs
Link Mathematical Logic Lecture 21 - Adequacy of Tableaux
Link Mathematical Logic Lecture 22 - Syntax of First order Logic (FL)
Link Mathematical Logic Lecture 23 - Symbolization & Scope of Quantifiers
Link Mathematical Logic Lecture 24 - Hurdles in giving Meaning
Link Mathematical Logic Lecture 25 - Semantics of FL
Link Mathematical Logic Lecture 26 - Relevance Lemma
Link Mathematical Logic Lecture 27 - Validity, Satisfiability & Equivalence
Link Mathematical Logic Lecture 28 - Six Results about FL
Link Mathematical Logic Lecture 29 - Laws, Calculation & Informal Proof
Link Mathematical Logic Lecture 30 - Quantifier Laws and Consequences
Link Mathematical Logic Lecture 31 - More Proofs and Prenex Form
Link Mathematical Logic Lecture 32 - Prenex Form Conversion
Link Mathematical Logic Lecture 33 - Skolem Form
Link Mathematical Logic Lecture 34 - Syntatic Interpretation
Link Mathematical Logic Lecture 35 - Herbrand's Theorem
Link Mathematical Logic Lecture 36 - Most General Unifiers
Link Mathematical Logic Lecture 37 - Resolution Rules
Link Mathematical Logic Lecture 38 - Resolution Examples
Link Mathematical Logic Lecture 39 - Ariomatic System FC
Link Mathematical Logic Lecture 40 - FC and Semidecidability of FL
Link Mathematical Logic Lecture 41 - Analytic Tableau for FL
Link Mathematical Logic Lecture 42 - Godels Incompleteness Theorems
Link Real Analysis Lecture 1 - Introduction
Link Real Analysis Lecture 2 - Functions and Relations
Link Real Analysis Lecture 3 - Finite and Infinite Sets
Link Real Analysis Lecture 4 - Countable Sets
Link Real Analysis Lecture 5 - Uncountable Sets, Cardinal Number
Link Real Analysis Lecture 6 - Real Number System
Link Real Analysis Lecture 7 - LUB Axiom
Link Real Analysis Lecture 8 - Sequences of Real Numbers
Link Real Analysis Lecture 9 - Sequences of Real Numbers - (Continued.)
Link Real Analysis Lecture 10 - Sequences of Real Numbers - (Continued.)
Link Real Analysis Lecture 11 - Infinite Series of Real Numbers
Link Real Analysis Lecture 12 - Series of nonnegative Real Numbers
Link Real Analysis Lecture 13 - Conditional Convergence
Link Real Analysis Lecture 14 - Metric Spaces: Definition and Examples
Link Real Analysis Lecture 15 - Metric Spaces: Examples and Elementary Concepts
Link Real Analysis Lecture 16 - Balls and Spheres
Link Real Analysis Lecture 17 - Open Sets
Link Real Analysis Lecture 18 - Closure Points, Limit Points and isolated Points
Link Real Analysis Lecture 19 - Closed sets
Link Real Analysis Lecture 20 - Sequences in Metric Spaces
Link Real Analysis Lecture 21 - Completeness
Link Real Analysis Lecture 22 - Baire Category Theorem
Link Real Analysis Lecture 23 - Limit and Continuity of a Function defined on a Metric space
Link Real Analysis Lecture 24 - Continuous Functions on a Metric Space
Link Real Analysis Lecture 25 - Uniform Continuity
Link Real Analysis Lecture 26 - Connectedness
Link Real Analysis Lecture 27 - Connected Sets
Link Real Analysis Lecture 28 - Compactness
Link Real Analysis Lecture 29 - Compactness (Continued.)
Link Real Analysis Lecture 30 - Characterizations of Compact Sets
Link Real Analysis Lecture 31 - Continuous Functions on Compact Sets
Link Real Analysis Lecture 32 - Types of Discontinuity
Link Real Analysis Lecture 33 - Differentiation
Link Real Analysis Lecture 34 - Mean Value Theorems
Link Real Analysis Lecture 35 - Mean Value Theorems (Continued.)
Link Real Analysis Lecture 36 - Taylor's Theorem
Link Real Analysis Lecture 37 - Differentiation of Vector Valued Functions
Link Real Analysis Lecture 38 - Integration
Link Real Analysis Lecture 39 - Integrability
Link Real Analysis Lecture 40 - Integrable Functions
Link Real Analysis Lecture 41 - Integrable Functions (Continued.)
Link Real Analysis Lecture 42 - Integration as a Limit of Sum
Link Real Analysis Lecture 43 - Integration and Differentiation
Link Real Analysis Lecture 44 - Integration of Vector Valued Functions
Link Real Analysis Lecture 45 - More Theorems on Integrals
Link Real Analysis Lecture 46 - Sequences and Series of Functions
Link Real Analysis Lecture 47 - Uniform Convergence
Link Real Analysis Lecture 48 - Uniform Convergence and Integration
Link Real Analysis Lecture 49 - Uniform Convergence and Differentiation
Link Real Analysis Lecture 50 - Construction of Everywhere Continuous Nowhere Differentiable Function
Link Real Analysis Lecture 51 - Approximation of a Continuous Function by Polynomials: Weierstrass Theorem
Link Real Analysis Lecture 52 - Equicontinuous family of Functions: Arzela - Ascoli Theorem
Link Dynamic Data Assimilation: An Introduction Lecture 1 - An Overview
Link Dynamic Data Assimilation: An Introduction Lecture 2 - Data Mining, Data assimilation and prediction
Link Dynamic Data Assimilation: An Introduction Lecture 3 - A classification of forecast errors
Link Dynamic Data Assimilation: An Introduction Lecture 4 - Finite Dimensional Vector Space
Link Dynamic Data Assimilation: An Introduction Lecture 5 - Matrices
Link Dynamic Data Assimilation: An Introduction Lecture 6 - Matrices (Continued...)
Link Dynamic Data Assimilation: An Introduction Lecture 7 - Multi-variate Calculus
Link Dynamic Data Assimilation: An Introduction Lecture 8 - Optimization in Finite Dimensional Vector spaces
Link Dynamic Data Assimilation: An Introduction Lecture 9 - Deterministic, Static, linear Inverse (well-posed) Problems
Link Dynamic Data Assimilation: An Introduction Lecture 10 - Deterministic, Static, Linear Inverse (Ill-posed) Problems
Link Dynamic Data Assimilation: An Introduction Lecture 11 - A Geometric View – Projections
Link Dynamic Data Assimilation: An Introduction Lecture 12 - Deterministic, Static, nonlinear Inverse Problems
Link Dynamic Data Assimilation: An Introduction Lecture 13 - On-line Least Squares
Link Dynamic Data Assimilation: An Introduction Lecture 14 - Examples of static inverse problems
Link Dynamic Data Assimilation: An Introduction Lecture 15 - Interlude and a Way Forward
Link Dynamic Data Assimilation: An Introduction Lecture 16 - Matrix Decomposition Algorithms
Link Dynamic Data Assimilation: An Introduction Lecture 17 - Matrix Decomposition Algorithms (Continued...)
Link Dynamic Data Assimilation: An Introduction Lecture 18 - Minimization algorithms
Link Dynamic Data Assimilation: An Introduction Lecture 19 - Minimization algorithms (Continued...)
Link Dynamic Data Assimilation: An Introduction Lecture 20 - Inverse problems in deterministic
Link Dynamic Data Assimilation: An Introduction Lecture 21 - Inverse problems in deterministic (Continued...)
Link Dynamic Data Assimilation: An Introduction Lecture 22 - Forward sensitivity method
Link Dynamic Data Assimilation: An Introduction Lecture 23 - Relation between FSM and 4DVAR
Link Dynamic Data Assimilation: An Introduction Lecture 24 - Statistical Estimation
Link Dynamic Data Assimilation: An Introduction Lecture 25 - Statistical Least Squares
Link Dynamic Data Assimilation: An Introduction Lecture 26 - Maximum Likelihood Method
Link Dynamic Data Assimilation: An Introduction Lecture 27 - Bayesian Estimation
Link Dynamic Data Assimilation: An Introduction Lecture 28 - From Gauss to Kalman-Linear Minimum Variance Estimation
Link Dynamic Data Assimilation: An Introduction Lecture 29 - Initialization Classical Method
Link Dynamic Data Assimilation: An Introduction Lecture 30 - Optimal interpolations
Link Dynamic Data Assimilation: An Introduction Lecture 31 - A Bayesian Formation-3D-VAR methods
Link Dynamic Data Assimilation: An Introduction Lecture 32 - Linear Stochastic Dynamics - Kalman Filter
Link Dynamic Data Assimilation: An Introduction Lecture 33 - Linear Stochastic Dynamics - Kalman Filter (Continued...)
Link Dynamic Data Assimilation: An Introduction Lecture 34 - Linear Stochastic Dynamics - Kalman Filter (Continued...)
Link Dynamic Data Assimilation: An Introduction Lecture 35 - Covariance Square Root Filter
Link Dynamic Data Assimilation: An Introduction Lecture 36 - Nonlinear Filtering
Link Dynamic Data Assimilation: An Introduction Lecture 37 - Ensemble Reduced Rank Filter
Link Dynamic Data Assimilation: An Introduction Lecture 38 - Basic nudging methods
Link Dynamic Data Assimilation: An Introduction Lecture 39 - Deterministic predictability
Link Dynamic Data Assimilation: An Introduction Lecture 40 - Predictability A stochastic view and Summary
Link NOC:An Invitation to Mathematics Lecture 1 - Introduction
Link NOC:An Invitation to Mathematics Lecture 2 - Long division
Link NOC:An Invitation to Mathematics Lecture 3 - Applications of Long division
Link NOC:An Invitation to Mathematics Lecture 4 - Lagrange interpolation
Link NOC:An Invitation to Mathematics Lecture 5 - The 0-1 idea in other contexts - dot and cross product
Link NOC:An Invitation to Mathematics Lecture 6 - Taylors formula
Link NOC:An Invitation to Mathematics Lecture 7 - The Chebyshev polynomials
Link NOC:An Invitation to Mathematics Lecture 8 - Counting number of monomials - several variables
Link NOC:An Invitation to Mathematics Lecture 9 - Permutations, combinations and the binomial theorem
Link NOC:An Invitation to Mathematics Lecture 10 - Combinations with repetition, and counting monomials
Link NOC:An Invitation to Mathematics Lecture 11 - Combinations with restrictions, recurrence relations
Link NOC:An Invitation to Mathematics Lecture 12 - Fibonacci numbers; an identity and a bijective proof
Link NOC:An Invitation to Mathematics Lecture 13 - Permutations and cycle type
Link NOC:An Invitation to Mathematics Lecture 14 - The sign of a permutation, composition of permutations
Link NOC:An Invitation to Mathematics Lecture 15 - Rules for drawing tangle diagrams
Link NOC:An Invitation to Mathematics Lecture 16 - Signs and cycle decompositions
Link NOC:An Invitation to Mathematics Lecture 17 - Sorting lists of numbers, and crossings in tangle diagrams
Link NOC:An Invitation to Mathematics Lecture 18 - Real and integer valued polynomials
Link NOC:An Invitation to Mathematics Lecture 19 - Integer valued polynomials revisited
Link NOC:An Invitation to Mathematics Lecture 20 - Functions on the real line, continuity
Link NOC:An Invitation to Mathematics Lecture 21 - The intermediate value property
Link NOC:An Invitation to Mathematics Lecture 22 - Visualizing functions
Link NOC:An Invitation to Mathematics Lecture 23 - Functions on the plane, Rigid motions
Link NOC:An Invitation to Mathematics Lecture 24 - More examples of functions on the plane, dilations
Link NOC:An Invitation to Mathematics Lecture 25 - Composition of functions
Link NOC:An Invitation to Mathematics Lecture 26 - Affine and Linear transformations
Link NOC:An Invitation to Mathematics Lecture 27 - Length and Area dilation, the derivative
Link NOC:An Invitation to Mathematics Lecture 28 - Examples-I
Link NOC:An Invitation to Mathematics Lecture 29 - Examples-II
Link NOC:An Invitation to Mathematics Lecture 30 - Linear equations, Lagrange interpolation revisited
Link NOC:An Invitation to Mathematics Lecture 31 - Completed Matrices in combinatorics
Link NOC:An Invitation to Mathematics Lecture 32 - Polynomials acting on matrices
Link NOC:An Invitation to Mathematics Lecture 33 - Divisibility, prime numbers
Link NOC:An Invitation to Mathematics Lecture 34 - Congruences, Modular arithmetic
Link NOC:An Invitation to Mathematics Lecture 35 - The Chinese remainder theorem
Link NOC:An Invitation to Mathematics Lecture 36 - The Euclidean algorithm, the 0-1 idea and the Chinese remainder theorem
Link Advanced Complex Analysis Lecture 1 - Fundamental Theorems Connected with Zeros of Analytic Functions
Link Advanced Complex Analysis Lecture 2 - The Argument (Counting) Principle, Rouche's Theorem and The Fundamental Theorem of Algebra
Link Advanced Complex Analysis Lecture 3 - Morera's Theorem and Normal Limits of Analytic Functions
Link Advanced Complex Analysis Lecture 4 - Hurwitz's Theorem and Normal Limits of Univalent Functions
Link Advanced Complex Analysis Lecture 5 - Local Constancy of Multiplicities of Assumed Values
Link Advanced Complex Analysis Lecture 6 - The Open Mapping Theorem
Link Advanced Complex Analysis Lecture 7 - Introduction to the Inverse Function Theorem
Link Advanced Complex Analysis Lecture 8 - Completion of the Proof of the Inverse Function Theorem: The Integral Inversion Formula for the Inverse Function
Link Advanced Complex Analysis Lecture 9 - Univalent Analytic Functions have never-zero Derivatives and are Analytic Isomorphisms
Link Advanced Complex Analysis Lecture 10 - Introduction to the Implicit Function Theorem
Link Advanced Complex Analysis Lecture 11 - Proof of the Implicit Function Theorem: Topological Preliminaries
Link Advanced Complex Analysis Lecture 12 - Proof of the Implicit Function Theorem: The Integral Formula for & Analyticity of the Explicit Function
Link Advanced Complex Analysis Lecture 13 - Doing Complex Analysis on a Real Surface: The Idea of a Riemann Surface
Link Advanced Complex Analysis Lecture 14 - F(z,w)=0 is naturally a Riemann Surface
Link Advanced Complex Analysis Lecture 15 - Constructing the Riemann Surface for the Complex Logarithm
Link Advanced Complex Analysis Lecture 16 - Constructing the Riemann Surface for the m-th root function
Link Advanced Complex Analysis Lecture 17 - The Riemann Surface for the functional inverse of an analytic mapping at a critical point
Link Advanced Complex Analysis Lecture 18 - The Algebraic nature of the functional inverses of an analytic mapping at a critical point
Link Advanced Complex Analysis Lecture 19 - The Idea of a Direct Analytic Continuation or an Analytic Extension
Link Advanced Complex Analysis Lecture 20 - General or Indirect Analytic Continuation and the Lipschitz Nature of the Radius of Convergence
Link Advanced Complex Analysis Lecture 21 - Analytic Continuation Along Paths via Power Series Part A
Link Advanced Complex Analysis Lecture 22 - Analytic Continuation Along Paths via Power Series Part B
Link Advanced Complex Analysis Lecture 23 - Continuity of Coefficients occurring in Families of Power Series defining Analytic Continuations along Paths
Link Advanced Complex Analysis Lecture 24 - Analytic Continuability along Paths: Dependence on the Initial Function and on the Path - First Version of the Monodromy Theorem
Link Advanced Complex Analysis Lecture 25 - Maximal Domains of Direct and Indirect Analytic Continuation: Second Version of the Monodromy Theorem
Link Advanced Complex Analysis Lecture 26 - Deducing the Second (Simply Connected) Version of the Monodromy Theorem from the First (Homotopy) Version
Link Advanced Complex Analysis Lecture 27 - Existence and Uniqueness of Analytic Continuations on Nearby Paths
Link Advanced Complex Analysis Lecture 28 - Proof of the First (Homotopy) Version of the Monodromy Theorem
Link Advanced Complex Analysis Lecture 29 - Proof of the Algebraic Nature of Analytic Branches of the Functional Inverse of an Analytic Function at a Critical Point
Link Advanced Complex Analysis Lecture 30 - The Mean-Value Property, Harmonic Functions and the Maximum Principle
Link Advanced Complex Analysis Lecture 31 - Proofs of Maximum Principles and Introduction to Schwarz Lemma
Link Advanced Complex Analysis Lecture 32 - Proof of Schwarz Lemma and Uniqueness of Riemann Mappings
Link Advanced Complex Analysis Lecture 33 - Reducing Existence of Riemann Mappings to Hyperbolic Geometry of Sub-domains of the Unit Disc
Link Advanced Complex Analysis Lecture 34 - Differential or Infinitesimal Schwarzs Lemma, Picks Lemma, Hyperbolic Arclengths, Metric and Geodesics on the Unit Disc
Link Advanced Complex Analysis Lecture 35 - Differential or Infinitesimal Schwarzs Lemma, Picks Lemma, Hyperbolic Arclengths, Metric and Geodesics on the Unit Disc
Link Advanced Complex Analysis Lecture 36 - Hyperbolic Geodesics for the Hyperbolic Metric on the Unit Disc
Link Advanced Complex Analysis Lecture 37 - Schwarz-Pick Lemma for the Hyperbolic Metric on the Unit Disc
Link Advanced Complex Analysis Lecture 38 - Arzela-Ascoli Theorem: Under Uniform Boundedness, Equicontinuity and Uniform Sequential Compactness are Equivalent
Link Advanced Complex Analysis Lecture 39 - Completion of the Proof of the Arzela-Ascoli Theorem and Introduction to Montels Theorem
Link Advanced Complex Analysis Lecture 40 - The Proof of Montels Theorem
Link Advanced Complex Analysis Lecture 41 - The Candidate for a Riemann Mapping
Link Advanced Complex Analysis Lecture 42 - Completion of Proof of The Riemann Mapping Theorem
Link Advanced Complex Analysis Lecture 43 - Completion of Proof of The Riemann Mapping Theorem
Link NOC:Discrete Mathematics Lecture 1 - Course Introduction
Link NOC:Discrete Mathematics Lecture 2 - Sets, Relations and Functions
Link NOC:Discrete Mathematics Lecture 3 - Propositional Logic and Predicate Logic
Link NOC:Discrete Mathematics Lecture 4 - Propositional Logic and Predicate Logic (Part 2)
Link NOC:Discrete Mathematics Lecture 5 - Elementary Number Theory
Link NOC:Discrete Mathematics Lecture 6 - Formal Proofs
Link NOC:Discrete Mathematics Lecture 7 - Direct Proofs
Link NOC:Discrete Mathematics Lecture 8 - Case Study
Link NOC:Discrete Mathematics Lecture 9 - Case Study (Part 2)
Link NOC:Discrete Mathematics Lecture 10 - Sets, Relations, Function and Logic
Link NOC:Discrete Mathematics Lecture 11 - Proof by Contradiction (Part 1)
Link NOC:Discrete Mathematics Lecture 12 - Proof by Contradiction (Part 2)
Link NOC:Discrete Mathematics Lecture 13 - Proof by Contraposition
Link NOC:Discrete Mathematics Lecture 14 - Proof by Counter Example
Link NOC:Discrete Mathematics Lecture 15 - Mathematical Induction (Part 1)
Link NOC:Discrete Mathematics Lecture 16 - Mathematical Induction (Part 2)
Link NOC:Discrete Mathematics Lecture 17 - Mathematical Induction (Part 3)
Link NOC:Discrete Mathematics Lecture 18 - Mathematical Induction (Part 4)
Link NOC:Discrete Mathematics Lecture 19 - Mathematical Induction (Part 5)
Link NOC:Discrete Mathematics Lecture 20 - Mathematical Induction (Part 6)
Link NOC:Discrete Mathematics Lecture 21 - Mathematical Induction (Part 7)
Link NOC:Discrete Mathematics Lecture 22 - Mathematical Induction (Part 8)
Link NOC:Discrete Mathematics Lecture 23 - Introduction to Graph Theory
Link NOC:Discrete Mathematics Lecture 24 - Handshake Problem
Link NOC:Discrete Mathematics Lecture 25 - Tournament Problem
Link NOC:Discrete Mathematics Lecture 26 - Tournament Problem (Part 2)
Link NOC:Discrete Mathematics Lecture 27 - Ramsey Problem
Link NOC:Discrete Mathematics Lecture 28 - Ramsey Problem (Part 2)
Link NOC:Discrete Mathematics Lecture 29 - Properties of Graphs
Link NOC:Discrete Mathematics Lecture 30 - Problem 1
Link NOC:Discrete Mathematics Lecture 31 - Problem 2
Link NOC:Discrete Mathematics Lecture 32 - Problem 3 & 4
Link NOC:Discrete Mathematics Lecture 33 - Counting for Selection
Link NOC:Discrete Mathematics Lecture 34 - Counting for Distribution
Link NOC:Discrete Mathematics Lecture 35 - Counting for Distribution (Part 2)
Link NOC:Discrete Mathematics Lecture 36 - Some Counting Problems
Link NOC:Discrete Mathematics Lecture 37 - Counting using Recurrence Relations
Link NOC:Discrete Mathematics Lecture 38 - Counting using Recurrence Relations (Part 2)
Link NOC:Discrete Mathematics Lecture 39 - Solving Recurrence Relations (Part 1)
Link NOC:Discrete Mathematics Lecture 40 - Solving Recurrence Relations (Part 2)
Link NOC:Discrete Mathematics Lecture 41 - Asymptotic Relations (Part 1)
Link NOC:Discrete Mathematics Lecture 42 - Asymptotic Relations (Part 2)
Link NOC:Discrete Mathematics Lecture 43 - Asymptotic Relations (Part 3)
Link NOC:Discrete Mathematics Lecture 44 - Asymptotic Relations (Part 4)
Link NOC:Discrete Mathematics Lecture 45 - Generating Functions (Part 1)
Link NOC:Discrete Mathematics Lecture 46 - Generating Functions (Part 2)
Link NOC:Discrete Mathematics Lecture 47 - Generating Functions (Part 3)
Link NOC:Discrete Mathematics Lecture 48 - Generating Functions (Part 4)
Link NOC:Discrete Mathematics Lecture 49 - Proof Techniques
Link NOC:Discrete Mathematics Lecture 50 - Modeling: Graph Theory and Linear Programming
Link NOC:Discrete Mathematics Lecture 51 - Combinatorics
Link Advanced Complex Analysis - Part 2 Lecture 1 - Properties of the Image of an Analytic Function - Introduction to the Picard Theorems
Link Advanced Complex Analysis - Part 2 Lecture 2 - Recalling Singularities of Analytic Functions - Non-isolated and Isolated Removable, Pole and Essential Singularities
Link Advanced Complex Analysis - Part 2 Lecture 3 - Recalling Riemann's Theorem on Removable Singularities
Link Advanced Complex Analysis - Part 2 Lecture 4 - Casorati-Weierstrass Theorem; Dealing with the Point at Infinity -- Riemann Sphere and Riemann Stereographic Projection
Link Advanced Complex Analysis - Part 2 Lecture 5 - Neighborhood of Infinity, Limit at Infinity and Infinity as an Isolated Singularity
Link Advanced Complex Analysis - Part 2 Lecture 6 - Studying Infinity - Formulating Epsilon-Delta Definitions for Infinite Limits and Limits at Infinity
Link Advanced Complex Analysis - Part 2 Lecture 7 - When is a function analytic at infinity ?
Link Advanced Complex Analysis - Part 2 Lecture 8 - Laurent Expansion at Infinity and Riemann\'s Removable Singularities Theorem for the Point at Infinity
Link Advanced Complex Analysis - Part 2 Lecture 9 - The Generalized Liouville Theorem - Little Brother of Little Picard and Analogue of Casorati-Weierstrass; Failure of Cauchy\'s Theorem at Infinity
Link Advanced Complex Analysis - Part 2 Lecture 10 - Morera\'s Theorem at Infinity, Infinity as a Pole and Behaviour at Infinity of Rational and Meromorphic Functions
Link Advanced Complex Analysis - Part 2 Lecture 11 - Residue at Infinity and Introduction to the Residue Theorem for the Extended Complex Plane - Residue Theorem for the Point at Infinity
Link Advanced Complex Analysis - Part 2 Lecture 12 - Proofs of Two Avatars of the Residue Theorem for the Extended Complex Plane and Applications of the Residue at Infinity
Link Advanced Complex Analysis - Part 2 Lecture 13 - Infinity as an Essential Singularity and Transcendental Entire Functions
Link Advanced Complex Analysis - Part 2 Lecture 14 - Meromorphic Functions on the Extended Complex Plane are Precisely Quotients of Polynomials
Link Advanced Complex Analysis - Part 2 Lecture 15 - The Ubiquity of Meromorphic Functions - The Nerves of the Geometric Network Bridging Algebra, Analysis and Topology
Link Advanced Complex Analysis - Part 2 Lecture 16 - Continuity of Meromorphic Functions at Poles and Topologies of Spaces of Functions
Link Advanced Complex Analysis - Part 2 Lecture 17 - Why Normal Convergence, but Not Globally Uniform Convergence, is the Inevitable in Complex Analysis
Link Advanced Complex Analysis - Part 2 Lecture 18 - Measuring Distances to Infinity, the Function Infinity and Normal Convergence of Holomorphic Functions in the Spherical Metric
Link Advanced Complex Analysis - Part 2 Lecture 19 - The Invariance Under Inversion of the Spherical Metric on the Extended Complex Plane
Link Advanced Complex Analysis - Part 2 Lecture 20 - Introduction to Hurwitz\'s Theorem for Normal Convergence of Holomorphic Functions in the Spherical Metric
Link Advanced Complex Analysis - Part 2 Lecture 21 - Completion of Proof of Hurwitz\'s Theorem for Normal Limits of Analytic Functions in the Spherical Metric
Link Advanced Complex Analysis - Part 2 Lecture 22 - Hurwitz\'s Theorem for Normal Limits of Meromorphic Functions in the Spherical Metric
Link Advanced Complex Analysis - Part 2 Lecture 23 - What could the Derivative of a Meromorphic Function Relative to the Spherical Metric Possibly Be ?
Link Advanced Complex Analysis - Part 2 Lecture 24 - Defining the Spherical Derivative of a Meromorphic Function
Link Advanced Complex Analysis - Part 2 Lecture 25 - Well-definedness of the Spherical Derivative of a Meromorphic Function at a Pole and Inversion-invariance of the Spherical Derivative
Link Advanced Complex Analysis - Part 2 Lecture 26 - Topological Preliminaries - Translating Compactness into Boundedness
Link Advanced Complex Analysis - Part 2 Lecture 27 - Introduction to the Arzela-Ascoli Theorem - Passing from abstract Compactness to verifiable Equicontinuity
Link Advanced Complex Analysis - Part 2 Lecture 28 - Proof of the Arzela-Ascoli Theorem for Functions - Abstract Compactness Implies Equicontinuity
Link Advanced Complex Analysis - Part 2 Lecture 29 - Proof of the Arzela-Ascoli Theorem for Functions - Equicontinuity Implies Compactness
Link Advanced Complex Analysis - Part 2 Lecture 30 - Introduction to the Montel Theorem - the Holomorphic Avatar of the Arzela-Ascoli Theorem & Why you get Equicontinuity for Free
Link Advanced Complex Analysis - Part 2 Lecture 31 - Completion of Proof of the Montel Theorem - the Holomorphic Avatar of the Arzela-Ascoli Theorem
Link Advanced Complex Analysis - Part 2 Lecture 32 - Introduction to Marty\'s Theorem - the Meromorphic Avatar of the Montel & Arzela-Ascoli Theorems
Link Advanced Complex Analysis - Part 2 Lecture 33 - Proof of one direction of Marty\'s Theorem - the Meromorphic Avatar of the Montel & Arzela-Ascoli Theorems - Normal Uniform Boundedness of Spherical Derivatives Implies Normal Sequential Compactness
Link Advanced Complex Analysis - Part 2 Lecture 34 - Proof of the other direction of Marty\'s Theorem - the Meromorphic Avatar of the Montel & Arzela-Ascoli Theorems - Normal Sequential Compactness Implies Normal Uniform Boundedness of Spherical Derivatives
Link Advanced Complex Analysis - Part 2 Lecture 35 - Normal Convergence at Infinity and Hurwitz\'s Theorems for Normal Limits of Analytic and Meromorphic Functions at Infinity
Link Advanced Complex Analysis - Part 2 Lecture 36 - Normal Sequential Compactness, Normal Uniform Boundedness and Montel\'s & Marty\'s Theorems at Infinity
Link Advanced Complex Analysis - Part 2 Lecture 37 - Local Analysis of Normality and the Zooming Process - Motivation for Zalcman\'s Lemma
Link Advanced Complex Analysis - Part 2 Lecture 38 - Characterizing Normality at a Point by the Zooming Process and the Motivation for Zalcman\'s Lemma
Link Advanced Complex Analysis - Part 2 Lecture 39 - Local Analysis of Normality and the Zooming Process - Motivation for Zalcman\'s Lemma
Link Advanced Complex Analysis - Part 2 Lecture 40 - Montel\'s Deep Theorem - The Fundamental Criterion for Normality or Fundamental Normality Test based on Omission of Values
Link Advanced Complex Analysis - Part 2 Lecture 41 - Proofs of the Great and Little Picard Theorems
Link Advanced Complex Analysis - Part 2 Lecture 42 - Royden\'s Theorem on Normality Based On Growth Of Derivatives
Link Advanced Complex Analysis - Part 2 Lecture 43 - Schottky\'s Theorem - Uniform Boundedness from a Point to a Neighbourhood & Problem Solving Session
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 1 - What is Algebraic Geometry?
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 2 - The Zariski Topology and Affine Space
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 3 - Going back and forth between subsets and ideals
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 4 - Irreducibility in the Zariski Topology
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 5 - Irreducible Closed Subsets Correspond to Ideals Whose Radicals are Prime
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 6 - Understanding the Zariski Topology on the Affine Line; The Noetherian property in Topology and in Algebra
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 7 - Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 8 - Topological Dimension, Krull Dimension and Heights of Prime Ideals
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 9 - The Ring of Polynomial Functions on an Affine Variety
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 10 - Geometric Hypersurfaces are Precisely Algebraic Hypersurfaces
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 11 - Why Should We Study Affine Coordinate Rings of Functions on Affine Varieties ?
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 12 - Capturing an Affine Variety Topologically From the Maximal Spectrum of its Ring of Functions
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 13 - Analyzing Open Sets and Basic Open Sets for the Zariski Topology
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 14 - The Ring of Functions on a Basic Open Set in the Zariski Topology
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 15 - Quasi-Compactness in the Zariski Topology; Regularity of a Function at a point of an Affine Variety
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 16 - What is a Global Regular Function on a Quasi-Affine Variety?
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 17 - Characterizing Affine Varieties; Defining Morphisms between Affine or Quasi-Affine Varieties
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 18 - Translating Morphisms into Affines as k-Algebra maps and the Grand Hilbert Nullstellensatz
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 19 - Morphisms into an Affine Correspond to k-Algebra Homomorphisms from its Coordinate Ring of Functions
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 20 - The Coordinate Ring of an Affine Variety Determines the Affine Variety and is Intrinsic to it
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 21 - Automorphisms of Affine Spaces and of Polynomial Rings - The Jacobian Conjecture; The Punctured Plane is Not Affine
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 22 - The Various Avatars of Projective n-space
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 23 - Gluing (n+1) copies of Affine n-Space to Produce Projective n-space in Topology, Manifold Theory and Algebraic Geometry; The Key to the Definition of a Homogeneous Ideal
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 24 - Translating Projective Geometry into Graded Rings and Homogeneous Ideals
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 25 - Expanding the Category of Varieties to Include Projective and Quasi-Projective Varieties
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 26 - Translating Homogeneous Localisation into Geometry and Back
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 27 - Adding a Variable is Undone by Homogenous Localization - What is the Geometric Significance of this Algebraic Fact ?
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 28 - Doing Calculus Without Limits in Geometry ?
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 29 - The Birth of Local Rings in Geometry and in Algebra
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 30 - The Formula for the Local Ring at a Point of a Projective Variety Or Playing with Localisations, Quotients, Homogenisation and Dehomogenisation !
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 31 - The Field of Rational Functions or Function Field of a Variety - The Local Ring at the Generic Point
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 32 - Fields of Rational Functions or Function Fields of Affine and Projective Varieties and their Relationships with Dimensions
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 33 - Global Regular Functions on Projective Varieties are Simply the Constants
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 34 - The d-Uple Embedding and the Non-Intrinsic Nature of the Homogeneous Coordinate Ring of a Projective Variety
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 35 - The Importance of Local Rings - A Morphism is an Isomorphism if it is a Homeomorphism and Induces Isomorphisms at the Level of Local Rings
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 36 - The Importance of Local Rings - A Rational Function in Every Local Ring is Globally Regular
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 37 - Geometric Meaning of Isomorphism of Local Rings - Local Rings are Almost Global
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 38 - Local Ring Isomorphism,Equals Function Field Isomorphism, Equals Birationality
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 39 - Why Local Rings Provide Calculus Without Limits for Algebraic Geometry Pun Intended!
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 40 - How Local Rings Detect Smoothness or Nonsingularity in Algebraic Geometry
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 41 - Any Variety is a Smooth Manifold with or without Non-Smooth Boundary
Link Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity Lecture 42 - Any Variety is a Smooth Hypersurface On an Open Dense Subset
Link NOC:Introduction to Commutative Algebra Lecture 1 - Review of Ring Theory
Link NOC:Introduction to Commutative Algebra Lecture 2 - Review of Ring Theory (Continued...)
Link NOC:Introduction to Commutative Algebra Lecture 3 - Ideals in commutative rings
Link NOC:Introduction to Commutative Algebra Lecture 4 - Operations on ideals
Link NOC:Introduction to Commutative Algebra Lecture 5 - Properties of prime ideals
Link NOC:Introduction to Commutative Algebra Lecture 6 - Colon and Radical of ideals
Link NOC:Introduction to Commutative Algebra Lecture 7 - Radicals, extension and contraction of ideals
Link NOC:Introduction to Commutative Algebra Lecture 8 - Modules and homomorphisms
Link NOC:Introduction to Commutative Algebra Lecture 9 - Isomorphism theorems and Operations on modules
Link NOC:Introduction to Commutative Algebra Lecture 10 - Operations on modules (Continued...)
Link NOC:Introduction to Commutative Algebra Lecture 11 - Module homomorphism and determinant trick
Link NOC:Introduction to Commutative Algebra Lecture 12 - Nakayama’s lemma and exact sequences
Link NOC:Introduction to Commutative Algebra Lecture 13 - Exact sequences (Continued...)
Link NOC:Introduction to Commutative Algebra Lecture 14 - Homomorphisms and Tensor products
Link NOC:Introduction to Commutative Algebra Lecture 15 - Properties of tensor products
Link NOC:Introduction to Commutative Algebra Lecture 16 - Properties of tensor products (Continued...)
Link NOC:Introduction to Commutative Algebra Lecture 17 - Tensor product of Algebras
Link NOC:Introduction to Commutative Algebra Lecture 18 - Localization
Link NOC:Introduction to Commutative Algebra Lecture 19 - Localization (Continued...)
Link NOC:Introduction to Commutative Algebra Lecture 20 - Local properties
Link NOC:Introduction to Commutative Algebra Lecture 21 - Further properties of localization
Link NOC:Introduction to Commutative Algebra Lecture 22 - Intergral dependence
Link NOC:Introduction to Commutative Algebra Lecture 23 - Integral extensions
Link NOC:Introduction to Commutative Algebra Lecture 24 - Lying over and Going-up theorems
Link NOC:Introduction to Commutative Algebra Lecture 25 - Going-down theorem
Link NOC:Introduction to Commutative Algebra Lecture 26 - Going-down theorem (Continued...)
Link NOC:Introduction to Commutative Algebra Lecture 27 - Chain conditions
Link NOC:Introduction to Commutative Algebra Lecture 28 - Noetherian and Artinian modules
Link NOC:Introduction to Commutative Algebra Lecture 29 - Properties of Noetherian and Artinian modules, Composition Series
Link NOC:Introduction to Commutative Algebra Lecture 30 - Further properties of Noetherian and Artinian modules and rings
Link NOC:Introduction to Commutative Algebra Lecture 31 - Hilbert basis theorem and Primary decomposition
Link NOC:Introduction to Commutative Algebra Lecture 32 - Primary decomposition (Continued...)
Link NOC:Introduction to Commutative Algebra Lecture 33 - Uniqueness of primary decomposition
Link NOC:Introduction to Commutative Algebra Lecture 34 - 2nd Uniqueness theorem, Artinian rings
Link NOC:Introduction to Commutative Algebra Lecture 35 - Properties of Artinian rings
Link NOC:Introduction to Commutative Algebra Lecture 36 - Structure Theorem of Artinian rings
Link NOC:Introduction to Commutative Algebra Lecture 37 - Noether Normalization
Link NOC:Introduction to Commutative Algebra Lecture 38 - Hilberts Nullstellensatz
Link NOC:Differential Equations Lecture 1 - Introduction to Ordinary Differential Equations (ODE)
Link NOC:Differential Equations Lecture 2 - Methods for First Order ODE's - Homogeneous Equations
Link NOC:Differential Equations Lecture 3 - Methods for First order ODE's - Exact Equations
Link NOC:Differential Equations Lecture 4 - Methods for First Order ODE's - Exact Equations (Continued...)
Link NOC:Differential Equations Lecture 5 - Methods for First order ODE's - Reducible to Exact Equations
Link NOC:Differential Equations Lecture 6 - Methods for First order ODE's - Reducible to Exact Equations (Continued...)
Link NOC:Differential Equations Lecture 7 - Non-Exact Equations - Finding Integrating Factors
Link NOC:Differential Equations Lecture 8 - Linear First Order ODE and Bernoulli's Equation
Link NOC:Differential Equations Lecture 9 - Introduction to Second order ODE's
Link NOC:Differential Equations Lecture 10 - Properties of solutions of second order homogeneous ODE's
Link NOC:Differential Equations Lecture 11 - Abel's formula to find the other solution
Link NOC:Differential Equations Lecture 12 - Abel's formula - Demonstration
Link NOC:Differential Equations Lecture 13 - Second Order ODE's with constant coefficients
Link NOC:Differential Equations Lecture 14 - Euler - Cauchy equation
Link NOC:Differential Equations Lecture 15 - Non homogeneous ODEs Variation of Parameters
Link NOC:Differential Equations Lecture 16 - Method of undetermined coefficients
Link NOC:Differential Equations Lecture 17 - Demonstration of Method of undetermined coefficients
Link NOC:Differential Equations Lecture 18 - Power Series and its properties
Link NOC:Differential Equations Lecture 19 - Power Series Solutions to Second Order ODE's
Link NOC:Differential Equations Lecture 20 - Power Series Solutions (Continued...)
Link NOC:Differential Equations Lecture 21 - Legendre Differential Equation
Link NOC:Differential Equations Lecture 22 - Legendre Polynomials
Link NOC:Differential Equations Lecture 23 - Properties of Legendre Polynomials
Link NOC:Differential Equations Lecture 24 - Power series solutions around a regular singular point
Link NOC:Differential Equations Lecture 25 - Frobenius method of solutions
Link NOC:Differential Equations Lecture 26 - Frobenius method of solutions (Continued...)
Link NOC:Differential Equations Lecture 27 - Examples on Frobenius method
Link NOC:Differential Equations Lecture 28 - Bessel differential equation
Link NOC:Differential Equations Lecture 29 - Frobenius solutions for Bessel Equation
Link NOC:Differential Equations Lecture 30 - Properties of Bessel functions
Link NOC:Differential Equations Lecture 31 - Properties of Bessel functions (Continued...)
Link NOC:Differential Equations Lecture 32 - Introduction to Sturm-Liouville theory
Link NOC:Differential Equations Lecture 33 - Sturm-Liouville Problems
Link NOC:Differential Equations Lecture 34 - Regular Sturm-Liouville problem
Link NOC:Differential Equations Lecture 35 - Periodic and singular Sturm-Liouville Problems
Link NOC:Differential Equations Lecture 36 - Generalized Fourier series
Link NOC:Differential Equations Lecture 37 - Examples of Sturm-Liouville systems
Link NOC:Differential Equations Lecture 38 - Examples of Sturm-Liouville systems (Continued...)
Link NOC:Differential Equations Lecture 39 - Examples of regular Sturm-Liouville systems
Link NOC:Differential Equations Lecture 40 - Second order linear PDEs
Link NOC:Differential Equations Lecture 41 - Classification of second order linear PDEs
Link NOC:Differential Equations Lecture 42 - Reduction to canonical form for equations with constant coefficients
Link NOC:Differential Equations Lecture 43 - Reduction to canonical form for equations with variable coefficients
Link NOC:Differential Equations Lecture 44 - Reduction to Normal form-More examples
Link NOC:Differential Equations Lecture 45 - D'Alembert solution for wave equation
Link NOC:Differential Equations Lecture 46 - Uniqueness of solutions for wave equation
Link NOC:Differential Equations Lecture 47 - Vibration of a semi-infinite string
Link NOC:Differential Equations Lecture 48 - Vibration of a finite string
Link NOC:Differential Equations Lecture 49 - Finite length string vibrations
Link NOC:Differential Equations Lecture 50 - Finite length string vibrations (Continued...)
Link NOC:Differential Equations Lecture 51 - Non-homogeneous wave equation
Link NOC:Differential Equations Lecture 52 - Vibration of a circular drum
Link NOC:Differential Equations Lecture 53 - Solutions of heat equation-Properties
Link NOC:Differential Equations Lecture 54 - Temperature in an infinite rod
Link NOC:Differential Equations Lecture 55 - Temperature in a semi-infinite rod
Link NOC:Differential Equations Lecture 56 - Non-homogeneous heat equation
Link NOC:Differential Equations Lecture 57 - Temperature in a finite rod
Link NOC:Differential Equations Lecture 58 - Temperature in a finite rod with insulated ends
Link NOC:Differential Equations Lecture 59 - Laplace equation over a rectangle
Link NOC:Differential Equations Lecture 60 - Laplace equation over a rectangle with flux boundary conditions
Link NOC:Differential Equations Lecture 61 - Laplace equation over circular domains
Link NOC:Differential Equations Lecture 62 - Laplace equation over circular Sectors
Link NOC:Differential Equations Lecture 63 - Uniqueness of the boundary value problems for Laplace equation
Link NOC:Differential Equations Lecture 64 - Conclusions
Link NOC:Numerical Analysis Lecture 1 - Lesson 1 - Introduction, Motivation
Link NOC:Numerical Analysis Lecture 2 - Lesson 2 - Part 1 - Mathematical Preliminaries, Polynomial Interpolation - 1
Link NOC:Numerical Analysis Lecture 3 - Lesson 2 - Part 2 - Mathematical Preliminaries, Polynomial Interpolation - 1
Link NOC:Numerical Analysis Lecture 4 - Lesson 3 - Part 1 - Polynomial Interpolation - 2
Link NOC:Numerical Analysis Lecture 5 - Lesson 3 - Part 2 - Polynomial Interpolation - 2
Link NOC:Numerical Analysis Lecture 6 - Lesson 4 - Polynomial Interpolation - 3
Link NOC:Numerical Analysis Lecture 7 - Lagrange Interpolation Polynomial, Error In Interpolation - 1
Link NOC:Numerical Analysis Lecture 8 - Lagrange Interpolation Polynomial, Error In Interpolation - 1
Link NOC:Numerical Analysis Lecture 9 - Error In Interpolation - 2
Link NOC:Numerical Analysis Lecture 10 - Error In Interpolation - 2
Link NOC:Numerical Analysis Lecture 11 - Divide Difference Interpolation Polynomial
Link NOC:Numerical Analysis Lecture 12 - Properties Of Divided Difference, Introduction To Inverse Interpolation
Link NOC:Numerical Analysis Lecture 13 - Properties Of Divided Difference, Introduction To Inverse Interpolation
Link NOC:Numerical Analysis Lecture 14 - Inverse Interpolation, Remarks on Polynomial Interpolation
Link NOC:Numerical Analysis Lecture 15 - Numerical Differentiation - 1 Taylor Series Method
Link NOC:Numerical Analysis Lecture 16 - Numerical Differentiation - 2 Method Of Undetermined Coefficients
Link NOC:Numerical Analysis Lecture 17 - Numerical Differentiation - 2 Polynomial Interpolation Method
Link NOC:Numerical Analysis Lecture 18 - Numerical Differentiation - 3 Operator Method Numerical Integration - 1
Link NOC:Numerical Analysis Lecture 19 - Numerical Integration - 2 Error in Trapezoidal Rule Simpson's Rule
Link NOC:Numerical Analysis Lecture 20 - Numerical Integration - 3 Error in Simpson's Rule Composite in Trapezoidal Rule, Error
Link NOC:Numerical Analysis Lecture 21 - Numerical Integration - 4 Composite Simpsons Rule , Error Method of Undetermined Coefficients
Link NOC:Numerical Analysis Lecture 22 - Numerical Integration - 5 Gaussian Quadrature (Two-Point Method)
Link NOC:Numerical Analysis Lecture 23 - Numerical Integrature - 5 Gaussian Quadrature (Three-Point Method) Adaptive Quadrature
Link NOC:Numerical Analysis Lecture 24 - Numerical Solution of Ordinary Differential Equation (ODE) - 1
Link NOC:Numerical Analysis Lecture 25 - Numerical Solution Of ODE-2 Stability , Single-Step Methods - 1 Taylor Series Method
Link NOC:Numerical Analysis Lecture 26 - Numerical Solution Of ODE-3 Examples of Taylor Series Method Euler's Method
Link NOC:Numerical Analysis Lecture 27 - Numerical Solution Of ODE-4 Runge-Kutta Methods
Link NOC:Numerical Analysis Lecture 28 - Numerical Solution Of ODE-5 Example For RK-Method Of Order 2 Modified Euler's Method
Link NOC:Numerical Analysis Lecture 29 - Numerical Solution Of Ordinary Differential Equations - 6 Predictor-Corrector Methods (Adam-Moulton)
Link NOC:Numerical Analysis Lecture 30 - Numerical Solution Of Ordinary Differential Equations - 7
Link NOC:Numerical Analysis Lecture 31 - Numerical Solution Of Ordinary Differential Equations - 8
Link NOC:Numerical Analysis Lecture 32 - Numerical Solution of Ordinary Differential Equations - 9
Link NOC:Numerical Analysis Lecture 33 - Numerical Solution of Ordinary Differential Equations - 10
Link NOC:Numerical Analysis Lecture 34 - Numerical Solution of Ordinary Differential Equations - 11
Link NOC:Numerical Analysis Lecture 35 - Root Finding Methods - 1 The Bisection Method - 1
Link NOC:Numerical Analysis Lecture 36 - Root Finding Methods - 2 The Bisection Method - 2
Link NOC:Numerical Analysis Lecture 37 - Root Finding Methods - 3 Newton-Raphson Method - 1
Link NOC:Numerical Analysis Lecture 38 - Root Finding Methods - 4 Newton-Raphson Method - 2
Link NOC:Numerical Analysis Lecture 39 - Root Finding Methods - 5 Secant Method, Method Of false Position
Link NOC:Numerical Analysis Lecture 40 - Root Finding Methods - 6 Fixed Point Methods - 1
Link NOC:Numerical Analysis Lecture 41 - Root Finding Methods - 7 Fixed Point Methods - 2
Link NOC:Numerical Analysis Lecture 42 - Root Finding Methods - 8 Fixed Point Iteration Methods - 3
Link NOC:Numerical Analysis Lecture 43 - Root Finding Methods - 9 Practice Problems
Link NOC:Numerical Analysis Lecture 44 - Solution Of Linear Systems Of Equations - 1
Link NOC:Numerical Analysis Lecture 45 - Solution Of Linear Systems Of Equations - 2
Link NOC:Numerical Analysis Lecture 46 - Solution Of Linear Systems Of Equations - 3
Link NOC:Numerical Analysis Lecture 47 - Solution Of Linear Systems Of Equations - 4
Link NOC:Numerical Analysis Lecture 48 - Solution Of Linear Systems Of Equations - 5
Link NOC:Numerical Analysis Lecture 49 - Solution Of Linear Systems Of Equations - 6
Link NOC:Numerical Analysis Lecture 50 - Solution Of Linear Systems Of Equations - 7
Link NOC:Numerical Analysis Lecture 51 - Solution Of Linear Systems Of Equations - 8 Iterative Method - 1
Link NOC:Numerical Analysis Lecture 52 - Solution Of Linear Systems Of Equations - 8 Iterative Method - 2
Link NOC:Numerical Analysis Lecture 53 - Matrix Eigenvalue Problems - 2 Power Method - 2
Link NOC:Numerical Analysis Lecture 54 - Practice Problems
Link NOC:Graph Theory Lecture 1 - Basic Concepts
Link NOC:Graph Theory Lecture 2 - Basic Concepts - 1
Link NOC:Graph Theory Lecture 3 - Eulerian and Hamiltonian Graph
Link NOC:Graph Theory Lecture 4 - Eulerian and Hamiltonian Graph - 1
Link NOC:Graph Theory Lecture 5 - Bipartite Graph
Link NOC:Graph Theory Lecture 6 - Bipartite Graph
Link NOC:Graph Theory Lecture 7 - Diameter of a graph; Isomorphic graphs
Link NOC:Graph Theory Lecture 8 - Diameter of a graph; Isomorphic graphs
Link NOC:Graph Theory Lecture 9 - Minimum Spanning Tree
Link NOC:Graph Theory Lecture 10 - Minimum Spanning Trees (Continued...)
Link NOC:Graph Theory Lecture 11 - Minimum Spanning Trees (Continued...)
Link NOC:Graph Theory Lecture 12 - Minimum Spanning Trees (Continued...)
Link NOC:Graph Theory Lecture 13 - Maximum Matching in Bipartite Graph
Link NOC:Graph Theory Lecture 14 - Maximum Matching in Bipartite Graph - 1
Link NOC:Graph Theory Lecture 15 - Hall's Theorem and Konig's Theorem
Link NOC:Graph Theory Lecture 16 - Hall's Theorem and Konig's Theorem - 1
Link NOC:Graph Theory Lecture 17 - Independent Set and Edge Cover
Link NOC:Graph Theory Lecture 18 - Independent Set and Edge Cover - 1
Link NOC:Graph Theory Lecture 19 - Matching in General Graphs
Link NOC:Graph Theory Lecture 20 - Proof of Halls Theorem
Link NOC:Graph Theory Lecture 21 - Stable Matching
Link NOC:Graph Theory Lecture 22 - Gale-Shapley Algorithm
Link NOC:Graph Theory Lecture 23 - Graph Connectivity
Link NOC:Graph Theory Lecture 24 - Graph Connectivity - 1
Link NOC:Graph Theory Lecture 25 - 2-Connected Graphs
Link NOC:Graph Theory Lecture 26 - 2-Connected Graphs - 1
Link NOC:Graph Theory Lecture 27 - Subdivision of an edge; 2-edge-connected graphs
Link NOC:Graph Theory Lecture 28 - Problems Related to Graphs Connectivity
Link NOC:Graph Theory Lecture 29 - Flow Network
Link NOC:Graph Theory Lecture 30 - Residual Network and Augmenting Path
Link NOC:Graph Theory Lecture 31 - Augmenting Path Algorithm
Link NOC:Graph Theory Lecture 32 - Max-Flow and Min-Cut
Link NOC:Graph Theory Lecture 33 - Max-Flow and Min-Cut Theorem
Link NOC:Graph Theory Lecture 34 - Vertex Colouring
Link NOC:Graph Theory Lecture 35 - Chromatic Number and Max. Degree
Link NOC:Graph Theory Lecture 36 - Edge Colouring
Link NOC:Graph Theory Lecture 37 - Planar Graphs and Euler's Formula
Link NOC:Graph Theory Lecture 38 - Characterization Of Planar Graphs
Link NOC:Graph Theory Lecture 39 - Colouring of Planar Graphs
Link NOC:Transform Techniques for Engineers Lecture 1 - Introduction to Fourier series
Link NOC:Transform Techniques for Engineers Lecture 2 - Fourier series - Examples 
Link NOC:Transform Techniques for Engineers Lecture 3 - Complex Fourier series 
Link NOC:Transform Techniques for Engineers Lecture 4 - Conditions for the Convergence of Fourier Series 
Link NOC:Transform Techniques for Engineers Lecture 5 - Conditions for the Convergence of Fourier Series (Continued...)
Link NOC:Transform Techniques for Engineers Lecture 6 - Use of Delta function in the Fourier series convergence
Link NOC:Transform Techniques for Engineers Lecture 7 - More Examples on Fourier Series of a Periodic Signal
Link NOC:Transform Techniques for Engineers Lecture 8 - Gibb's Phenomenon in the Computation of Fourier Series
Link NOC:Transform Techniques for Engineers Lecture 9 - Properties of Fourier Transform of a Periodic Signal
Link NOC:Transform Techniques for Engineers Lecture 10 - Properties of Fourier transform (Continued...)
Link NOC:Transform Techniques for Engineers Lecture 11 - Parseval's Identity and Recap of Fourier series
Link NOC:Transform Techniques for Engineers Lecture 12 - Fourier integral theorem-an informal proof
Link NOC:Transform Techniques for Engineers Lecture 13 - Definition of Fourier transforms
Link NOC:Transform Techniques for Engineers Lecture 14 - Fourier transform of a Heavyside function
Link NOC:Transform Techniques for Engineers Lecture 15 - Use of Fourier transforms to evaluate some integrals
Link NOC:Transform Techniques for Engineers Lecture 16 - Evaluation of an integral- Recall of complex function theory
Link NOC:Transform Techniques for Engineers Lecture 17 - Properties of Fourier transforms of non-periodic signals
Link NOC:Transform Techniques for Engineers Lecture 18 - More properties of Fourier transforms
Link NOC:Transform Techniques for Engineers Lecture 19 - Fourier integral theorem - proof
Link NOC:Transform Techniques for Engineers Lecture 20 - Application of Fourier transform to ODE's
Link NOC:Transform Techniques for Engineers Lecture 21 - Application of Fourier transforms to differential and integral equations
Link NOC:Transform Techniques for Engineers Lecture 22 - Evaluation of integrals by Fourier transforms
Link NOC:Transform Techniques for Engineers Lecture 23 - D'Alembert's solution by Fourier transform
Link NOC:Transform Techniques for Engineers Lecture 24 - Solution of Heat equation by Fourier transform
Link NOC:Transform Techniques for Engineers Lecture 25 - Solution of Heat and Laplace equations by Fourier transform
Link NOC:Transform Techniques for Engineers Lecture 26 - Introduction to Laplace transform
Link NOC:Transform Techniques for Engineers Lecture 27 - Laplace transform of elementary functions
Link NOC:Transform Techniques for Engineers Lecture 28 - Properties of Laplace transforms
Link NOC:Transform Techniques for Engineers Lecture 29 - Properties of Laplace transforms (Continued...)
Link NOC:Transform Techniques for Engineers Lecture 30 - Methods of finding inverse Laplace transform
Link NOC:Transform Techniques for Engineers Lecture 31 - Heavyside expansion theorem
Link NOC:Transform Techniques for Engineers Lecture 32 - Review of complex function theory
Link NOC:Transform Techniques for Engineers Lecture 33 - Inverse Laplace transform by contour integration
Link NOC:Transform Techniques for Engineers Lecture 34 - Application of Laplace transforms - ODEs'
Link NOC:Transform Techniques for Engineers Lecture 35 - Solutions of initial or boundary value problems for ODEs'
Link NOC:Transform Techniques for Engineers Lecture 36 - Solving first order PDE's by Laplace transform
Link NOC:Transform Techniques for Engineers Lecture 37 - Solution of wave equation by Laplace transform
Link NOC:Transform Techniques for Engineers Lecture 38 - Solving hyperbolic equations by Laplace transform
Link NOC:Transform Techniques for Engineers Lecture 39 - Solving heat equation by Laplace transform
Link NOC:Transform Techniques for Engineers Lecture 40 - Initial boundary value problems for heat equations
Link NOC:Transform Techniques for Engineers Lecture 41 - Solution of Integral Equations by Laplace Transform
Link NOC:Transform Techniques for Engineers Lecture 42 - Evaluation of Integrals by Laplace Transform
Link NOC:Transform Techniques for Engineers Lecture 43 - Introduction to Z-Transforms
Link NOC:Transform Techniques for Engineers Lecture 44 - Properties of Z-Transforms
Link NOC:Transform Techniques for Engineers Lecture 45 - Inverse Z-transforms
Link NOC:Transform Techniques for Engineers Lecture 46 - Solution of difference equations by Z-transforms
Link NOC:Transform Techniques for Engineers Lecture 47 - Evaluation of infinite sums by Z-transforms
Link NOC:Transform Techniques for Engineers Lecture 48 - conclusions
Link NOC:Introduction to Probability and Statistics Lecture 1 - Introduction to probability and Statistics
Link NOC:Introduction to Probability and Statistics Lecture 2 - Types of data
Link NOC:Introduction to Probability and Statistics Lecture 3 - Categorical data
Link NOC:Introduction to Probability and Statistics Lecture 4 - Describing Categorical data
Link NOC:Introduction to Probability and Statistics Lecture 5 - Describing Categorical data (Continued...)
Link NOC:Introduction to Probability and Statistics Lecture 6 - Describing numerical data
Link NOC:Introduction to Probability and Statistics Lecture 7 - Describing numerical data (Continued...)
Link NOC:Introduction to Probability and Statistics Lecture 8 - Exercises, Association between categorical variables
Link NOC:Introduction to Probability and Statistics Lecture 9 - Association between categorical variables (Continued...)
Link NOC:Introduction to Probability and Statistics Lecture 10 - Association between numerical variables
Link NOC:Introduction to Probability and Statistics Lecture 11 - Association between numerical variables (Continued...)
Link NOC:Introduction to Probability and Statistics Lecture 12 - Probability
Link NOC:Introduction to Probability and Statistics Lecture 13 - Rules of Probability
Link NOC:Introduction to Probability and Statistics Lecture 14 - Rules of Probability (Continued...)
Link NOC:Introduction to Probability and Statistics Lecture 15 - Conditional Probability
Link NOC:Introduction to Probability and Statistics Lecture 16 - Random variables
Link NOC:Introduction to Probability and Statistics Lecture 17 - Random variables - concepts and exercises
Link NOC:Introduction to Probability and Statistics Lecture 18 - Association between Random variables
Link NOC:Introduction to Probability and Statistics Lecture 19 - Binomial Distribution
Link NOC:Introduction to Probability and Statistics Lecture 20 - Normal distribution
Link NOC:Introduction to Probability and Statistics Lecture 21 - Additional Examples
Link NOC:Introduction to Abstract Group Theory Lecture 1 - Motivational examples of groups
Link NOC:Introduction to Abstract Group Theory Lecture 2 - Definition of a group and examples
Link NOC:Introduction to Abstract Group Theory Lecture 3 - More examples of groups
Link NOC:Introduction to Abstract Group Theory Lecture 4 - Basic properties of groups and multiplication tables
Link NOC:Introduction to Abstract Group Theory Lecture 5 - Problems - 1
Link NOC:Introduction to Abstract Group Theory Lecture 6 - Problems - 2
Link NOC:Introduction to Abstract Group Theory Lecture 7 - Problems - 3
Link NOC:Introduction to Abstract Group Theory Lecture 8 - Subgroups
Link NOC:Introduction to Abstract Group Theory Lecture 9 - Types of groups
Link NOC:Introduction to Abstract Group Theory Lecture 10 - Group homomorphisms and examples
Link NOC:Introduction to Abstract Group Theory Lecture 11 - Properties of homomorphisms
Link NOC:Introduction to Abstract Group Theory Lecture 12 - Group isomorphisms
Link NOC:Introduction to Abstract Group Theory Lecture 13 - Normal subgroups
Link NOC:Introduction to Abstract Group Theory Lecture 14 - Equivalence relations
Link NOC:Introduction to Abstract Group Theory Lecture 15 - Problems - 4
Link NOC:Introduction to Abstract Group Theory Lecture 16 - Cosets and Lagrange's theorem
Link NOC:Introduction to Abstract Group Theory Lecture 17 - S_3 revisited
Link NOC:Introduction to Abstract Group Theory Lecture 18 - Problems - 5
Link NOC:Introduction to Abstract Group Theory Lecture 19 - Quotient groups
Link NOC:Introduction to Abstract Group Theory Lecture 20 - Examples of quotient groups
Link NOC:Introduction to Abstract Group Theory Lecture 21 - First isomorphism theorem
Link NOC:Introduction to Abstract Group Theory Lecture 22 - Examples and Second isomorphism theorem
Link NOC:Introduction to Abstract Group Theory Lecture 23 - Third isomorphism theorem
Link NOC:Introduction to Abstract Group Theory Lecture 24 - Cauchy's theorem
Link NOC:Introduction to Abstract Group Theory Lecture 25 - Problems - 6
Link NOC:Introduction to Abstract Group Theory Lecture 26 - Symmetric groups - I
Link NOC:Introduction to Abstract Group Theory Lecture 27 - Symmetric Groups - II
Link NOC:Introduction to Abstract Group Theory Lecture 28 - Symmetric groups - III
Link NOC:Introduction to Abstract Group Theory Lecture 29 - Symmetric groups - IV
Link NOC:Introduction to Abstract Group Theory Lecture 30 - Odd and even permutations - I
Link NOC:Introduction to Abstract Group Theory Lecture 31 - Odd and even permutations - II
Link NOC:Introduction to Abstract Group Theory Lecture 32 - Alternating groups
Link NOC:Introduction to Abstract Group Theory Lecture 33 - Group actions
Link NOC:Introduction to Abstract Group Theory Lecture 34 - Examples of group actions
Link NOC:Introduction to Abstract Group Theory Lecture 35 - Orbits and stabilizers
Link NOC:Introduction to Abstract Group Theory Lecture 36 - Counting formula
Link NOC:Introduction to Abstract Group Theory Lecture 37 - Cayley's theorem
Link NOC:Introduction to Abstract Group Theory Lecture 38 - Problems - 7
Link NOC:Introduction to Abstract Group Theory Lecture 39 - Problems - 8 and Class equation
Link NOC:Introduction to Abstract Group Theory Lecture 40 - Group actions on subsets
Link NOC:Introduction to Abstract Group Theory Lecture 41 - Sylow Theorem - I
Link NOC:Introduction to Abstract Group Theory Lecture 42 - Sylow Theorem - II
Link NOC:Introduction to Abstract Group Theory Lecture 43 - Sylow Theorem - III
Link NOC:Introduction to Abstract Group Theory Lecture 44 - Problems - 9
Link NOC:Introduction to Abstract Group Theory Lecture 45 - Problems - 10
Link NOC:Groups: Motion, Symmetry and Puzzles Lecture 1 - Permutation, symmetry and groups
Link NOC:Groups: Motion, Symmetry and Puzzles Lecture 2 - Groups acting on a set/an object
Link NOC:Groups: Motion, Symmetry and Puzzles Lecture 3 - More on group actions
Link NOC:Groups: Motion, Symmetry and Puzzles Lecture 4 - Groups and parity
Link NOC:Groups: Motion, Symmetry and Puzzles Lecture 5 - Parity and puzzles
Link NOC:Groups: Motion, Symmetry and Puzzles Lecture 6 - Generators and relations
Link NOC:Groups: Motion, Symmetry and Puzzles Lecture 7 - Cosets, quotients and homomorphisms
Link NOC:Groups: Motion, Symmetry and Puzzles Lecture 8 - Cayley graphs of groups
Link NOC:Groups: Motion, Symmetry and Puzzles Lecture 9 - Platonic solids
Link NOC:Groups: Motion, Symmetry and Puzzles Lecture 10 - Symmetries of plane and wallpapers
Link NOC:Groups: Motion, Symmetry and Puzzles Lecture 11 - Introduction to GAP
Link NOC:Groups: Motion, Symmetry and Puzzles Lecture 12 - GAP through Rubik's cube
Link NOC:Groups: Motion, Symmetry and Puzzles Lecture 13 - Representing abstract groups
Link NOC:Groups: Motion, Symmetry and Puzzles Lecture 14 - A quick introduction to group representations
Link NOC:Groups: Motion, Symmetry and Puzzles Lecture 15 - Rotations and quaternions
Link NOC:Groups: Motion, Symmetry and Puzzles Lecture 16 - Rotational symmetries of platonic solids
Link NOC:Groups: Motion, Symmetry and Puzzles Lecture 17 - Finite subgroups of SO(3)
Link NOC:Introduction to Rings and Fields Lecture 1 - Introduction, main definitions
Link NOC:Introduction to Rings and Fields Lecture 2 - Examples of rings
Link NOC:Introduction to Rings and Fields Lecture 3 - More examples
Link NOC:Introduction to Rings and Fields Lecture 4 - Polynomial Rings - 1
Link NOC:Introduction to Rings and Fields Lecture 5 - Polynomial Rings - 2
Link NOC:Introduction to Rings and Fields Lecture 6 - Homomorphisms
Link NOC:Introduction to Rings and Fields Lecture 7 - Kernels, ideals
Link NOC:Introduction to Rings and Fields Lecture 8 - Problems - 1
Link NOC:Introduction to Rings and Fields Lecture 9 - Problems - 2
Link NOC:Introduction to Rings and Fields Lecture 10 - Problems - 3
Link NOC:Introduction to Rings and Fields Lecture 11 - Quotient Rings
Link NOC:Introduction to Rings and Fields Lecture 12 - First isomorphism and correspondence theorems
Link NOC:Introduction to Rings and Fields Lecture 13 - Examples of correspondence theorem
Link NOC:Introduction to Rings and Fields Lecture 14 - Prime ideals
Link NOC:Introduction to Rings and Fields Lecture 15 - Maximal ideals, integral domains
Link NOC:Introduction to Rings and Fields Lecture 16 - Existence of maximal ideals
Link NOC:Introduction to Rings and Fields Lecture 17 - Problems - 4
Link NOC:Introduction to Rings and Fields Lecture 18 - Problems - 5
Link NOC:Introduction to Rings and Fields Lecture 19 - Problems - 6
Link NOC:Introduction to Rings and Fields Lecture 20 - Field of fractions, Noetherian rings - 1
Link NOC:Introduction to Rings and Fields Lecture 21 - Noetherian rings - 2
Link NOC:Introduction to Rings and Fields Lecture 22 - Hilbert Basis Theorem
Link NOC:Introduction to Rings and Fields Lecture 23 - Irreducible, prime elements
Link NOC:Introduction to Rings and Fields Lecture 24 - Irreducible, prime elements, GCD
Link NOC:Introduction to Rings and Fields Lecture 25 - Principal Ideal Domains
Link NOC:Introduction to Rings and Fields Lecture 26 - Unique Factorization Domains - 1
Link NOC:Introduction to Rings and Fields Lecture 27 - Unique Factorization Domains - 2
Link NOC:Introduction to Rings and Fields Lecture 28 - Gauss Lemma
Link NOC:Introduction to Rings and Fields Lecture 29 - Z[X] is a UFD
Link NOC:Introduction to Rings and Fields Lecture 30 - Eisenstein criterion and Problems - 7
Link NOC:Introduction to Rings and Fields Lecture 31 - Problems - 8
Link NOC:Introduction to Rings and Fields Lecture 32 - Problems - 9
Link NOC:Introduction to Rings and Fields Lecture 33 - Field extensions - 1
Link NOC:Introduction to Rings and Fields Lecture 34 - Field extensions - 2
Link NOC:Introduction to Rings and Fields Lecture 35 - Degree of a field extension - 1
Link NOC:Introduction to Rings and Fields Lecture 36 - Degree of a field extension - 2
Link NOC:Introduction to Rings and Fields Lecture 37 - Algebraic elements form a field
Link NOC:Introduction to Rings and Fields Lecture 38 - Field homomorphisms
Link NOC:Introduction to Rings and Fields Lecture 39 - Splitting fields
Link NOC:Introduction to Rings and Fields Lecture 40 - Finite fields - 1
Link NOC:Introduction to Rings and Fields Lecture 41 - Finite fields - 2
Link NOC:Introduction to Rings and Fields Lecture 42 - Finite fields - 3
Link NOC:Introduction to Rings and Fields Lecture 43 - Problems - 10
Link NOC:Introduction to Rings and Fields Lecture 44 - Problems - 11
Link NOC:Probabilistic Methods in PDE Lecture 1 - Prerequisite Measure Theory - Part 1
Link NOC:Probabilistic Methods in PDE Lecture 2 - Prerequisite Measure Theory - Part 2
Link NOC:Probabilistic Methods in PDE Lecture 3 - Prerequisite Measure Theory - Part 3
Link NOC:Probabilistic Methods in PDE Lecture 4 - Random variable
Link NOC:Probabilistic Methods in PDE Lecture 5 - Stochastic Process
Link NOC:Probabilistic Methods in PDE Lecture 6 - Conditional Expectation
Link NOC:Probabilistic Methods in PDE Lecture 7 - Preliminary for Stochastic Integration - Part 1
Link NOC:Probabilistic Methods in PDE Lecture 8 - Preliminary for Stochastic Integration - Part 2
Link NOC:Probabilistic Methods in PDE Lecture 9 - Definition and properties of Stochastic Integration - Part 1
Link NOC:Probabilistic Methods in PDE Lecture 10 - Definition and properties of Stochastic Integration - Part 2
Link NOC:Probabilistic Methods in PDE Lecture 11 - Further properties of Stochastic Integration
Link NOC:Probabilistic Methods in PDE Lecture 12 - Extension of stochastic integral
Link NOC:Probabilistic Methods in PDE Lecture 13 - change of variable formula and proof - Part 1
Link NOC:Probabilistic Methods in PDE Lecture 14 - change of variable formula and proof - Part 2
Link NOC:Probabilistic Methods in PDE Lecture 15 - Brownian motion as the building block
Link NOC:Probabilistic Methods in PDE Lecture 16 - Brownian motion and its martingale property - Part 1
Link NOC:Probabilistic Methods in PDE Lecture 17 - Brownian motion and its martingale property - Part 2
Link NOC:Probabilistic Methods in PDE Lecture 18 - Application of Ito’s rule on Ito process
Link NOC:Probabilistic Methods in PDE Lecture 19 - Harmonic function and its properties
Link NOC:Probabilistic Methods in PDE Lecture 20 - Maximum principle of harmonic function
Link NOC:Probabilistic Methods in PDE Lecture 21 - Dirichlet Problem and bounded solution
Link NOC:Probabilistic Methods in PDE Lecture 22 - Example of a Dirichlet problem
Link NOC:Probabilistic Methods in PDE Lecture 23 - Regular points at the boundary
Link NOC:Probabilistic Methods in PDE Lecture 24 - Zarembas cone condition for regularity
Link NOC:Probabilistic Methods in PDE Lecture 25 - Summary of the Zaremba's cone condition
Link NOC:Probabilistic Methods in PDE Lecture 26 - Continuity of candidate solution at regular points - Part 1
Link NOC:Probabilistic Methods in PDE Lecture 27 - Continuity of candidate solution at regular points - Part 2
Link NOC:Probabilistic Methods in PDE Lecture 28 - Summary of bounded solution to the Dirichlet Problem
Link NOC:Probabilistic Methods in PDE Lecture 29 - Stochastic representation of bounded solution to a heat equation - Part 1
Link NOC:Probabilistic Methods in PDE Lecture 30 - Stochastic representation of bounded solution to a heat equation - Part 2
Link NOC:Probabilistic Methods in PDE Lecture 31 - Uniqueness of solution to the heat equation 
Link NOC:Probabilistic Methods in PDE Lecture 32 - Remark on Tychonoff's Theorem
Link NOC:Probabilistic Methods in PDE Lecture 33 - Widder’s result and its extension on heat equation
Link NOC:Probabilistic Methods in PDE Lecture 34 - Solution to the mixed initial boundary value problem 
Link NOC:Probabilistic Methods in PDE Lecture 35 - The Feynman-Kac formula 
Link NOC:Probabilistic Methods in PDE Lecture 36 - Kac’s theorem on the stochastic representation of solution to a second-order linear ODE - Part 1
Link NOC:Probabilistic Methods in PDE Lecture 37 - Kac’s theorem on the stochastic representation of solution to a second-order linear ODE - Part 2
Link NOC:Probabilistic Methods in PDE Lecture 38 - Geometric Brownian motion
Link NOC:Probabilistic Methods in PDE Lecture 39 - A system of stochastic differential equations in application
Link NOC:Probabilistic Methods in PDE Lecture 40 - Brownian bridge
Link NOC:Probabilistic Methods in PDE Lecture 41 - Simulation of stochastic differential equations
Link NOC:Probabilistic Methods in PDE Lecture 42 - Stochastic differential equations: Uniqueness
Link NOC:Probabilistic Methods in PDE Lecture 43 - Stochastic differential equations: Existence - Part 1
Link NOC:Probabilistic Methods in PDE Lecture 44 - Stochastic differential equations: Existence - Part 2
Link NOC:Probabilistic Methods in PDE Lecture 45 - Stochastic differential equations: Existence - Part 3
Link NOC:Probabilistic Methods in PDE Lecture 46 - Stochastic differential equations: Weak solution
Link NOC:Probabilistic Methods in PDE Lecture 47 - Functional Stochastic Differential Equations
Link NOC:Probabilistic Methods in PDE Lecture 48 - Statement of Dirichlet and Cauchy problems with variable coefficients elliptic operators
Link NOC:Probabilistic Methods in PDE Lecture 49 - Cauchy Problem with variable coefficients: Feynman-Kac formula - Part 1
Link NOC:Probabilistic Methods in PDE Lecture 50 - Cauchy Problem with variable coefficients: Feynman-Kac formula - Part 2
Link NOC:Probabilistic Methods in PDE Lecture 51 - Semigroup of bounded linear operators on Banach space - Part 1
Link NOC:Probabilistic Methods in PDE Lecture 52 - Semigroup of bounded linear operators on Banach space - Part 2
Link NOC:Probabilistic Methods in PDE Lecture 53 - Growth property of C0 semigroup
Link NOC:Probabilistic Methods in PDE Lecture 54 - Unique semigroup generated by a bounded linear operator
Link NOC:Probabilistic Methods in PDE Lecture 55 - Homogeneous initial value problem
Link NOC:Probabilistic Methods in PDE Lecture 56 - Mild solution to homogeneous initial value problem
Link NOC:Probabilistic Methods in PDE Lecture 57 - Mild solution to inhomogeneous initial value problem
Link NOC:Probabilistic Methods in PDE Lecture 58 - Sufficient condition for existence of classical solution of IVP
Link NOC:Probabilistic Methods in PDE Lecture 59 - Tutorial on Resolvant operator
Link NOC:Probabilistic Methods in PDE Lecture 60 - Feynman-Kac formula and the formula of variations of constants
Link NOC:Probabilistic Methods in PDE Lecture 61 - Non-autonomous evolution problem and mild/generalized solution
Link NOC:Probabilistic Methods in PDE Lecture 62 - Sufficient condition for existence of an evolution system
Link NOC:Probabilistic Methods in PDE Lecture 63 - Y-valued solution
Link NOC:Probabilistic Methods in PDE Lecture 64 - mild/generalized solution to Semi-linear Evolution Problem
Link NOC:Probabilistic Methods in PDE Lecture 65 - Existence of classical solution - Part 1
Link NOC:Probabilistic Methods in PDE Lecture 66 - Existence of classical solution - Part 2
Link NOC:Probabilistic Methods in PDE Lecture 67 - Conclusion video
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 1 - Vector Spaces
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 2 - Examples of Vector Spaces
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 3 - Vector Subspaces
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 4 - Linear Combinations and Span
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 5 - Linear Independence
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 6 - Basis
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 7 - Dimension
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 8 - Replacement theorem consequences
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 9 - Linear Transformations
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 10 - Rank Nullity
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 11 - Linear Transformation Basis
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 12 - Linear Transformation and Matrices
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 13 - Problem session
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 14 - Linear Transformation and Matrices (Continued...)
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 15 - Invertible Linear Transformations
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 16 - Invertible Linear Transformations and Matrices
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 17 - Change of Basis
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 18 - Product of Vector Spaces
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 19 - Dual Spaces
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 20 - Quotient Spaces
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 21 - Row operations
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 22 - Rank of a Matrix
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 23 - Inverting matrices
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 24 - Determinants
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 25 - Problem Session
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 26 - Diagonal Matrices
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 27 - Eigenvectors and eigenvalues
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 28 - Computing eigenvalues
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 29 - Characteristic ploynomia
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 30 - Diagonalizibility
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 31 - Multiplicity of eigenvalues
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 32 - Invariant subspaces
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 33 - Complex Vector Spaces
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 34 - Inner Product Spaces
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 35 - Inner Product and Length
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 36 - Orthogonality
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 37 - Problem Session
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 38 - Problem Session
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 39 - Orthonormal Basis
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 40 - Gram Schmidt Orthogonalization
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 41 - Orthogonal Complements
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 42 - Problem Session
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 43 - Riesz Representation Theorem
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 44 - Adjoint of a linear transformation
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 45 - Problem Session
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 46 - Normal Operators
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 47 - Self Adjoint Operators
Link NOC:Linear Algebra (Prof. Pranav Haridas) Lecture 48 - Spectral Theorem
Link NOC:Algebra - I Lecture 1 - Permutations
Link NOC:Algebra - I Lecture 2 - Group Axioms
Link NOC:Algebra - I Lecture 3 - Order and Conjugacy
Link NOC:Algebra - I Lecture 4 - Subgroups
Link NOC:Algebra - I Lecture 5 - Problem solving
Link NOC:Algebra - I Lecture 6 - Group Actions
Link NOC:Algebra - I Lecture 7 - Cosets
Link NOC:Algebra - I Lecture 8 - Group Homomorphisms
Link NOC:Algebra - I Lecture 9 - Normal subgroups
Link NOC:Algebra - I Lecture 10 - Qutient Groups
Link NOC:Algebra - I Lecture 11 - Product and Chinese Remainder Theorem
Link NOC:Algebra - I Lecture 12 - Dihedral Groups
Link NOC:Algebra - I Lecture 13 - Semidirect products
Link NOC:Algebra - I Lecture 14 - Problem solving
Link NOC:Algebra - I Lecture 15 - The Orbit Counting Theorem
Link NOC:Algebra - I Lecture 16 - Fixed points of group actions
Link NOC:Algebra - I Lecture 17 - Second application: Fixed points of group actions
Link NOC:Algebra - I Lecture 18 - Sylow Theorem - a preliminary proposition
Link NOC:Algebra - I Lecture 19 - Sylow Theorem - I
Link NOC:Algebra - I Lecture 20 - Problem solving - I
Link NOC:Algebra - I Lecture 21 - Problem solving - II
Link NOC:Algebra - I Lecture 22 - Sylow Theorem - II
Link NOC:Algebra - I Lecture 23 - Sylow Theorem - III
Link NOC:Algebra - I Lecture 24 - Problem solving - I
Link NOC:Algebra - I Lecture 25 - Problem solving - II
Link NOC:Algebra - I Lecture 26 - Free Groups - I
Link NOC:Algebra - I Lecture 27 - Free Groups - IIa
Link NOC:Algebra - I Lecture 28 - Free Groups - IIb
Link NOC:Algebra - I Lecture 29 - Free Groups - III
Link NOC:Algebra - I Lecture 30 - Free Groups - IV
Link NOC:Algebra - I Lecture 31 - Problem Solving/Examples
Link NOC:Algebra - I Lecture 32 - Generators and relations for symmetric groups – I
Link NOC:Algebra - I Lecture 33 - Generators and relations for symmetric groups – II
Link NOC:Algebra - I Lecture 34 - Definition of a Ring
Link NOC:Algebra - I Lecture 35 - Euclidean Domains
Link NOC:Algebra - I Lecture 36 - Gaussian Integers
Link NOC:Algebra - I Lecture 37 - The Fundamental Theorem of Arithmetic
Link NOC:Algebra - I Lecture 38 - Divisibility and Ideals
Link NOC:Algebra - I Lecture 39 - Factorization and the Noetherian Condition
Link NOC:Algebra - I Lecture 40 - Examples of Ideals in Commutative Rings
Link NOC:Algebra - I Lecture 41 - Problem Solving/Examples
Link NOC:Algebra - I Lecture 42 - The Ring of Formal Power Series
Link NOC:Algebra - I Lecture 43 - Fraction Fields
Link NOC:Algebra - I Lecture 44 - Path Algebra of a Quiver
Link NOC:Algebra - I Lecture 45 - Ideals In Non-Commutative Rings
Link NOC:Algebra - I Lecture 46 - Product of Rings
Link NOC:Algebra - I Lecture 47 - Ring Homomorphisms
Link NOC:Algebra - I Lecture 48 - Quotient Rings
Link NOC:Algebra - I Lecture 49 - Problem solving
Link NOC:Algebra - I Lecture 50 - Tensor and Exterior Algebras
Link NOC:Algebra - I Lecture 51 - Modules: definition
Link NOC:Algebra - I Lecture 52 - Modules over polynomial rings $K[x]$
Link NOC:Algebra - I Lecture 53 - Modules: alternative definition
Link NOC:Algebra - I Lecture 54 - Modules: more examples
Link NOC:Algebra - I Lecture 55 - Submodules
Link NOC:Algebra - I Lecture 56 - General constructions of submodules
Link NOC:Algebra - I Lecture 57 - Problem Solving
Link NOC:Algebra - I Lecture 58 - Quotient modules
Link NOC:Algebra - I Lecture 59 - Homomorphisms
Link NOC:Algebra - I Lecture 60 - More examples of homomorphisms
Link NOC:Algebra - I Lecture 61 - First isomorphism theorem
Link NOC:Algebra - I Lecture 62 - Direct sums of modules
Link NOC:Algebra - I Lecture 63 - Complementary submodules
Link NOC:Algebra - I Lecture 64 - Change of ring
Link NOC:Algebra - I Lecture 65 - Problem solving
Link NOC:Algebra - I Lecture 66 - Free Modules (finitely generated)
Link NOC:Algebra - I Lecture 67 - Determinants
Link NOC:Algebra - I Lecture 68 - Primary Decomposition
Link NOC:Algebra - I Lecture 69 - Problem solving
Link NOC:Algebra - I Lecture 70 - Finitely generated modules and the Noetherian condition
Link NOC:Algebra - I Lecture 71 - Counterexamples to the Noetherian condition
Link NOC:Algebra - I Lecture 72 - Generators and relations for Finitely Generated Modules
Link NOC:Algebra - I Lecture 73 - General Linear Group over a Commutative Ring
Link NOC:Algebra - I Lecture 74 - Equivalence of Matrices
Link NOC:Algebra - I Lecture 75 - Smith Canonical Form for a Euclidean domain
Link NOC:Algebra - I Lecture 76 - solved_problems1
Link NOC:Algebra - I Lecture 77 - Smith Canonical Form for PID
Link NOC:Algebra - I Lecture 78 - Structure of finitely generated modules over a PID
Link NOC:Algebra - I Lecture 79 - Structure of a finitely generated abelian group
Link NOC:Algebra - I Lecture 80 - Similarity of Matrices
Link NOC:Algebra - I Lecture 81 - Deciding Similarity
Link NOC:Algebra - I Lecture 82 - Rational Canonical Form
Link NOC:Algebra - I Lecture 83 - Jordan Canonical Form
Link NOC:Computational Commutative Algebra Lecture 1 - Definitions
Link NOC:Computational Commutative Algebra Lecture 2 - Homomorphisms
Link NOC:Computational Commutative Algebra Lecture 3 - Quotient rings
Link NOC:Computational Commutative Algebra Lecture 4 - Noetherian rings
Link NOC:Computational Commutative Algebra Lecture 5 - Monomials
Link NOC:Computational Commutative Algebra Lecture 6 - Initial ideals
Link NOC:Computational Commutative Algebra Lecture 7 - Division algorithm
Link NOC:Computational Commutative Algebra Lecture 8 - Grobner basis
Link NOC:Computational Commutative Algebra Lecture 9 - Solving Polynomial Equations
Link NOC:Computational Commutative Algebra Lecture 10 - Nullstellensatz - Part 1
Link NOC:Computational Commutative Algebra Lecture 11 - Nullstellensatz - Part 2
Link NOC:Computational Commutative Algebra Lecture 12 - Buchberger criterion
Link NOC:Computational Commutative Algebra Lecture 13 - Monomial basis
Link NOC:Computational Commutative Algebra Lecture 14 - Elimination
Link NOC:Computational Commutative Algebra Lecture 15 - Modules - Part 1
Link NOC:Computational Commutative Algebra Lecture 16 - Modules - Part 2
Link NOC:Computational Commutative Algebra Lecture 17 - Localisation
Link NOC:Computational Commutative Algebra Lecture 18 - Nakayama Lemma
Link NOC:Computational Commutative Algebra Lecture 19 - Spectrum - Part 1
Link NOC:Computational Commutative Algebra Lecture 20 - Spectrum - Part 2
Link NOC:Computational Commutative Algebra Lecture 21 - Associated primes
Link NOC:Computational Commutative Algebra Lecture 22 - Primary Decomposition
Link NOC:Computational Commutative Algebra Lecture 23 - Support of a module
Link NOC:Computational Commutative Algebra Lecture 24 - Associated primes
Link NOC:Computational Commutative Algebra Lecture 25 - Prime avoidance
Link NOC:Computational Commutative Algebra Lecture 26 - Saturation - Part 1
Link NOC:Computational Commutative Algebra Lecture 27 - Saturation - Part 2
Link NOC:Computational Commutative Algebra Lecture 28 - Saturation - Part 3
Link NOC:Computational Commutative Algebra Lecture 29 - Morphisms - Part 1
Link NOC:Computational Commutative Algebra Lecture 30 - Morphisms - Part 2
Link NOC:Computational Commutative Algebra Lecture 31 - Integral extensions
Link NOC:Computational Commutative Algebra Lecture 32 - Noether normalisation lemma
Link NOC:Computational Commutative Algebra Lecture 33 - Noether normalisation lemma
Link NOC:Computational Commutative Algebra Lecture 34 - Polynomial rings
Link NOC:Computational Commutative Algebra Lecture 35 - Going up theorem
Link NOC:Computational Commutative Algebra Lecture 36 - Artinian rings
Link NOC:Computational Commutative Algebra Lecture 37 - Graded modules
Link NOC:Computational Commutative Algebra Lecture 38 - Hilbert polynomial
Link NOC:Computational Commutative Algebra Lecture 39 - Hilbert-Samuel polynomial
Link NOC:Computational Commutative Algebra Lecture 40 - Artin Rees Lemma
Link NOC:Computational Commutative Algebra Lecture 41 - Degree of Hilbert-Samuel polynomial
Link NOC:Computational Commutative Algebra Lecture 42 - Dimension of noetherian local rings - Part 1
Link NOC:Computational Commutative Algebra Lecture 43 - Dimension of noetherian local rings - Part 2
Link NOC:Computational Commutative Algebra Lecture 44 - Dimension of polynomial rings
Link NOC:Computational Commutative Algebra Lecture 45 - Algebras over a field
Link NOC:Computational Commutative Algebra Lecture 46 - Graded rings - Part 1
Link NOC:Computational Commutative Algebra Lecture 47 - Graded rings - Part 2
Link NOC:Computational Commutative Algebra Lecture 48 - Polynomial rings over fields
Link NOC:Computational Commutative Algebra Lecture 49 - Hilbert series - Part 1
Link NOC:Computational Commutative Algebra Lecture 50 - Hilbert series - Part 2
Link NOC:Computational Commutative Algebra Lecture 51 - Proj of a graded ring
Link NOC:Computational Commutative Algebra Lecture 52 - Homogenization - Part 1
Link NOC:Computational Commutative Algebra Lecture 53 - Homogenization - Part 2
Link NOC:Computational Commutative Algebra Lecture 54 - More on graded rings
Link NOC:Computational Commutative Algebra Lecture 55 - Free resolutions
Link NOC:Computational Commutative Algebra Lecture 56 - Computing syzygies
Link NOC:Computational Commutative Algebra Lecture 57 - Koszul complex
Link NOC:Computational Commutative Algebra Lecture 58 - More on Koszul complexes
Link NOC:Computational Commutative Algebra Lecture 59 - Castelnuovo Mumford regularity
Link NOC:Computational Commutative Algebra Lecture 60 - Castelnuovo Mumford regularity
Link NOC:Laplace Transform Lecture 1 - Introduction and Motivation for Laplace transforms - Part 1
Link NOC:Laplace Transform Lecture 2 - Introduction and Motivation for Laplace transforms - Part 2
Link NOC:Laplace Transform Lecture 3 - Improper Riemann integrals: Definition and Existence - Part 1
Link NOC:Laplace Transform Lecture 4 - Improper Riemann integrals: Definition and Existence - Part 2
Link NOC:Laplace Transform Lecture 5 - Existence of Laplace transforms and Examples
Link NOC:Laplace Transform Lecture 6 - Properties of Laplace transforms-I - Part 1
Link NOC:Laplace Transform Lecture 7 - Properties of Laplace transforms-I - Part 2
Link NOC:Laplace Transform Lecture 8 - Existence of Laplace transforms for functions with vertical asymptote at the Y-axis - Part 1
Link NOC:Laplace Transform Lecture 9 - Existence of Laplace transforms for functions with vertical asymptote at the Y-axis - Part 2
Link NOC:Laplace Transform Lecture 10 - Properties of Laplace transforms-II - Part 1
Link NOC:Laplace Transform Lecture 11 - Properties of Laplace transforms-II - Part 2
Link NOC:Laplace Transform Lecture 12 - Laplace transform of Derivatives - Part 1
Link NOC:Laplace Transform Lecture 13 - Laplace transform of Derivatives - Part 2
Link NOC:Laplace Transform Lecture 14 - Laplace transform of Periodic functions and Integrals - I
Link NOC:Laplace Transform Lecture 15 - Laplace transform of Integrals-II - Part 1
Link NOC:Laplace Transform Lecture 16 - Laplace transform of Integrals-II - Part 2
Link NOC:Laplace Transform Lecture 17 - Inverse Laplace transform and asymptotic behaviour - Part 1
Link NOC:Laplace Transform Lecture 18 - Inverse Laplace transform and asymptotic behaviour - Part 2
Link NOC:Laplace Transform Lecture 19 - Methods of finding Inverse Laplace transform-I- Partial Fractions
Link NOC:Laplace Transform Lecture 20 - Methods of finding Inverse Laplace transform-II- Convolution theorem
Link NOC:Laplace Transform Lecture 21 - Convolution theorem for Laplace transforms
Link NOC:Laplace Transform Lecture 22 - Applications of Laplace transforms
Link NOC:Laplace Transform Lecture 23 - Applications of Laplace Transform to physical systems
Link NOC:Laplace Transform Lecture 24 - Solving Linear ODE's with polynomial coefficients
Link NOC:Laplace Transform Lecture 25 - Integral and Integro-differential equation
Link NOC:Laplace Transform Lecture 26 - Further application of Laplace transforms - Part 1
Link NOC:Laplace Transform Lecture 27 - Further application of Laplace transforms - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 1 - Finite Sets and Cardinality
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 2 - Infinite Sets and the Banach-Tarski Paradox - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 3 - Infinite Sets and the Banach-Tarski Paradox - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 4 - Elementary Sets and Elementary measure - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 5 - Elementary Sets and Elementary measure - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 6 - Properties of elementary measure - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 7 - Properties of elementary measure - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 8 - Uniqueness of elementary measure and Jordan measurability - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 9 - Uniqueness of elementary measure and Jordan measurability - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 10 - Characterization of Jordan measurable sets and basic properties of Jordan measure - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 11 - Characterization of Jordan measurable sets and basic properties of Jordan measure - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 12 - Examples of Jordan measurable sets-I
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 13 - Examples of Jordan measurable sets-II - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 14 - Examples of Jordan measurable sets-II - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 15 - Jordan measure under Linear transformations - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 16 - Jordan measure under Linear transformations - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 17 - Connecting the Jordan measure with the Riemann integral - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 18 - Connecting the Jordan measure with the Riemann integral - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 19 - Outer measure - Motivation and Axioms of outer measure
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 20 - Comparing Inner Jordan measure, Lebesgue outer measure and Jordan Outer measure
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 21 - Finite additivity of outer measure on Separated sets, Outer regularity - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 22 - Finite additivity of outer measure on Separated sets, Outer regularity - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 23 - Lebesgue measurable class of sets and their Properties - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 24 - Lebesgue measurable class of sets and their Properties - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 25 - Equivalent criteria for lebesgue measurability of a subset - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 26 - Equivalent criteria for lebesgue measurability of a subset - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 27 - The measure axioms and the Borel-Cantelli Lemma
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 28 - Properties of the Lebesgue measure: Inner regularity,Upward and Downwar Monotone convergence theorem, and Dominated convergence theorem for sets - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 29 - Properties of the Lebesgue measure: Inner regularity,Upward and Downwar Monotone convergence theorem, and Dominated convergence theorem for sets - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 30 - Lebesgue measurability under Linear transformation, Construction of Vitali Set - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 31 - Lebesgue measurability under Linear transformation, Construction of Vitali Set - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 32 - Abstract measure spaces: Boolean and Sigma-algebras
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 33 - Abstract measure and Caratheodory Measurability - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 34 - Abstract measure and Caratheodory Measurability - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 35 - Abstrsct measure and Hahn-Kolmogorov Extension
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 36 - Lebesgue measurable class vs Caratheodory extension of usual outer measure on R^d
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 37 - Examples of Measures defined on R^d via Hahn Kolmogorov extension - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 38 - Examples of Measures defined on R^d via Hahn Kolmogorov extension - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 39 - Measurable functions: definition and basic properties - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 40 - Measurable functions: definition and basic properties - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 41 - Egorov's theorem: abstract version
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 42 - Lebesgue integral of unsigned simple measurable functions: definition and properties
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 43 - Lebesgue integral of unsigned measurable functions: motivation, definition and basic properties
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 44 - Fundamental convergence theorems in Lebesgue integration: Monotone convergence theorem, Tonelli's theorem and Fatou's lemma
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 45 - Lebesgue integral for complex and real measurable functions: the space of L^1 functions
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 46 - Basic properties of L^1-functions and Lebesgue's Dominated convergence theorem
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 47 - L^1 functions on R^d: Egorov's theorem revisited (Littlewood's third principle)
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 48 - L^1 functions on R^d: Statement of Lusin's theorem (Littlewood's second principle), Density of simple functions, step functions, and continuous compactly supported functions in L^1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 49 - L^1 functions on R^d: Proof of Lusin's theorem, space of L^1 functions as a metric space
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 50 - L^1 functions on R^d: the Riesz-Fischer theorem
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 51 - Various modes of convergence of measurable functions
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 52 - Easy implications from one mode of convergence to another
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 53 - Implication map for modes of convergence with various examples
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 54 - Uniqueness of limits across various modes of convergence
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 55 - Some criteria for reverse implications for modes of convergence
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 56 - Riesz Representation theorem- Motivation
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 57 - Basics on Locally compact Hausdorff spaces
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 58 - Borel and Radon measures on LCH spaces
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 59 - Properties of Radon measures and Lusin's theorem on LCH spaces
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 60 - Riesz Representation theorem - Complete statement and proof - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 61 - Riesz Representation theorem - Complete statement and proof - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 62 - Examples of measures constructed using RRT
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 63 - Theorems of Tonelli and Fubini- interchanging the order of integration for repeated integrals: motivation and discussion of product measure spaces
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 64 - Product measures
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 65 - Tonelli's theorem for sets - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 66 - Tonelli's theorem for sets - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 67 - Fubini-Tonelli theorem: interchanging order of integration for measurable and L^1 functions on sigma-finite measure spaces
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 68 - Lebesgue's differentiation theorem: introduction and motivation
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 69 - Lebesgue's differentiation theorem: statement and proof - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 70 - Lebesgue's differentiation theorem: statement and proof - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 71 - DIfferentiation theorems: Almost everywhere differentiability for Monotone and Bounded Variation functions - Part 1
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 72 - DIfferentiation theorems: Almost everywhere differentiability for Monotone and Bounded Variation functions - Part 2
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 73 - Riesz's Rising Sun Lemma
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 74 - Differentiation theorem for monone continuous functions
Link NOC:Measure Theory (Prof. Indrava Roy) Lecture 75 - Differentation theorem for general monotone functions and Second fundamental theorem of calculus for absolutely continuous functions
Link NOC:Complex Analysis Lecture 1 - Field of Complex Numbers
Link NOC:Complex Analysis Lecture 2 - Conjugation and Absolute value
Link NOC:Complex Analysis Lecture 3 - Topology on Complex plane
Link NOC:Complex Analysis Lecture 4 - Topology on Complex Plane (Continued...)
Link NOC:Complex Analysis Lecture 5 - Problem Session
Link NOC:Complex Analysis Lecture 6 - Isometries on the Complex Plane
Link NOC:Complex Analysis Lecture 7 - Functions on the Complex Plane
Link NOC:Complex Analysis Lecture 8 - Complex differentiability
Link NOC:Complex Analysis Lecture 9 - Power Series
Link NOC:Complex Analysis Lecture 10 - Differentiation of power series
Link NOC:Complex Analysis Lecture 11 - Problem Session
Link NOC:Complex Analysis Lecture 12 - Cauchy-Riemann equations
Link NOC:Complex Analysis Lecture 13 - Harmonic functions
Link NOC:Complex Analysis Lecture 14 - Möbius transformations
Link NOC:Complex Analysis Lecture 15 - Problem session
Link NOC:Complex Analysis Lecture 16 - Curves in the complex plane
Link NOC:Complex Analysis Lecture 17 - Complex Integration over curves
Link NOC:Complex Analysis Lecture 18 - First Fundamental theorem of Calculus
Link NOC:Complex Analysis Lecture 19 - Second Fundamental theorem of Calculus
Link NOC:Complex Analysis Lecture 20 - Problem session
Link NOC:Complex Analysis Lecture 21 - Homotopy of curves
Link NOC:Complex Analysis Lecture 22 - Cauchy-Goursat theorem
Link NOC:Complex Analysis Lecture 23 - Cauchy's theorem
Link NOC:Complex Analysis Lecture 24 - Problem Session
Link NOC:Complex Analysis Lecture 25 - Cauchy Integral Formula
Link NOC:Complex Analysis Lecture 26 - Principle of analytic continuation and Cauchy estimates
Link NOC:Complex Analysis Lecture 27 - Further consequences of Cauchy Integral Formula
Link NOC:Complex Analysis Lecture 28 - Problem session
Link NOC:Complex Analysis Lecture 29 - Winding number
Link NOC:Complex Analysis Lecture 30 - Open mapping theorem
Link NOC:Complex Analysis Lecture 31 - Schwarz reflection principle
Link NOC:Complex Analysis Lecture 32 - Problem session
Link NOC:Complex Analysis Lecture 33 - Singularities of a holomorphic function
Link NOC:Complex Analysis Lecture 34 - Pole of a function
Link NOC:Complex Analysis Lecture 35 - Laurent Series
Link NOC:Complex Analysis Lecture 36 - Casorati Weierstrass theorem
Link NOC:Complex Analysis Lecture 37 - Problem Session
Link NOC:Complex Analysis Lecture 38 - Residue theorem
Link NOC:Complex Analysis Lecture 39 - Argument principle
Link NOC:Complex Analysis Lecture 40 - Problem Session
Link NOC:Complex Analysis Lecture 41 - Branch of the Complex logarithm
Link NOC:Complex Analysis Lecture 42 - Automorphisms of the Unit disk
Link NOC:Complex Analysis Lecture 43 - Phragmen Lindelof method
Link NOC:Complex Analysis Lecture 44 - Problem Session
Link NOC:Complex Analysis Lecture 45 - Lifting of maps
Link NOC:Complex Analysis Lecture 46 - Covering spaces
Link NOC:Complex Analysis Lecture 47 - Bloch's theorem
Link NOC:Complex Analysis Lecture 48 - Little Picard's theorem
Link NOC:Real Analysis - I Lecture 1 - WEEK 1 - INTRODUCTION
Link NOC:Real Analysis - I Lecture 2 - Why study Real Analysis
Link NOC:Real Analysis - I Lecture 3 - Square root of 2
Link NOC:Real Analysis - I Lecture 4 - Wason's selection task
Link NOC:Real Analysis - I Lecture 5 - Zeno's Paradox
Link NOC:Real Analysis - I Lecture 6 - Basic set theory
Link NOC:Real Analysis - I Lecture 7 - Basic logic
Link NOC:Real Analysis - I Lecture 8 - Quantifiers
Link NOC:Real Analysis - I Lecture 9 - Proofs
Link NOC:Real Analysis - I Lecture 10 - Functions and relations
Link NOC:Real Analysis - I Lecture 11 - Axioms of Set Theory
Link NOC:Real Analysis - I Lecture 12 - Equivalence relations
Link NOC:Real Analysis - I Lecture 13 - What are the rationals
Link NOC:Real Analysis - I Lecture 14 - Cardinality
Link NOC:Real Analysis - I Lecture 15 - WEEK 2 - INTRODUCTION
Link NOC:Real Analysis - I Lecture 16 - Field axioms
Link NOC:Real Analysis - I Lecture 17 - Order axioms
Link NOC:Real Analysis - I Lecture 18 - Absolute value
Link NOC:Real Analysis - I Lecture 19 - The completeness axiom
Link NOC:Real Analysis - I Lecture 20 - Nested intervals property
Link NOC:Real Analysis - I Lecture 21 - NIP+AP⇒ Completeness
Link NOC:Real Analysis - I Lecture 22 - Existence of square roots
Link NOC:Real Analysis - I Lecture 23 - Uncountability of the real numbers
Link NOC:Real Analysis - I Lecture 24 - Density of rationals and irrationals
Link NOC:Real Analysis - I Lecture 25 - WEEK 3 - INTRODUCTION
Link NOC:Real Analysis - I Lecture 26 - Motivation for infinite sums
Link NOC:Real Analysis - I Lecture 27 - Definition of sequence and examples
Link NOC:Real Analysis - I Lecture 28 - Definition of convergence
Link NOC:Real Analysis - I Lecture 29 - Uniqueness of limits
Link NOC:Real Analysis - I Lecture 30 - Achilles and the tortoise
Link NOC:Real Analysis - I Lecture 31 - Deep dive into the definition of convergence
Link NOC:Real Analysis - I Lecture 32 - A descriptive language for convergence
Link NOC:Real Analysis - I Lecture 33 - Limit laws
Link NOC:Real Analysis - I Lecture 34 - Subsequences
Link NOC:Real Analysis - I Lecture 35 - Examples of convergent and divergent sequences
Link NOC:Real Analysis - I Lecture 36 - Some special sequences-CORRECT
Link NOC:Real Analysis - I Lecture 37 - Monotone sequences
Link NOC:Real Analysis - I Lecture 38 - Bolzano-Weierstrass theorem
Link NOC:Real Analysis - I Lecture 39 - The Cauchy Criterion
Link NOC:Real Analysis - I Lecture 40 - MCT implies completeness
Link NOC:Real Analysis - I Lecture 41 - Definition and examples of infinite series
Link NOC:Real Analysis - I Lecture 42 - Cauchy tests-Corrected
Link NOC:Real Analysis - I Lecture 43 - Tests for convergence
Link NOC:Real Analysis - I Lecture 44 - Erdos_s proof on divergence of reciprocals of primes
Link NOC:Real Analysis - I Lecture 45 - Resolving Zeno_s paradox
Link NOC:Real Analysis - I Lecture 46 - Absolute and conditional convergence
Link NOC:Real Analysis - I Lecture 47 - Absolute convergence continued
Link NOC:Real Analysis - I Lecture 48 - The number e
Link NOC:Real Analysis - I Lecture 49 - Grouping terms of an infinite series
Link NOC:Real Analysis - I Lecture 50 - The Cauchy product
Link NOC:Real Analysis - I Lecture 51 - WEEK 5 - INTRODUCTION
Link NOC:Real Analysis - I Lecture 52 - The role of topology in real analysis
Link NOC:Real Analysis - I Lecture 53 - Open and closed sets
Link NOC:Real Analysis - I Lecture 54 - Basic properties of adherent and limit points
Link NOC:Real Analysis - I Lecture 55 - Basic properties of open and closed sets
Link NOC:Real Analysis - I Lecture 56 - Definition of continuity
Link NOC:Real Analysis - I Lecture 57 - Deep dive into epsilon-delta
Link NOC:Real Analysis - I Lecture 58 - Negating continuity
Link NOC:Real Analysis - I Lecture 59 - The functions x and x2
Link NOC:Real Analysis - I Lecture 60 - Limit laws
Link NOC:Real Analysis - I Lecture 61 - Limit of sin x_x
Link NOC:Real Analysis - I Lecture 62 - Relationship between limits and continuity
Link NOC:Real Analysis - I Lecture 63 - Global continuity and open sets
Link NOC:Real Analysis - I Lecture 64 - Continuity of square root
Link NOC:Real Analysis - I Lecture 65 - Operations on continuous functions
Link NOC:Real Analysis - I Lecture 66 - Language for limits
Link NOC:Real Analysis - I Lecture 67 - Infinite limits
Link NOC:Real Analysis - I Lecture 68 - One sided limits
Link NOC:Real Analysis - I Lecture 69 - Limits of polynomials
Link NOC:Real Analysis - I Lecture 70 - Compactness
Link NOC:Real Analysis - I Lecture 71 - The Heine-Borel theorem
Link NOC:Real Analysis - I Lecture 72 - Open covers and compactness
Link NOC:Real Analysis - I Lecture 73 - Equivalent notions of compactness
Link NOC:Real Analysis - I Lecture 74 - The extreme value theorem
Link NOC:Real Analysis - I Lecture 75 - Uniform continuity
Link NOC:Real Analysis - I Lecture 76 - Connectedness
Link NOC:Real Analysis - I Lecture 77 - Intermediate Value Theorem
Link NOC:Real Analysis - I Lecture 78 - Darboux continuity and monotone functions
Link NOC:Real Analysis - I Lecture 79 - Perfect sets and the Cantor set
Link NOC:Real Analysis - I Lecture 80 - The structure of open sets
Link NOC:Real Analysis - I Lecture 81 - The Baire Category theorem
Link NOC:Real Analysis - I Lecture 82 - Discontinuities
Link NOC:Real Analysis - I Lecture 83 - Classification of discontinuities and monotone functions
Link NOC:Real Analysis - I Lecture 84 - Structure of set of discontinuities
Link NOC:Real Analysis - I Lecture 85 - WEEK 8 and 9 - INTRODUCTION
Link NOC:Real Analysis - I Lecture 86 - Definition and interpretation of the derivative
Link NOC:Real Analysis - I Lecture 87 - Basic properties of the derivative
Link NOC:Real Analysis - I Lecture 88 - Examples of differentiation
Link NOC:Real Analysis - I Lecture 89 - Darboux_s theorem
Link NOC:Real Analysis - I Lecture 90 - The mean value theorem
Link NOC:Real Analysis - I Lecture 91 - Applications of the mean value theorem
Link NOC:Real Analysis - I Lecture 92 - Taylor's theorem NEW
Link NOC:Real Analysis - I Lecture 93 - The ratio mean value theorem and L_Hospital_s rule
Link NOC:Real Analysis - I Lecture 94 - Axiomatic characterisation of area and the Riemann integral
Link NOC:Real Analysis - I Lecture 95 - Proof of axiomatic characterization
Link NOC:Real Analysis - I Lecture 96 - The definition of the Riemann integral
Link NOC:Real Analysis - I Lecture 97 - Criteria for Riemann integrability
Link NOC:Real Analysis - I Lecture 98 - Linearity of integral
Link NOC:Real Analysis - I Lecture 99 - Sets of measure zero
Link NOC:Real Analysis - I Lecture 100 - The Riemann-Lebesgue theorem
Link NOC:Real Analysis - I Lecture 101 - Consequences of the Riemann-Lebesgue theorem
Link NOC:Real Analysis - I Lecture 102 - WEEK 10 and 11 - INTRODUCTION
Link NOC:Real Analysis - I Lecture 103 - The fundamental theorem of calculus
Link NOC:Real Analysis - I Lecture 104 - Taylor's theorem-Integral form of remainder
Link NOC:Real Analysis - I Lecture 105 - Notation for Taylor polynomials
Link NOC:Real Analysis - I Lecture 106 - Smooth functions and Taylor series
Link NOC:Real Analysis - I Lecture 107 - Power series
Link NOC:Real Analysis - I Lecture 108 - Definition of uniform convergence
Link NOC:Real Analysis - I Lecture 109 - The exponential function
Link NOC:Real Analysis - I Lecture 110 - The inverse function theorem
Link NOC:Real Analysis - I Lecture 111 - The Logarithm
Link NOC:Real Analysis - I Lecture 112 - Trigonometric functions
Link NOC:Real Analysis - I Lecture 113 - The number Pi
Link NOC:Real Analysis - I Lecture 114 - The graphs of sin and cos
Link NOC:Real Analysis - I Lecture 115 - The Basel problem
Link NOC:Real Analysis - I Lecture 116 - Improper integrals
Link NOC:Real Analysis - I Lecture 117 - The Integral test
Link NOC:Real Analysis - I Lecture 118 - Weierstrass approximation theorem
Link NOC:Real Analysis - I Lecture 119 - Bernstein Polynomials
Link NOC:Real Analysis - I Lecture 120 - Properties of Bernstein polynomials
Link NOC:Real Analysis - I Lecture 121 - Proof of Weierstrass approximation theorem
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 1 - Introduction / Euler Lagrange Equations - Part 1
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 2 - Introduction / Euler Lagrange Equations - Part 2
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 3 - Introduction / Euler Lagrange Equations - Part 3
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 4 - Introduction / Euler Lagrange Equations - Part 4
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 5 - Introduction / Euler Lagrange Equations - Part 5
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 6 - Introduction / Euler Lagrange Equations - Part 6
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 7 - Special cases / Invariance, Existence and Uniqueness of solutions - Part 1
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 8 - Special cases / Invariance, Existence and Uniqueness of solutions - Part 2
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 9 - Special cases / Invariance, Existence and Uniqueness of solutions - Part 3
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 10 - Special cases / Invariance, Existence and Uniqueness of solutions - Part 4
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 11 - Special cases / Invariance, Existence and Uniqueness of solutions - Part 5
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 12 - Special cases / Invariance, Existence and Uniqueness of solutions - Part 6
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 13 - Generalization / Numerical solution of Euler Lagrange Equations - Part 1
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 14 - Generalization / Numerical solution of Euler Lagrange Equations - Part 2
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 15 - Generalization / Numerical solution of Euler Lagrange Equations - Part 3
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 16 - Generalization / Numerical solution of Euler Lagrange Equations - Part 4
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 17 - Generalization / Numerical solution of Euler Lagrange Equations - Part 5
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 18 - Generalization / Numerical solution of Euler Lagrange Equations - Part 6
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 19 - Isoperimetric Problems - Part 1
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 20 - Isoperimetric Problems - Part 2
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 21 - Isoperimetric Problems - Part 3
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 22 - Isoperimetric Problems - Part 4
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 23 - Isoperimetric Problems - Part 5
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 24 - Isoperimetric Problems - Part 6
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 25 - Problems with Holononomic and non- Holononomic Constraints, Variable Endpts - Part 1
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 26 - Problems with Holononomic and non- Holononomic Constraints, Variable Endpts - Part 2
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 27 - Problems with Holononomic and non- Holononomic Constraints, Variable Endpts - Part 3
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 28 - Problems with Holononomic and non- Holononomic Constraints, Variable Endpts - Part 4
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 29 - Problems with Holononomic and non- Holononomic Constraints, Variable Endpts - Part 5
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 30 - Problems with Holononomic and non- Holononomic Constraints, Variable Endpts - Part 6
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 31 - Broken extremals / Hamiltonian Formulation - Part 1
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 32 - Broken extremals / Hamiltonian Formulation - Part 2
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 33 - Broken extremals / Hamiltonian Formulation - Part 3
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 34 - Broken extremals / Hamiltonian Formulation - Part 4
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 35 - Broken extremals / Hamiltonian Formulation - Part 5
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 36 - Broken extremals / Hamiltonian Formulation - Part 6
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 37 - Hamilton-Jacobi Equations - Part 1
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 38 - Hamilton-Jacobi Equations - Part 2
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 39 - Hamilton-Jacobi Equations - Part 3
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 40 - Hamilton-Jacobi Equations - Part 4
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 41 - Hamilton-Jacobi Equations - Part 5
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 42 - Hamilton-Jacobi Equations - Part 6
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 43 - Noether's Theorem / Introduction to Second Variation - Part 1
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 44 - Noether's Theorem / Introduction to Second Variation - Part 2
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 45 - Noether's Theorem / Introduction to Second Variation - Part 3
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 46 - Noether's Theorem / Introduction to Second Variation - Part 4
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 47 - Noether's Theorem / Introduction to Second Variation - Part 5
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 48 - Noether's Theorem / Introduction to Second Variation - Part 6
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 49 - Conjugate points / Jacobi Accessory Equations / Introduction to Optimal Control Theory - Part 1
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 50 - Conjugate points / Jacobi Accessory Equations / Introduction to Optimal Control Theory - Part 2
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 51 - Conjugate points / Jacobi Accessory Equations / Introduction to Optimal Control Theory - Part 3
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 52 - Conjugate points / Jacobi Accessory Equations / Introduction to Optimal Control Theory - Part 4
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 53 - Conjugate points / Jacobi Accessory Equations / Introduction to Optimal Control Theory - Part 5
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 54 - Conjugate points / Jacobi Accessory Equations / Introduction to Optimal Control Theory - Part 6
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 55 - Constrained Optimization in Optimal Control Theory - Part 1
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 56 - Constrained Optimization in Optimal Control Theory - Part 2
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 57 - Constrained Optimization in Optimal Control Theory - Part 3
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 58 - Constrained Optimization in Optimal Control Theory - Part 4
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 59 - Constrained Optimization in Optimal Control Theory - Part 5
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 60 - Constrained Optimization in Optimal Control Theory - Part 6
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 61 - Introduction to Nanomechanics - Part 1
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 62 - Introduction to Nanomechanics - Part 2
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 63 - Introduction to Nanomechanics - Part 3
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 64 - Introduction to Nanomechanics - Part 4
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 65 - Introduction to Nanomechanics - Part 5
Link NOC:Variational Calculus and its applications in Control Theory and Nanomechanics Lecture 66 - Introduction to Nanomechanics - Part 6
Link NOC:Introduction to Galois Theory Lecture 1 - Motivation and overview of the course
Link NOC:Introduction to Galois Theory Lecture 2 - Review of group theory
Link NOC:Introduction to Galois Theory Lecture 3 - Review of ring theory - I
Link NOC:Introduction to Galois Theory Lecture 4 - Review of ring theory - II
Link NOC:Introduction to Galois Theory Lecture 5 - Review of field theory - I
Link NOC:Introduction to Galois Theory Lecture 6 - Review of field theory - II
Link NOC:Introduction to Galois Theory Lecture 7 - Review of field theory - III
Link NOC:Introduction to Galois Theory Lecture 8 - Problem Session - Part 1
Link NOC:Introduction to Galois Theory Lecture 9 - Problem Session - Part 2
Link NOC:Introduction to Galois Theory Lecture 10 - Beginning of Galois theory
Link NOC:Introduction to Galois Theory Lecture 11 - Fixed fields
Link NOC:Introduction to Galois Theory Lecture 12 - Theorem I on fixed fields
Link NOC:Introduction to Galois Theory Lecture 13 - Theorem II on fixed fields
Link NOC:Introduction to Galois Theory Lecture 14 - Galois extensions, Galois groups
Link NOC:Introduction to Galois Theory Lecture 15 - Normal extensions
Link NOC:Introduction to Galois Theory Lecture 16 - Problem Session - Part 3
Link NOC:Introduction to Galois Theory Lecture 17 - Problem Session - Part 4
Link NOC:Introduction to Galois Theory Lecture 18 - Separable extension - Part 1
Link NOC:Introduction to Galois Theory Lecture 19 - Separable extension - Part 2
Link NOC:Introduction to Galois Theory Lecture 20 - Characterization of Galois extensions - Part 1
Link NOC:Introduction to Galois Theory Lecture 21 - Characterization of Galois extensions - Part 2
Link NOC:Introduction to Galois Theory Lecture 22 - Examples of Galois extensions
Link NOC:Introduction to Galois Theory Lecture 23 - Motivating the main theorem of Galois theory
Link NOC:Introduction to Galois Theory Lecture 24 - Main theorem of Galois theory - Part 1
Link NOC:Introduction to Galois Theory Lecture 25 - Main theorem of Galois theory - Part 2
Link NOC:Introduction to Galois Theory Lecture 26 - Fundamental theorem of algebra
Link NOC:Introduction to Galois Theory Lecture 27 - Problem Session - Part 5
Link NOC:Introduction to Galois Theory Lecture 28 - Problem Session - Part 6
Link NOC:Introduction to Galois Theory Lecture 29 - Problem Session - Part 7
Link NOC:Introduction to Galois Theory Lecture 30 - Problem Session - Part 8
Link NOC:Introduction to Galois Theory Lecture 31 - Problem Session - Part 9
Link NOC:Introduction to Galois Theory Lecture 32 - Kummer extensions - Part 1
Link NOC:Introduction to Galois Theory Lecture 33 - Kummer extensions - Part 2
Link NOC:Introduction to Galois Theory Lecture 34 - Kummer extensions - Part 3
Link NOC:Introduction to Galois Theory Lecture 35 - Cyclotomic extensions - Part 1
Link NOC:Introduction to Galois Theory Lecture 36 - Cyclotomic extensions - Part 2
Link NOC:Introduction to Galois Theory Lecture 37 - Solvability by radicals
Link NOC:Introduction to Galois Theory Lecture 38 - Characterizations of solvability - Part 1
Link NOC:Introduction to Galois Theory Lecture 39 - Characterizations of solvability - Part 2
Link NOC:Introduction to Galois Theory Lecture 40 - Discriminants, Galois groups of polynomials
Link NOC:Introduction to Galois Theory Lecture 41 - Quartics are solvable
Link NOC:Introduction to Galois Theory Lecture 42 - Solvable groups - Part 1
Link NOC:Introduction to Galois Theory Lecture 43 - Solvable groups - Part 2
Link NOC:Introduction to Galois Theory Lecture 44 - Solvable groups - Part 3
Link NOC:Introduction to Galois Theory Lecture 45 - Insolvability of quintics
Link NOC:Introduction to Galois Theory Lecture 46 - Problem Session - Part 10
Link NOC:Introduction to Galois Theory Lecture 47 - Problem Session - Part 11
Link NOC:Introduction to Galois Theory Lecture 48 - Problem Session - Part 12
Link NOC:Introduction to Galois Theory Lecture 49 - Problem Session - Part 13
Link NOC:Basic Calculus 1 Lecture 1 - The Real line - Part 1
Link NOC:Basic Calculus 1 Lecture 2 - The Real line - Part 2
Link NOC:Basic Calculus 1 Lecture 3 - Absolute value - Part 1
Link NOC:Basic Calculus 1 Lecture 4 - Absolute value - Part 2
Link NOC:Basic Calculus 1 Lecture 5 - Functions - Part 1
Link NOC:Basic Calculus 1 Lecture 6 - Functions - Part 2
Link NOC:Basic Calculus 1 Lecture 7 - Transcendental and trigonometric Functions - Part 1
Link NOC:Basic Calculus 1 Lecture 8 - Transcendental and trigonometric Functions - Part 2
Link NOC:Basic Calculus 1 Lecture 9 - Limits of functions - Part 1
Link NOC:Basic Calculus 1 Lecture 10 - Limits of functions - Part 2
Link NOC:Basic Calculus 1 Lecture 11 - Algebra of limits - Part 1
Link NOC:Basic Calculus 1 Lecture 12 - Algebra of limits - Part 2
Link NOC:Basic Calculus 1 Lecture 13 - One-sided limits - Part 1
Link NOC:Basic Calculus 1 Lecture 14 - One-sided limits - Part 2
Link NOC:Basic Calculus 1 Lecture 15 - Limits at infinity - Part 1
Link NOC:Basic Calculus 1 Lecture 16 - Limits at infinity - Part 2
Link NOC:Basic Calculus 1 Lecture 17 - Infinite limits - Part 1
Link NOC:Basic Calculus 1 Lecture 18 - Infinite limits - Part 2
Link NOC:Basic Calculus 1 Lecture 19 - Continuity - Part 1
Link NOC:Basic Calculus 1 Lecture 20 - Continuity - Part 2
Link NOC:Basic Calculus 1 Lecture 21 - Algebra of continuous functions - Part 1
Link NOC:Basic Calculus 1 Lecture 22 - Algebra of continuous functions - Part 2
Link NOC:Basic Calculus 1 Lecture 23 - Results on continuity - Part 1
Link NOC:Basic Calculus 1 Lecture 24 - Results on continuity - Part 2
Link NOC:Basic Calculus 1 Lecture 25 - Differentiability - Part 1
Link NOC:Basic Calculus 1 Lecture 26 - Differentiability - Part 2
Link NOC:Basic Calculus 1 Lecture 27 - Derivative and tangent - Part 1
Link NOC:Basic Calculus 1 Lecture 28 - Derivative and tangent - Part 2
Link NOC:Basic Calculus 1 Lecture 29 - Rules of differentiation - Part 1
Link NOC:Basic Calculus 1 Lecture 30 - Rules of differentiation - Part 2
Link NOC:Basic Calculus 1 Lecture 31 - Differentiation exercises - Part 1
Link NOC:Basic Calculus 1 Lecture 32 - Differentiation exercises - Part 2
Link NOC:Basic Calculus 1 Lecture 33 - Maxima and minima - Part 1
Link NOC:Basic Calculus 1 Lecture 34 - Maxima and minima - Part 2
Link NOC:Basic Calculus 1 Lecture 35 - Rolle’s theorem and mean value theorem - Part 1
Link NOC:Basic Calculus 1 Lecture 36 - Rolle’s theorem and mean value theorem - Part 2
Link NOC:Basic Calculus 1 Lecture 37 - Using Rolle’s theorem and Mean value theorem - Part 1
Link NOC:Basic Calculus 1 Lecture 38 - Using Rolle’s theorem and Mean value theorem - Part 2
Link NOC:Basic Calculus 1 Lecture 39 - First derivative test - Part 1
Link NOC:Basic Calculus 1 Lecture 40 - First derivative test - Part 2
Link NOC:Basic Calculus 1 Lecture 41 - Second derivative test - Part 1
Link NOC:Basic Calculus 1 Lecture 42 - Second derivative test - Part 2
Link NOC:Basic Calculus 1 Lecture 43 - Concavity - Part 1
Link NOC:Basic Calculus 1 Lecture 44 - Concavity - Part 2
Link NOC:Basic Calculus 1 Lecture 45 - Linearization and differential - Part 1
Link NOC:Basic Calculus 1 Lecture 46 - Linearization and differential - Part 2
Link NOC:Basic Calculus 1 Lecture 47 - L’Hospital’s rules - Part 1
Link NOC:Basic Calculus 1 Lecture 48 - L’Hospital’s rules - Part 2
Link NOC:Basic Calculus 1 Lecture 49 - Definite integral - Part 1
Link NOC:Basic Calculus 1 Lecture 50 - Definite integral - Part 2
Link NOC:Basic Calculus 1 Lecture 51 - Properties of integral - Part 1
Link NOC:Basic Calculus 1 Lecture 52 - Properties of integral - Part 2
Link NOC:Basic Calculus 1 Lecture 53 - Fundamental theorem of calculus - Part 1
Link NOC:Basic Calculus 1 Lecture 54 - Fundamental theorem of calculus - Part 2
Link NOC:Basic Calculus 1 Lecture 55 - Applications of Funda - mental theorem of calculus - Part 1
Link NOC:Basic Calculus 1 Lecture 56 - Applications of Funda - mental theorem of calculus - Part 2
Link NOC:Basic Calculus 1 Lecture 57 - Rule of substitution - Part 1
Link NOC:Basic Calculus 1 Lecture 58 - Rule of substitution - Part 2
Link NOC:Basic Calculus 1 Lecture 59 - Area between curves - Part 1
Link NOC:Basic Calculus 1 Lecture 60 - Area between curves - Part 2
Link NOC:Basic Calculus 1 Lecture 61 - Volumes by slicing - Part 1
Link NOC:Basic Calculus 1 Lecture 62 - Volumes by slicing - Part 2
Link NOC:Basic Calculus 1 Lecture 63 - The disk method - Part 1
Link NOC:Basic Calculus 1 Lecture 64 - The disk method - Part 2
Link NOC:Basic Calculus 1 Lecture 65 - The washer method - Part 1
Link NOC:Basic Calculus 1 Lecture 66 - The washer method - Part 2
Link NOC:Basic Calculus 1 Lecture 67 - Volumes by cylindrical shells - Part 1
Link NOC:Basic Calculus 1 Lecture 68 - Volumes by cylindrical shells - Part 2
Link NOC:Basic Calculus 1 Lecture 69 - Lengths oc curves - Part 1
Link NOC:Basic Calculus 1 Lecture 70 - Lengths oc curves - Part 2
Link NOC:Basic Calculus 1 Lecture 71 - Areas of surface of revolution - Part 1
Link NOC:Basic Calculus 1 Lecture 72 - Areas of surface of revolution - Part 2
Link NOC:Functional Analysis Lecture 1 - Normed Linear Spaces
Link NOC:Functional Analysis Lecture 2 - Examples of Normed Linear Spaces
Link NOC:Functional Analysis Lecture 3 - Examples (Continued...)
Link NOC:Functional Analysis Lecture 4 - Continuous linear maps - Part 1
Link NOC:Functional Analysis Lecture 5 - Continuous linear maps - Part 2
Link NOC:Functional Analysis Lecture 6 - Isomorphisms
Link NOC:Functional Analysis Lecture 7 - Exercises
Link NOC:Functional Analysis Lecture 8 - Exercises (Continued...)
Link NOC:Functional Analysis Lecture 9 - Hahn-Banach Theorems
Link NOC:Functional Analysis Lecture 10 - Reflexivity
Link NOC:Functional Analysis Lecture 11 - Geometric version
Link NOC:Functional Analysis Lecture 12 - Geometric version (Continued...)
Link NOC:Functional Analysis Lecture 13 - Vector valued integration
Link NOC:Functional Analysis Lecture 14 - Exercises - Part 1
Link NOC:Functional Analysis Lecture 15 - Exercises - Part 2
Link NOC:Functional Analysis Lecture 16 - Baire's Theorem and Applications
Link NOC:Functional Analysis Lecture 17 - Application to Fourier series
Link NOC:Functional Analysis Lecture 18 - Open mapping and closed graph theorems
Link NOC:Functional Analysis Lecture 19 - Annihilators
Link NOC:Functional Analysis Lecture 20 - Complemented subspaces
Link NOC:Functional Analysis Lecture 21 - Unbounded Operators, Adjoints - Part 1
Link NOC:Functional Analysis Lecture 22 - Unbounded Operators, Adjoints - Part 2
Link NOC:Functional Analysis Lecture 23 - Orthogonality relations
Link NOC:Functional Analysis Lecture 24 - Exercises
Link NOC:Functional Analysis Lecture 25 - Exercises (Continued...)
Link NOC:Functional Analysis Lecture 26 - Weak topology - Part 1
Link NOC:Functional Analysis Lecture 27 - Weak topology - Part 2
Link NOC:Functional Analysis Lecture 28 - Weak topology - Part 3
Link NOC:Functional Analysis Lecture 29 - Weak* topology - Part 1
Link NOC:Functional Analysis Lecture 30 - Weak* topology - Part 2
Link NOC:Functional Analysis Lecture 31 - Reflexive Spaces
Link NOC:Functional Analysis Lecture 32 - Separable Spaces - Part 1
Link NOC:Functional Analysis Lecture 33 - Separable Spaces - Part 2
Link NOC:Functional Analysis Lecture 34 - Uniformly Convex Spaces
Link NOC:Functional Analysis Lecture 35 - Applications
Link NOC:Functional Analysis Lecture 36 - Exercises
Link NOC:Functional Analysis Lecture 37 - L-p Spaces - Part 1
Link NOC:Functional Analysis Lecture 38 - L-p Spaces - Part 2
Link NOC:Functional Analysis Lecture 39 - Completeness
Link NOC:Functional Analysis Lecture 40 - Duality
Link NOC:Functional Analysis Lecture 41 - L-p Spaces in Euclidean spaces - Part 1
Link NOC:Functional Analysis Lecture 42 - L-p Spaces in Euclidean spaces - Part 2
Link NOC:Functional Analysis Lecture 43 - Dual of L-1
Link NOC:Functional Analysis Lecture 44 - The space L-1 (Continued...)
Link NOC:Functional Analysis Lecture 45 - Exercises - Part 1
Link NOC:Functional Analysis Lecture 46 - Exercises - Part 2
Link NOC:Functional Analysis Lecture 47 - Exercises - Part 3
Link NOC:Functional Analysis Lecture 48 - Exercises - Part 4
Link NOC:Functional Analysis Lecture 49 - Hilbert spaces - Part 1
Link NOC:Functional Analysis Lecture 50 - Hilbert spaces - Part 2
Link NOC:Functional Analysis Lecture 51 - Duality
Link NOC:Functional Analysis Lecture 52 - Adjoints
Link NOC:Functional Analysis Lecture 53 - Applications
Link NOC:Functional Analysis Lecture 54 - Orthonormal sets
Link NOC:Functional Analysis Lecture 55 - Orthonormal bases - Part 1
Link NOC:Functional Analysis Lecture 56 - Orthonormal bases - Part 2
Link NOC:Functional Analysis Lecture 57 - Fourier series
Link NOC:Functional Analysis Lecture 58 - Spectrum of an operator - Part 1
Link NOC:Functional Analysis Lecture 59 - Spectrum of an operator - Part 2
Link NOC:Functional Analysis Lecture 60 - Exercises - Part 1
Link NOC:Functional Analysis Lecture 61 - Exercises - Part 2
Link NOC:Functional Analysis Lecture 62 - Exercises - Part 3
Link NOC:Functional Analysis Lecture 63 - Compact operators - Part 1
Link NOC:Functional Analysis Lecture 64 - Compact operators - Part 2
Link NOC:Functional Analysis Lecture 65 - Riesz-Fredholm theory - Part 1
Link NOC:Functional Analysis Lecture 66 - Riesz-Fredholm theory - Part 2
Link NOC:Functional Analysis Lecture 67 - Riesz-Fredholm theory
Link NOC:Functional Analysis Lecture 68 - Spectrum of a compact operator
Link NOC:Functional Analysis Lecture 69 - Spectrum of a compact self-adjoint operator
Link NOC:Functional Analysis Lecture 70 - Eigenvalues of a compact self-adjoint operator
Link NOC:Functional Analysis Lecture 71 - Exercises - Part 1
Link NOC:Functional Analysis Lecture 72 - Exercises - Part 2
Link NOC:Functional Analysis Lecture 73 - Exercises - Part 3
Link NOC:Functional Analysis Lecture 74 - Exercises - Part 4
Link NOC:Mathematical Methods in Physics 1 Lecture 1 - Vectors
Link NOC:Mathematical Methods in Physics 1 Lecture 2 - Linear vector spaces
Link NOC:Mathematical Methods in Physics 1 Lecture 3 - Linear vector spaces: immediate consequences
Link NOC:Mathematical Methods in Physics 1 Lecture 4 - Dot product of Euclidean vectors
Link NOC:Mathematical Methods in Physics 1 Lecture 5 - Inner product on a Linear vector space
Link NOC:Mathematical Methods in Physics 1 Lecture 6 - Cauchy-Schwartz inequality for Euclidean vectors
Link NOC:Mathematical Methods in Physics 1 Lecture 7 - Cauchy-Schwartz inequality for vectors from LVS
Link NOC:Mathematical Methods in Physics 1 Lecture 8 - Applications of the Cauchy-Schwartz inequality
Link NOC:Mathematical Methods in Physics 1 Lecture 9 - Triangle inequality
Link NOC:Mathematical Methods in Physics 1 Lecture 10 - Linear dependence and independence of vectors
Link NOC:Mathematical Methods in Physics 1 Lecture 11 - Row reduction of matrices
Link NOC:Mathematical Methods in Physics 1 Lecture 12 - Rank of a matrix
Link NOC:Mathematical Methods in Physics 1 Lecture 13 - Rank of a matrix: consequences
Link NOC:Mathematical Methods in Physics 1 Lecture 14 - Determinants and their properties
Link NOC:Mathematical Methods in Physics 1 Lecture 15 - The rank of a matrix using determinants
Link NOC:Mathematical Methods in Physics 1 Lecture 16 - Cramer's rule
Link NOC:Mathematical Methods in Physics 1 Lecture 17 - Square system of equations
Link NOC:Mathematical Methods in Physics 1 Lecture 18 - Homogeneous equations
Link NOC:Mathematical Methods in Physics 1 Lecture 19 - The rank of a matrix and linear dependence
Link NOC:Mathematical Methods in Physics 1 Lecture 20 - Span, basis, and dimension of a LVS
Link NOC:Mathematical Methods in Physics 1 Lecture 21 - Gram-Schmidt orthogonalization
Link NOC:Mathematical Methods in Physics 1 Lecture 22 - Vector subspaces
Link NOC:Mathematical Methods in Physics 1 Lecture 23 - Linear operators
Link NOC:Mathematical Methods in Physics 1 Lecture 24 - Inverse of an operator
Link NOC:Mathematical Methods in Physics 1 Lecture 25 - Adjoint of an operator
Link NOC:Mathematical Methods in Physics 1 Lecture 26 - Projection operators
Link NOC:Mathematical Methods in Physics 1 Lecture 27 - Eigenvalues and Eigenvectors
Link NOC:Mathematical Methods in Physics 1 Lecture 28 - Hermitian operators
Link NOC:Mathematical Methods in Physics 1 Lecture 29 - Unitary operators
Link NOC:Mathematical Methods in Physics 1 Lecture 30 - Normal operators
Link NOC:Mathematical Methods in Physics 1 Lecture 31 - Similarity and Unitary transformations
Link NOC:Mathematical Methods in Physics 1 Lecture 32 - Matrix representations
Link NOC:Mathematical Methods in Physics 1 Lecture 33 - Eigenvalues and Eigenvectors of matrices
Link NOC:Mathematical Methods in Physics 1 Lecture 34 - Defective matrices
Link NOC:Mathematical Methods in Physics 1 Lecture 35 - Eigenvalues and eigenvectors: useful results
Link NOC:Mathematical Methods in Physics 1 Lecture 36 - Transformation of Basis
Link NOC:Mathematical Methods in Physics 1 Lecture 37 - A class of invertible matrices
Link NOC:Mathematical Methods in Physics 1 Lecture 38 - Diagonalization of matrices
Link NOC:Mathematical Methods in Physics 1 Lecture 39 - Diagonalizability of matrices
Link NOC:Mathematical Methods in Physics 1 Lecture 40 - Functions of matrices
Link NOC:Mathematical Methods in Physics 1 Lecture 41 - SHM and waves
Link NOC:Mathematical Methods in Physics 1 Lecture 42 - Periodic functions
Link NOC:Mathematical Methods in Physics 1 Lecture 43 - Average value of a function
Link NOC:Mathematical Methods in Physics 1 Lecture 44 - Piecewise continuous functions
Link NOC:Mathematical Methods in Physics 1 Lecture 45 - Orthogonal basis: Fourier series
Link NOC:Mathematical Methods in Physics 1 Lecture 46 - Fourier coefficients
Link NOC:Mathematical Methods in Physics 1 Lecture 47 - Dirichlet Conditions
Link NOC:Mathematical Methods in Physics 1 Lecture 48 - Complex Form of Fourier Series
Link NOC:Mathematical Methods in Physics 1 Lecture 49 - Other intervals: arbitrary period
Link NOC:Mathematical Methods in Physics 1 Lecture 50 - Even and Odd Functions
Link NOC:Mathematical Methods in Physics 1 Lecture 51 - Differentiating Fourier series
Link NOC:Mathematical Methods in Physics 1 Lecture 52 - Parseval's theorem
Link NOC:Mathematical Methods in Physics 1 Lecture 53 - Fourier series to Fourier transforms
Link NOC:Mathematical Methods in Physics 1 Lecture 54 - Fourier Sine and Cosine transforms
Link NOC:Mathematical Methods in Physics 1 Lecture 55 - Parseval's theorem for Fourier series
Link NOC:Mathematical Methods in Physics 1 Lecture 56 - Ordinary Differential equations
Link NOC:Mathematical Methods in Physics 1 Lecture 57 - First order ODEs
Link NOC:Mathematical Methods in Physics 1 Lecture 58 - Linear first order ODEs
Link NOC:Mathematical Methods in Physics 1 Lecture 59 - Orthogonal Trajectories
Link NOC:Mathematical Methods in Physics 1 Lecture 60 - Exact differential equations
Link NOC:Mathematical Methods in Physics 1 Lecture 61 - Special first order ODEs
Link NOC:Mathematical Methods in Physics 1 Lecture 62 - Solutions of linear first-order ODEs
Link NOC:Mathematical Methods in Physics 1 Lecture 63 - Revisit linear first-order ODEs
Link NOC:Mathematical Methods in Physics 1 Lecture 64 - ODEs in disguise
Link NOC:Mathematical Methods in Physics 1 Lecture 65 - 2nd order Homogeneous linear equations with constant coefficients
Link NOC:Mathematical Methods in Physics 1 Lecture 66 - The use of a known solution to find another
Link NOC:Mathematical Methods in Physics 1 Lecture 67 - An alternate approach to auxiliary equation
Link NOC:Mathematical Methods in Physics 1 Lecture 68 - Inhomogeneous second order equations
Link NOC:Mathematical Methods in Physics 1 Lecture 69 - Methods to find a Particular solution
Link NOC:Mathematical Methods in Physics 1 Lecture 70 - Successive Integration of two first order equations
Link NOC:Mathematical Methods in Physics 1 Lecture 71 - Illustrative examples
Link NOC:Mathematical Methods in Physics 1 Lecture 72 - Variation of Parameters
Link NOC:Mathematical Methods in Physics 1 Lecture 73 - Vibrations in mechanical systems
Link NOC:Mathematical Methods in Physics 1 Lecture 74 - Forced Vibrations
Link NOC:Mathematical Methods in Physics 1 Lecture 75 - Resonance
Link NOC:Mathematical Methods in Physics 1 Lecture 76 - Linear Superposition
Link NOC:Mathematical Methods in Physics 1 Lecture 77 - Laplace Transform (LT)
Link NOC:Mathematical Methods in Physics 1 Lecture 78 - Basic Properties of Laplace Transforms
Link NOC:Mathematical Methods in Physics 1 Lecture 79 - Step functions, Translations, and Periodic functions
Link NOC:Mathematical Methods in Physics 1 Lecture 80 - The Inverse Laplace Transform
Link NOC:Mathematical Methods in Physics 1 Lecture 81 - Convolution of functions
Link NOC:Mathematical Methods in Physics 1 Lecture 82 - Solving ODEs using Laplace transforms
Link NOC:Mathematical Methods in Physics 1 Lecture 83 - The Dirac Delta function
Link NOC:Mathematical Methods in Physics 1 Lecture 84 - Properties of the Dirac Delta function
Link NOC:Mathematical Methods in Physics 1 Lecture 85 - Green's function method
Link NOC:Mathematical Methods in Physics 1 Lecture 86 - Green's function method: Boundary value problem
Link NOC:Mathematical Methods in Physics 1 Lecture 87 - Power series method
Link NOC:Mathematical Methods in Physics 1 Lecture 88 - Power series solutions about an ordinary point
Link NOC:Mathematical Methods in Physics 1 Lecture 89 - Initial value problem: power series solution
Link NOC:Mathematical Methods in Physics 1 Lecture 90 - Frobenius method for regular singular points
Link NOC:Computational Mathematics with SageMath Lecture 1 - Installation of Python
Link NOC:Computational Mathematics with SageMath Lecture 2 - Getting Started with Python
Link NOC:Computational Mathematics with SageMath Lecture 3 - Python as an advanced calculator
Link NOC:Computational Mathematics with SageMath Lecture 4 - Lists in Python
Link NOC:Computational Mathematics with SageMath Lecture 5 - Tuple, Sets and Dictionaries in Python
Link NOC:Computational Mathematics with SageMath Lecture 6 - Functions and Branching
Link NOC:Computational Mathematics with SageMath Lecture 7 - For loop in Python
Link NOC:Computational Mathematics with SageMath Lecture 8 - While loop in Python
Link NOC:Computational Mathematics with SageMath Lecture 9 - Creating Modules and Introduction to NumPy
Link NOC:Computational Mathematics with SageMath Lecture 10 - Use of NumPy module
Link NOC:Computational Mathematics with SageMath Lecture 11 - Python Graphics using MatplotLib
Link NOC:Computational Mathematics with SageMath Lecture 12 - Use of SciPy and SymPy in Python
Link NOC:Computational Mathematics with SageMath Lecture 13 - Classes in Python - Part 1
Link NOC:Computational Mathematics with SageMath Lecture 14 - Classes in Python - Part 2
Link NOC:Computational Mathematics with SageMath Lecture 15 - Introduction and Installation of SageMath
Link NOC:Computational Mathematics with SageMath Lecture 16 - Exploring integers in SageMath
Link NOC:Computational Mathematics with SageMath Lecture 17 - Solving Equations in SageMath
Link NOC:Computational Mathematics with SageMath Lecture 18 - 2d Plotting with SageMath
Link NOC:Computational Mathematics with SageMath Lecture 19 - 3d Plotting with SageMath
Link NOC:Computational Mathematics with SageMath Lecture 20 - Calculus of one variable with SageMath - Part 1
Link NOC:Computational Mathematics with SageMath Lecture 21 - Calculus of one variable with SageMath - Part 2
Link NOC:Computational Mathematics with SageMath Lecture 22 - Applications of derivatives
Link NOC:Computational Mathematics with SageMath Lecture 23 - Integration with SageMath
Link NOC:Computational Mathematics with SageMath Lecture 24 - Improper Integral using SageMath
Link NOC:Computational Mathematics with SageMath Lecture 25 - Application of integration using SageMath
Link NOC:Computational Mathematics with SageMath Lecture 26 - Limit and Continuity of real valued functions
Link NOC:Computational Mathematics with SageMath Lecture 27 - Partial Derivative with SageMath
Link NOC:Computational Mathematics with SageMath Lecture 28 - Local Maximum and Minimum
Link NOC:Computational Mathematics with SageMath Lecture 29 - Application of local maximum and local minimum
Link NOC:Computational Mathematics with SageMath Lecture 30 - Constrained optimization using Lagrange multipliers
Link NOC:Computational Mathematics with SageMath Lecture 31 - Working with vectors in SageMath
Link NOC:Computational Mathematics with SageMath Lecture 32 - Solving system of linear Equations in SageMath
Link NOC:Computational Mathematics with SageMath Lecture 33 - Vector Spaces in SageMath
Link NOC:Computational Mathematics with SageMath Lecture 34 - Basis and dimensions of vector spaces in SageMath
Link NOC:Computational Mathematics with SageMath Lecture 35 - Matrix Spaces with SageMath
Link NOC:Computational Mathematics with SageMath Lecture 36 - Linear Transformations - Part 1 with SageMath
Link NOC:Computational Mathematics with SageMath Lecture 37 - Linear Transformations - Part 2 with SageMath
Link NOC:Computational Mathematics with SageMath Lecture 38 - Eigenvalues and Eigenvectors - Part 1 with SageMath
Link NOC:Computational Mathematics with SageMath Lecture 39 - Eigenvalues and Eigenvectors - Part 2 with SageMath
Link NOC:Computational Mathematics with SageMath Lecture 40 - Inner Product - Part 1 with SageMath
Link NOC:Computational Mathematics with SageMath Lecture 41 - Inner Product - Part 2 with SageMath
Link NOC:Computational Mathematics with SageMath Lecture 42 - Orthogonal Decomposition with SageMath
Link NOC:Computational Mathematics with SageMath Lecture 43 - Least Square Solution with SageMath
Link NOC:Computational Mathematics with SageMath Lecture 44 - Singular Value Decomposition (SVD) with SageMath
Link NOC:Computational Mathematics with SageMath Lecture 45 - Application of SVD to image processing
Link NOC:Computational Mathematics with SageMath Lecture 46 - Solving System of linear ODE using Eigenvalues and Eigenvectors
Link NOC:Computational Mathematics with SageMath Lecture 47 - Google Page Rank Algorithm using SageMath
Link NOC:Computational Mathematics with SageMath Lecture 48 - Finding Roots of algebraic and transcendental equations in SageMath
Link NOC:Computational Mathematics with SageMath Lecture 49 - Numerical Solutions of System of linear equations in SageMath
Link NOC:Computational Mathematics with SageMath Lecture 50 - Interpolations in SageMath
Link NOC:Computational Mathematics with SageMath Lecture 51 - Numerical Integration in SageMath
Link NOC:Computational Mathematics with SageMath Lecture 52 - Numerical Eigenvalues
Link NOC:Computational Mathematics with SageMath Lecture 53 - Solving 1st and 2nd order ODE with SageMath
Link NOC:Computational Mathematics with SageMath Lecture 54 - Euler's Method to solve 1st order ODE with SageMath
Link NOC:Computational Mathematics with SageMath Lecture 55 - Fourth Order Runge-Kutta Method
Link NOC:Computational Mathematics with SageMath Lecture 56 - RK4 method for System of ODE and Applications
Link NOC:Computational Mathematics with SageMath Lecture 57 - Solving ODE using Laplace Transforms in SageMath
Link NOC:Computational Mathematics with SageMath Lecture 58 - Introduction to Linear Programming Problems (LPP)
Link NOC:Computational Mathematics with SageMath Lecture 59 - Solving Linear Programming Problmes using Graphical Methods
Link NOC:Computational Mathematics with SageMath Lecture 60 - Basics Definitions and Results in LPP
Link NOC:Computational Mathematics with SageMath Lecture 61 - Theory of Simplex Method
Link NOC:Computational Mathematics with SageMath Lecture 62 - Simplex Methods in SageMath - Part 1
Link NOC:Computational Mathematics with SageMath Lecture 63 - Simplex Methods in SageMath - Part 2
Link NOC:Computational Mathematics with SageMath Lecture 64 - Simplex Methods in Matrix Form
Link NOC:Computational Mathematics with SageMath Lecture 65 - Revised Simplex Method in SageMath
Link NOC:Computational Mathematics with SageMath Lecture 66 - Two Phase Simplex Method in SageMath
Link NOC:Computational Mathematics with SageMath Lecture 67 - Big-M Method in SageMath
Link NOC:Computational Mathematics with SageMath Lecture 68 - Duality of Linear Program
Link NOC:Computational Mathematics with SageMath Lecture 69 - Dual Simplex Method in SageMath
Link NOC:Computational Mathematics with SageMath Lecture 70 - Review and What next in SageMath?
Link NOC:Introduction to Probability (with examples using R) Lecture 1 - Sample Space, Events and Probability
Link NOC:Introduction to Probability (with examples using R) Lecture 2 - Properties of Probability
Link NOC:Introduction to Probability (with examples using R) Lecture 3 - Equally likely Outcomes
Link NOC:Introduction to Probability (with examples using R) Lecture 4 - Conditional Probability
Link NOC:Introduction to Probability (with examples using R) Lecture 5 - Bayes Theorem
Link NOC:Introduction to Probability (with examples using R) Lecture 6 - Independence - Part 1
Link NOC:Introduction to Probability (with examples using R) Lecture 7 - Independence - Part 2
Link NOC:Introduction to Probability (with examples using R) Lecture 8 - Sampling and Repeated Trials
Link NOC:Introduction to Probability (with examples using R) Lecture 9 - Sampling and Repeated Trials - Part 1
Link NOC:Introduction to Probability (with examples using R) Lecture 10 - Sampling and Repeated Trials - Part 2
Link NOC:Introduction to Probability (with examples using R) Lecture 11 - Sampling with and Without Replacement
Link NOC:Introduction to Probability (with examples using R) Lecture 12 - Sampling without Replacement
Link NOC:Introduction to Probability (with examples using R) Lecture 13 - Hypergeometric Distribution and Discrete Random Variables
Link NOC:Introduction to Probability (with examples using R) Lecture 14 - Discrete Random Variables - Part 1
Link NOC:Introduction to Probability (with examples using R) Lecture 15 - Discrete Random Variables - Part 2
Link NOC:Introduction to Probability (with examples using R) Lecture 16 - Conditional, Joint and Marginal Distributions
Link NOC:Introduction to Probability (with examples using R) Lecture 17 - Memoryless property of Geometric Distribution
Link NOC:Introduction to Probability (with examples using R) Lecture 18 - Functions of Random Variables
Link NOC:Introduction to Probability (with examples using R) Lecture 19 - Sums of Independent Random Variables
Link NOC:Introduction to Probability (with examples using R) Lecture 20 - Functions and Independence
Link NOC:Introduction to Probability (with examples using R) Lecture 21 - Expectation of Random Variables
Link NOC:Introduction to Probability (with examples using R) Lecture 22 - Properties of Expectation
Link NOC:Introduction to Probability (with examples using R) Lecture 23 - Expectation: Independence and Functions
Link NOC:Introduction to Probability (with examples using R) Lecture 24 - Variance of Discrete Random Variables
Link NOC:Introduction to Probability (with examples using R) Lecture 25 - Markov and Chebyshev Inequalities
Link NOC:Introduction to Probability (with examples using R) Lecture 26 - Conditional Expectation and Covariance
Link NOC:Introduction to Probability (with examples using R) Lecture 27 - Continuous Random Variables - Part 1
Link NOC:Introduction to Probability (with examples using R) Lecture 28 - Continuous Random Variables - Part 2
Link NOC:Introduction to Probability (with examples using R) Lecture 29 - Distribution Function
Link NOC:Introduction to Probability (with examples using R) Lecture 30 - Exponential and Normal Random Variable
Link NOC:Introduction to Probability (with examples using R) Lecture 31 - Normal Random Variable
Link NOC:Introduction to Probability (with examples using R) Lecture 32 - Change of Variable
Link NOC:Introduction to Probability (with examples using R) Lecture 33 - Joint Distribution of Continuous Random Variables
Link NOC:Introduction to Probability (with examples using R) Lecture 34 - Marginal Density and Independence
Link NOC:Introduction to Probability (with examples using R) Lecture 35 - Conditional Density
Link NOC:Introduction to Probability (with examples using R) Lecture 36 - Sums of Independent Random Variables
Link NOC:Introduction to Probability (with examples using R) Lecture 37 - Quotient of Independent Random Variables
Link NOC:Introduction to Probability (with examples using R) Lecture 38 - Expectation and Variance of Continuous Random Variables
Link NOC:Introduction to Probability (with examples using R) Lecture 39 - Sampling Distribution and Sample Mean
Link NOC:Introduction to Probability (with examples using R) Lecture 40 - Weak Law of Large Numbers
Link NOC:Introduction to Probability (with examples using R) Lecture 41 - Revisit of Variance and Expectation
Link NOC:Introduction to Probability (with examples using R) Lecture 42 - Revisit of Properties of Variance
Link NOC:Introduction to Probability (with examples using R) Lecture 43 - Revisit Weak Law of Large Numbers
Link NOC:Introduction to Probability (with examples using R) Lecture 44 - Demoivre-Laplace Central Limit Theorem and Normal Random Variables
Link NOC:Introduction to Probability (with examples using R) Lecture 45 - Revisit Normal Random Variables
Link NOC:Introduction to Probability (with examples using R) Lecture 46 - Normal Tables, Mean and Variance
Link NOC:Algebra-II Lecture 1 - Algebraic and Transcendental Numbers
Link NOC:Algebra-II Lecture 2 - Extensions Generated by Elements
Link NOC:Algebra-II Lecture 3 - Isomorphic Extensions
Link NOC:Algebra-II Lecture 4 - Degree of an Extension
Link NOC:Algebra-II Lecture 5 - Constructible Numbers
Link NOC:Algebra-II Lecture 6 - The Field of Constructible Numbers
Link NOC:Algebra-II Lecture 7 - Characterization of Constructible Numbers
Link NOC:Algebra-II Lecture 8 - Solved Problems (Week 1)
Link NOC:Algebra-II Lecture 9 - Some Things can't be Constructed
Link NOC:Algebra-II Lecture 10 - Symbolic Adjunction
Link NOC:Algebra-II Lecture 11 - Repeated Roots
Link NOC:Algebra-II Lecture 12 - Gauss Lemma
Link NOC:Algebra-II Lecture 13 - Eisenstein’s criterion
Link NOC:Algebra-II Lecture 14 - Existence Theorem for Finite Fields
Link NOC:Algebra-II Lecture 15 - Subfields of a Finite Field
Link NOC:Algebra-II Lecture 16 - Multiplicative Group of a Finite Field
Link NOC:Algebra-II Lecture 17 - Uniqueness Theorem for Finite Fields
Link NOC:Algebra-II Lecture 18 - Solved Problems (Week 2)
Link NOC:Algebra-II Lecture 19 - Algebraic Extensions and Algebraic Closures
Link NOC:Algebra-II Lecture 20 - Existence of Algebraic Closures
Link NOC:Algebra-II Lecture 21 - Uniqueness of Algebraic Closure
Link NOC:Algebra-II Lecture 22 - Solved Problems - Part 1 (Week 3)
Link NOC:Algebra-II Lecture 23 - Existence of splitting fields, bound on degree
Link NOC:Algebra-II Lecture 24 - Uniqueness of splitting fields
Link NOC:Algebra-II Lecture 25 - Solved problems - Part 2 (Week 3)
Link NOC:Algebra-II Lecture 26 - Normal Extensions
Link NOC:Algebra-II Lecture 27 - Separable polynomials
Link NOC:Algebra-II Lecture 28 - Perfect fields, separable extensions
Link NOC:Algebra-II Lecture 29 - Definition and examples, fixed fields
Link NOC:Algebra-II Lecture 30 - Characterization of Galois extensions
Link NOC:Algebra-II Lecture 31 - Linear Independence of Characters
Link NOC:Algebra-II Lecture 32 - Solved problems (Week 4)
Link NOC:Algebra-II Lecture 33 - Artin’s Theorem - Part 1
Link NOC:Algebra-II Lecture 34 - Artin’s Theorem - Part 2
Link NOC:Algebra-II Lecture 35 - Finite Galois Extensions
Link NOC:Algebra-II Lecture 36 - The fundamental theorem of Galois Theory - 1
Link NOC:Algebra-II Lecture 37 - The fundamental theorem of Galois Theory - 2
Link NOC:Algebra-II Lecture 38 - Solved problems (Week 5)
Link NOC:Algebra-II Lecture 39 - Cyclotomic extensions
Link NOC:Algebra-II Lecture 40 - Irreducibility of the cyclotomic polynomial
Link NOC:Algebra-II Lecture 41 - Application: Constructibility of regular n-gons.
Link NOC:Algebra-II Lecture 42 - Insolvability of the general quintic - Part 1
Link NOC:Algebra-II Lecture 43 - Insolvability of the general quintic - Part 2
Link NOC:Algebra-II Lecture 44 - Insolvability of the general quintic - Part 3
Link NOC:Algebra-II Lecture 45 - What is category theory (and why is it important)?
Link NOC:Algebra-II Lecture 46 - Definition of a category
Link NOC:Algebra-II Lecture 47 - Monomorphisms, epimorphisms, and isomorphisms
Link NOC:Algebra-II Lecture 48 - Categories: First Problem Session
Link NOC:Algebra-II Lecture 49 - Initial and Terminal Objects
Link NOC:Algebra-II Lecture 50 - Products and Coproducts
Link NOC:Algebra-II Lecture 51 - Categories: Second Problem Session
Link NOC:Algebra-II Lecture 52 - Functors
Link NOC:Algebra-II Lecture 53 - The Category of Categories
Link NOC:Algebra-II Lecture 54 - Natural Transformations
Link NOC:Algebra-II Lecture 55 - Functor Categories
Link NOC:Algebra-II Lecture 56 - Categories: Third Problem Session
Link NOC:Algebra-II Lecture 57 - Adjunction
Link NOC:Algebra-II Lecture 58 - Categories: Fourth Problem Session
Link NOC:Algebra-II Lecture 59 - Tensor products of Z-modules
Link NOC:Algebra-II Lecture 60 - Free abelian groups and quotient groups
Link NOC:Algebra-II Lecture 61 - Construction of the tensor product
Link NOC:Algebra-II Lecture 62 - Problem session
Link NOC:Algebra-II Lecture 63 - Tensor product of R-modules
Link NOC:Algebra-II Lecture 64 - Functoriality of the tensor product
Link NOC:Algebra-II Lecture 65 - Bimodules
Link NOC:Algebra-II Lecture 66 - Tensor products of bimodules
Link NOC:Algebra-II Lecture 67 - Tensor products of modules over commutative rings
Link NOC:Algebra-II Lecture 68 - Extension of scalars
Link NOC:Algebra-II Lecture 69 - Problem session - tensor products of vector spaces
Link NOC:Algebra-II Lecture 70 - Some Properties of the tensor product
Link NOC:Algebra-II Lecture 71 - F-algebras
Link NOC:Algebra-II Lecture 72 - Composition Series
Link NOC:Algebra-II Lecture 73 - Schreier’s Theorem
Link NOC:Algebra-II Lecture 74 - Ascending and Descending Chain Conditions
Link NOC:Algebra-II Lecture 75 - Existence of Jordan-Holder Series
Link NOC:Algebra-II Lecture 76 - The Jordan-Holder Theorem
Link NOC:Algebra-II Lecture 77 - Examples related to the Jordan-Holder Theorem
Link NOC:Algebra-II Lecture 78 - The Jordan-Holder Theorem for Groups
Link NOC:Algebra-II Lecture 79 - Indecomposable Modules
Link NOC:Algebra-II Lecture 80 - Direct Sum Decompositions
Link NOC:Algebra-II Lecture 81 - Decomposition as a sum of Indecomposables
Link NOC:Algebra-II Lecture 82 - The Endomorphism Ring of an Indecomposable Module
Link NOC:Algebra-II Lecture 83 - Krull-Schmidt Theorem
Link NOC:Algebra-II Lecture 84 - Krull-Schmidt Examples
Link NOC:Mathematical Methods in Physics 2 Lecture 1 - Introduction to complex numbers
Link NOC:Mathematical Methods in Physics 2 Lecture 2 - The triangle inequality
Link NOC:Mathematical Methods in Physics 2 Lecture 3 - The de Moivre formula
Link NOC:Mathematical Methods in Physics 2 Lecture 4 - Roots of unity
Link NOC:Mathematical Methods in Physics 2 Lecture 5 - Functions of a complex variable and the notion of continuity
Link NOC:Mathematical Methods in Physics 2 Lecture 6 - Derivative of a complex function
Link NOC:Mathematical Methods in Physics 2 Lecture 7 - Differentiation rules for a complex function
Link NOC:Mathematical Methods in Physics 2 Lecture 8 - Cauchy-Riemann Equations
Link NOC:Mathematical Methods in Physics 2 Lecture 9 - Sufficient conditions for differentiability
Link NOC:Mathematical Methods in Physics 2 Lecture 10 - Cauchy-Riemann conditions in polar coordinates
Link NOC:Mathematical Methods in Physics 2 Lecture 11 - More persepective on differentiability
Link NOC:Mathematical Methods in Physics 2 Lecture 12 - The value of the derivative
Link NOC:Mathematical Methods in Physics 2 Lecture 13 - Analytic functions
Link NOC:Mathematical Methods in Physics 2 Lecture 14 - Harmonic functions
Link NOC:Mathematical Methods in Physics 2 Lecture 15 - The exponential function
Link NOC:Mathematical Methods in Physics 2 Lecture 16 - Complex logarithm
Link NOC:Mathematical Methods in Physics 2 Lecture 17 - Complex exponents
Link NOC:Mathematical Methods in Physics 2 Lecture 18 - Trigonometric functions of complex variables
Link NOC:Mathematical Methods in Physics 2 Lecture 19 - Hyperbolic functions of complex variables
Link NOC:Mathematical Methods in Physics 2 Lecture 20 - Inverse Trigonometric and Hyperbolic functions
Link NOC:Mathematical Methods in Physics 2 Lecture 21 - Branch of a multivalued function
Link NOC:Mathematical Methods in Physics 2 Lecture 22 - Contour Integrals
Link NOC:Mathematical Methods in Physics 2 Lecture 23 - Green's Theorem
Link NOC:Mathematical Methods in Physics 2 Lecture 24 - Path dependence of the contour intergal
Link NOC:Mathematical Methods in Physics 2 Lecture 25 - Antiderivatives
Link NOC:Mathematical Methods in Physics 2 Lecture 26 - The Cauchy theorem
Link NOC:Mathematical Methods in Physics 2 Lecture 27 - Crossing contours and multiply connected domains
Link NOC:Mathematical Methods in Physics 2 Lecture 28 - Cauchy Integral formula
Link NOC:Mathematical Methods in Physics 2 Lecture 29 - Derivatives of an analytic function
Link NOC:Mathematical Methods in Physics 2 Lecture 30 - Liouville's theorem and the Fundamental theorem of algebra
Link NOC:Mathematical Methods in Physics 2 Lecture 31 - Taylor Series
Link NOC:Mathematical Methods in Physics 2 Lecture 32 - Laurent Series
Link NOC:Mathematical Methods in Physics 2 Lecture 33 - Convergence
Link NOC:Mathematical Methods in Physics 2 Lecture 34 - Differentiation and integration of power series
Link NOC:Mathematical Methods in Physics 2 Lecture 35 - Isolated Singularities
Link NOC:Mathematical Methods in Physics 2 Lecture 36 - Residues
Link NOC:Mathematical Methods in Physics 2 Lecture 37 - Residue Theorem
Link NOC:Mathematical Methods in Physics 2 Lecture 38 - Evaluation of integrals - I
Link NOC:Mathematical Methods in Physics 2 Lecture 39 - Evaluation of integrals - II
Link NOC:Mathematical Methods in Physics 2 Lecture 40 - Analytic Continuation
Link NOC:Mathematical Methods in Physics 2 Lecture 41 - Introduction of orthogonal polynomials
Link NOC:Mathematical Methods in Physics 2 Lecture 42 - How to construct orthogonal polynomials
Link NOC:Mathematical Methods in Physics 2 Lecture 43 - The weight function
Link NOC:Mathematical Methods in Physics 2 Lecture 44 - Recursion relations
Link NOC:Mathematical Methods in Physics 2 Lecture 45 - Differential equation satisfied by the orthogonal polynomials
Link NOC:Mathematical Methods in Physics 2 Lecture 46 - Hermite polynomials
Link NOC:Mathematical Methods in Physics 2 Lecture 47 - Properties of Hemite polynomials
Link NOC:Mathematical Methods in Physics 2 Lecture 48 - Legendre polynomials
Link NOC:Mathematical Methods in Physics 2 Lecture 49 - Legendre polynomials: recurrence relation
Link NOC:Mathematical Methods in Physics 2 Lecture 50 - Differential equation corresponding to Legendre polynomials
Link NOC:Mathematical Methods in Physics 2 Lecture 51 - The generating function corresponding to Legendre polynomials
Link NOC:Mathematical Methods in Physics 2 Lecture 52 - Laguerre Polynomials
Link NOC:Mathematical Methods in Physics 2 Lecture 53 - Laguerre Polynomials: recurrence relation
Link NOC:Mathematical Methods in Physics 2 Lecture 54 - Laguerre polynomials: differential equation
Link NOC:Mathematical Methods in Physics 2 Lecture 55 - Laguerre polynomials: generating function
Link NOC:Mathematical Methods in Physics 2 Lecture 56 - Bessel functions: series defination
Link NOC:Mathematical Methods in Physics 2 Lecture 57 - Bessel functions: recurrence relations
Link NOC:Mathematical Methods in Physics 2 Lecture 58 - Bessel functions: differential equation
Link NOC:Mathematical Methods in Physics 2 Lecture 59 - Bessel functions of integral order: generating function
Link NOC:Mathematical Methods in Physics 2 Lecture 60 - Bessel functions: orthogonality
Link NOC:Mathematical Methods in Physics 2 Lecture 61 - Classification of Second Order PDEs
Link NOC:Mathematical Methods in Physics 2 Lecture 62 - Canonical Forms for Hyperbolic PDEs
Link NOC:Mathematical Methods in Physics 2 Lecture 63 - Canonical Forms for Parabolic PDEs
Link NOC:Mathematical Methods in Physics 2 Lecture 64 - Canonical Forms for Elliptic PDEs
Link NOC:Mathematical Methods in Physics 2 Lecture 65 - Tha Laplace Equation
Link NOC:Mathematical Methods in Physics 2 Lecture 66 - The Laplace Equation: Separation of Variables
Link NOC:Mathematical Methods in Physics 2 Lecture 67 - The Laplace Equation: Dirichlet and Neumann boundary conditions
Link NOC:Mathematical Methods in Physics 2 Lecture 68 - The Laplace Equation in Cartesian coordinates
Link NOC:Mathematical Methods in Physics 2 Lecture 69 - The Laplace Equation for a 3-D rectangular box
Link NOC:Mathematical Methods in Physics 2 Lecture 70 - The Laplace Equation in spherical coordinates
Link NOC:Mathematical Methods in Physics 2 Lecture 71 - The Laplace Equation in Spherical Coordinates: Solution
Link NOC:Mathematical Methods in Physics 2 Lecture 72 - The Laplace Equation in Spherical Coordinates: illustrative examples
Link NOC:Mathematical Methods in Physics 2 Lecture 73 - The Poisson's Equation: Green's function solution
Link NOC:Mathematical Methods in Physics 2 Lecture 74 - The heat equation: a heuristic discussion
Link NOC:Mathematical Methods in Physics 2 Lecture 75 - From the random walk to the diffusion equation
Link NOC:Mathematical Methods in Physics 2 Lecture 76 - Solution of the Diffusion equation
Link NOC:Mathematical Methods in Physics 2 Lecture 77 - The Diffusion equation with Dirichlet and Neumann boundary conditions
Link NOC:Mathematical Methods in Physics 2 Lecture 78 - The Heat equation: illustrative examples
Link NOC:Mathematical Methods in Physics 2 Lecture 79 - The Wave equation: Method of characteristics
Link NOC:Mathematical Methods in Physics 2 Lecture 80 - The Wave equation: Separation of variables
Link NOC:Real Analysis - II Lecture 1 - Metric Spaces
Link NOC:Real Analysis - II Lecture 2 - Examples of metric spaces
Link NOC:Real Analysis - II Lecture 3 - Loads of definitions
Link NOC:Real Analysis - II Lecture 4 - Normed vector spaces
Link NOC:Real Analysis - II Lecture 5 - Examples of normed vector spaces
Link NOC:Real Analysis - II Lecture 6 - Basic properties open closed sets metric
Link NOC:Real Analysis - II Lecture 7 - Continuity in metric spaces
Link NOC:Real Analysis - II Lecture 8 - Equivalent metrics and product spaces
Link NOC:Real Analysis - II Lecture 9 - Completeness
Link NOC:Real Analysis - II Lecture 10 - Completeness (Continued...)
Link NOC:Real Analysis - II Lecture 11 - Completeness of B(x,y)
Link NOC:Real Analysis - II Lecture 12 - Completion
Link NOC:Real Analysis - II Lecture 13 - Compactness
Link NOC:Real Analysis - II Lecture 14 - The Bolzano-Weierstrass Property
Link NOC:Real Analysis - II Lecture 15 - Open covers and Compactness
Link NOC:Real Analysis - II Lecture 16 - The Heine-Borel Theorem for Metric Spaces
Link NOC:Real Analysis - II Lecture 17 - Connectedness
Link NOC:Real Analysis - II Lecture 18 - Path-Connectedness
Link NOC:Real Analysis - II Lecture 19 - Connected Components
Link NOC:Real Analysis - II Lecture 20 - The Arzela-Ascolli theorem
Link NOC:Real Analysis - II Lecture 21 - Upper and lower limits
Link NOC:Real Analysis - II Lecture 22 - The Stone-Weierstrass theorem
Link NOC:Real Analysis - II Lecture 23 - All norms are equivalent
Link NOC:Real Analysis - II Lecture 24 - Vector-valued functions
Link NOC:Real Analysis - II Lecture 25 - Scalar-valued functions of a vector variable
Link NOC:Real Analysis - II Lecture 26 - Directional derivatives and the gradient
Link NOC:Real Analysis - II Lecture 27 - Interpretation and properties of the gradient
Link NOC:Real Analysis - II Lecture 28 - Higher-order partial derivatives
Link NOC:Real Analysis - II Lecture 29 - The derivative as a linear map
Link NOC:Real Analysis - II Lecture 30 - Examples of differentiation
Link NOC:Real Analysis - II Lecture 31 - Properties of the derivative map
Link NOC:Real Analysis - II Lecture 32 - The mean-value theorem
Link NOC:Real Analysis - II Lecture 33 - Differentiating under the integral sign
Link NOC:Real Analysis - II Lecture 34 - Higher-order derivatives
Link NOC:Real Analysis - II Lecture 35 - Symmetry of the second derivative
Link NOC:Real Analysis - II Lecture 36 - Taylor's theorem
Link NOC:Real Analysis - II Lecture 37 - Taylor's theorem with remainder
Link NOC:Real Analysis - II Lecture 38 - The Banach fixed point theorem
Link NOC:Real Analysis - II Lecture 39 - Newton's method
Link NOC:Real Analysis - II Lecture 40 - The inverse function theorem
Link NOC:Real Analysis - II Lecture 41 - Diffeomorphismsm and local diffeomorphisms
Link NOC:Real Analysis - II Lecture 42 - The implicit function theorem
Link NOC:Real Analysis - II Lecture 43 - Tangent space to a hypersurface
Link NOC:Real Analysis - II Lecture 44 - The definition of a manifold
Link NOC:Real Analysis - II Lecture 45 - Examples and non examples of manifolds
Link NOC:Real Analysis - II Lecture 46 - The tangent space to a manifold
Link NOC:Real Analysis - II Lecture 47 - Maxima and minima in several variables
Link NOC:Real Analysis - II Lecture 48 - The Hessian and extrema
Link NOC:Real Analysis - II Lecture 49 - Completing the squares
Link NOC:Real Analysis - II Lecture 50 - Constrained extrema and lagrange multipliers
Link NOC:Real Analysis - II Lecture 51 - Curves
Link NOC:Real Analysis - II Lecture 52 - Rectifiability and arc-length
Link NOC:Real Analysis - II Lecture 53 - The Riemann integral revisited
Link NOC:Real Analysis - II Lecture 54 - Monotone sequences of functions
Link NOC:Real Analysis - II Lecture 55 - Upper functions and their integrals
Link NOC:Real Analysis - II Lecture 56 - Riemann integrable functions as upper functions
Link NOC:Real Analysis - II Lecture 57 - Lebesgue integrable functions
Link NOC:Real Analysis - II Lecture 58 - Approximation of Lebesgure integrable functions
Link NOC:Real Analysis - II Lecture 59 - Levi monotone convergence theorem for step functions
Link NOC:Real Analysis - II Lecture 60 - Monotone convergence theorem for upper functions
Link NOC:Real Analysis - II Lecture 61 - Monotone convergence theorem for Lebesgue integrable functions
Link NOC:Real Analysis - II Lecture 62 - The Lebesgue dominated convergence theorem
Link NOC:Real Analysis - II Lecture 63 - Applications of the convergence theorems
Link NOC:Real Analysis - II Lecture 64 - The problem of measure
Link NOC:Real Analysis - II Lecture 65 - The Lebesgue integral on unbounded intervals
Link NOC:Real Analysis - II Lecture 66 - Measurable functions
Link NOC:Real Analysis - II Lecture 67 - Solution to the problem of measure
Link NOC:Real Analysis - II Lecture 68 - The Lebesgue integral on arbitrary subsets
Link NOC:Real Analysis - II Lecture 69 - Square integrable functions
Link NOC:Real Analysis - II Lecture 70 - Norms and inner-products on complex vector spaces
Link NOC:Real Analysis - II Lecture 71 - Convergence in L2
Link NOC:Real Analysis - II Lecture 72 - The Riesz-Fischer theorem
Link NOC:Real Analysis - II Lecture 73 - Multiple Riemann integration
Link NOC:Real Analysis - II Lecture 74 - Multiple Lebesgue integration
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 1 - Test Functions - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 2 - Test Functions - Part 2
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 3 - Distributions
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 4 - Examples - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 5 - Distribution Derivatives
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 6 - More operations on distributions
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 7 - Support of a distribution
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 8 - Distributions with compact support; singular support - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 9 - Distributions with compact support; singular support - Part 2
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 10 - Exercises - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 11 - Convolution of functions - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 12 - Convolution of functions - Part 2
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 13 - Convolution of functions - Part 3
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 14 - Convolution of distributions - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 15 - Convolution of distributions - Part 2
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 16 - Convolution of distributions - Part 3
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 17 - Exercises - Part 2
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 18 - Fundamental solutions
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 19 - The Fourier transform
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 20 - The Schwarz space - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 21 - The Schwarz space - Part 2
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 22 - Examples - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 23 - Fourier inversion formula
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 24 - Tempered distributions
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 25 - Exercises - Part 3
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 26 - Sobolev spaces - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 27 - Sobolev spaces - Part 2
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 28 - Sobolev spaces - Part 3
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 29 - Approximation by smooth functions
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 30 - Chain rule and applications - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 31 - Chain rule and applications - Part 2
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 32 - Extension theorems - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 33 - Extension theorems - Part 2
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 34 - Poincare's inequlity
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 35 - Exercises - Part 4
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 36 - Exercises - Part 5
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 37 - Imbedding theorems
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 38 - Imbedding theorems: Case p less than N - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 39 - Imbedding theorems: Case p = N - Part 2
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 40 - Imbedding theorems: Case p greater than N - Part 3
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 41 - Compactness theorems - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 42 - Compactness theorems - Part 2
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 43 - Compactness theorems - Part 3
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 44 - The spaces W^{s,p}
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 45 - spaces W^{s,p} and Trace spaces
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 46 - Trace theory - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 47 - Trace theory - Part 2
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 48 - Trace theory - Part 3
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 49 - Trace theory - Part 4
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 50 - Exercises - Part 6
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 51 - Exercises - Part 7
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 52 - Abstract variational problems - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 53 - Abstract variational problems - Part 2
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 54 - Weak solutions of elliptic boundary value problems - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 55 - Weak solutions of elliptic boundary value problems - Part 2
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 56 - Neumann problems
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 57 - The Biharmonic operator
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 58 - The elasticity system
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 59 - Exercises - Part 8
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 60 - Exercises - Part 9
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 61 - Exercises - Part 9
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 62 - Maximum Principles - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 63 - Maximum Principles - Part 2
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 64 - Exercises - Part 10
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 65 - Exercises - Part 11
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 66 - Eigenvalue problems - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 67 - Eigenvalue problems - Part 2
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 68 - Eigenvalue problems - Part 3
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 69 - Exercises - Part 12
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 70 - Exercises - Part 13
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 71 - Unbounded operators - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 72 - Unbounded operators - Part 2
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 73 - The exponential map
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 74 - C_0 Semigroups - Part 1
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 75 - C_0 Semigroups - Part 2
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 76 - Infinitesimal generators of contraction semigroups
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 77 - Hille-Yosida theorem
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 78 - Regularity
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 79 - Contraction semigroups on Hilbert spaces
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 80 - Self-adjoint case and the case of isometries
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 81 - The heat equation
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 82 - The wave equation
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 83 - The Schrodinger equation
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 84 - The inhomogeneous equation
Link NOC:Sobolev Spaces and Partial Differential Equations Lecture 85 - Exercises - 14
Link NOC:Combinatorics Lecture 1 - Pigeonhole Principle
Link NOC:Combinatorics Lecture 2 - Dirichlet theorem and Erdos-Szekeres Theorem
Link NOC:Combinatorics Lecture 3 - Ramey theorem as generalisation of PHP
Link NOC:Combinatorics Lecture 4 - An infinite flock of Pigeons
Link NOC:Combinatorics Lecture 5 - Basic Counting - the sum and product rules
Link NOC:Combinatorics Lecture 6 - Examples of basic counting
Link NOC:Combinatorics Lecture 7 - Examples: Product and Division rules
Link NOC:Combinatorics Lecture 8 - Binomial theorem and bijective counting
Link NOC:Combinatorics Lecture 9 - Counting lattice paths
Link NOC:Combinatorics Lecture 10 - Multinomial theorem
Link NOC:Combinatorics Lecture 11 - Applying Multinomial theorem
Link NOC:Combinatorics Lecture 12 - Integer compositions
Link NOC:Combinatorics Lecture 13 - Set partitions and Stirling numbers
Link NOC:Combinatorics Lecture 14 - Stirling and Hemachandra recursions
Link NOC:Combinatorics Lecture 15 - Integer partitions
Link NOC:Combinatorics Lecture 16 - Young's diagram and Integer partitions
Link NOC:Combinatorics Lecture 17 - Principle of Inclusion and Exclusion
Link NOC:Combinatorics Lecture 18 - Applications of PIE
Link NOC:Combinatorics Lecture 19 - The twelvefold way
Link NOC:Combinatorics Lecture 20 - Inclusion exclusion: Linear algebra view
Link NOC:Combinatorics Lecture 21 - Partial Orders
Link NOC:Combinatorics Lecture 22 - Mobius Inversion Formula
Link NOC:Combinatorics Lecture 23 - Product theorem and applications of Mobius Inversion
Link NOC:Combinatorics Lecture 24 - Formal power series, ordinary generating functions
Link NOC:Combinatorics Lecture 25 - Application of Ordinary generating functions
Link NOC:Combinatorics Lecture 26 - Product of Generating functions
Link NOC:Combinatorics Lecture 27 - Composition of generating functions
Link NOC:Combinatorics Lecture 28 - Exponential Generating Function
Link NOC:Combinatorics Lecture 29 - Composition of EGF
Link NOC:Combinatorics Lecture 30 - Euler pentagonal number theorem
Link NOC:Combinatorics Lecture 31 - Graphs - introduction
Link NOC:Combinatorics Lecture 32 - Paths Walks, Cycles
Link NOC:Combinatorics Lecture 33 - Digraphs and functional digraphs
Link NOC:Combinatorics Lecture 34 - Componenets, Connectivity, Bipartite graphs
Link NOC:Combinatorics Lecture 35 - Acyclic graphs
Link NOC:Combinatorics Lecture 36 - Graph colouring
Link NOC:Combinatorics Lecture 37 - Mycielski graphs
Link NOC:Combinatorics Lecture 38 - Product of graphs
Link NOC:Combinatorics Lecture 39 - Menger's theorem
Link NOC:Combinatorics Lecture 40 - System of Distinct representatives
Link NOC:Combinatorics Lecture 41 - Planar graphs
Link NOC:Combinatorics Lecture 42 - Euler identity
Link NOC:Combinatorics Lecture 43 - Map colouring problem - History
Link NOC:Combinatorics Lecture 44 - The Discharging Method - Part 1
Link NOC:Combinatorics Lecture 45 - The Discharging Method - Part 2
Link NOC:Combinatorics Lecture 46 - Introduction to Group actions
Link NOC:Combinatorics Lecture 47 - Colouring and symmetries - examples
Link NOC:Combinatorics Lecture 48 - Bursides lemma
Link NOC:Combinatorics Lecture 49 - Proof of Bursides lemma
Link NOC:Combinatorics Lecture 50 - Polya's theorem
Link NOC:Combinatorics Lecture 51 - Species of structures- definitions and examples
Link NOC:Combinatorics Lecture 52 - Associated seris and Product of species
Link NOC:Combinatorics Lecture 53 - Species: Substitution and Derivative
Link NOC:Combinatorics Lecture 54 - Species: Pointing and countilg labelled trees
Link NOC:Combinatorics Lecture 55 - Review and Further directions
Link NOC:Combinatorics Lecture 56 - More on further topics
Link NOC:Combinatorics Lecture 57 - Linear Algebra method: Ultra short introduction
Link NOC:Combinatorics Lecture 58 - Probabiistic Method: Ultra short introduction
Link NOC:Our Mathematical Senses Lecture 1 - Why do the images of parallel lines converge?
Link NOC:Our Mathematical Senses Lecture 2 - The power of vanishing points
Link NOC:Our Mathematical Senses Lecture 3 - Bonus material: Perspective in visual art
Link NOC:Our Mathematical Senses Lecture 4 - Understanding Points at Infinity
Link NOC:Our Mathematical Senses Lecture 5 - The Extended Euclidean Plane
Link NOC:Our Mathematical Senses Lecture 6 - Harmonic tetrads
Link NOC:Our Mathematical Senses Lecture 7 - Perspective Drawing as a Perspectivity
Link NOC:Our Mathematical Senses Lecture 8 - Perspectivities of the Extended Euclidean Plane
Link NOC:Our Mathematical Senses Lecture 9 - Projectivities
Link NOC:Our Mathematical Senses Lecture 10 - Projectivities as Functions on the Real Numbers
Link NOC:Our Mathematical Senses Lecture 11 - Proving Pappus's Theorem
Link NOC:Our Mathematical Senses Lecture 12 - The Fundamental Theorem of Projective Geometry
Link NOC:Our Mathematical Senses Lecture 13 - The Cross Ratio
Link NOC:Our Mathematical Senses Lecture 14 - Applications of the Cross Ratio
Link NOC:Our Mathematical Senses Lecture 15 - The Real Projective Plane
Link NOC:Our Mathematical Senses Lecture 16 - Transformations of the Real Projective Plane
Link NOC:Algebraic Combinatorics Lecture 1 - Examples of Mobius Inversion
Link NOC:Algebraic Combinatorics Lecture 2 - Partially Ordered Sets
Link NOC:Algebraic Combinatorics Lecture 3 - Hasse Diagrams
Link NOC:Algebraic Combinatorics Lecture 4 - Isomorphsms of Posets
Link NOC:Algebraic Combinatorics Lecture 5 - Maximal, Minimal, Greatest, Least
Link NOC:Algebraic Combinatorics Lecture 6 - Induced Subposets
Link NOC:Algebraic Combinatorics Lecture 7 - Incidence Algebras
Link NOC:Algebraic Combinatorics Lecture 8 - Inversion in Incidence Algebras
Link NOC:Algebraic Combinatorics Lecture 9 - Mobius Inversion
Link NOC:Algebraic Combinatorics Lecture 10 - Examples of Mobius Functions
Link NOC:Algebraic Combinatorics Lecture 11 - Product Posets and their Mobius Functions
Link NOC:Algebraic Combinatorics Lecture 12 - Opposite of a Poset
Link NOC:Algebraic Combinatorics Lecture 13 - The Poset of Set Partitions
Link NOC:Algebraic Combinatorics Lecture 14 - Connected Structures
Link NOC:Algebraic Combinatorics Lecture 15 - Lattices
Link NOC:Algebraic Combinatorics Lecture 16 - Weisner's Theorem
Link NOC:Algebraic Combinatorics Lecture 17 - The Lattice of Non-Crossing Partitions
Link NOC:Algebraic Combinatorics Lecture 18 - The Canonical Product Decoposition for Intervals of Non-Crossing Partitions
Link NOC:Algebraic Combinatorics Lecture 19 - The Mobius Function for Non-Crossing Partitions
Link NOC:Algebraic Combinatorics Lecture 20 - Ideals in a Poset
Link NOC:Algebraic Combinatorics Lecture 21 - Mobius Function of J(P)
Link NOC:Algebraic Combinatorics Lecture 22 - Young's Lattice
Link NOC:Algebraic Combinatorics Lecture 23 - Distributive Lattices
Link NOC:Algebraic Combinatorics Lecture 24 - Formal Power Series
Link NOC:Algebraic Combinatorics Lecture 25 - The Necklace Problem
Link NOC:Algebraic Combinatorics Lecture 26 - Combinatorial Classes
Link NOC:Algebraic Combinatorics Lecture 27 - Sums, Products, and Sequences of Combinatorial Classes
Link NOC:Algebraic Combinatorics Lecture 28 - Power Set, Multisets, and Sequences
Link NOC:Algebraic Combinatorics Lecture 29 - A Little Dendrology
Link NOC:Algebraic Combinatorics Lecture 30 - Super Catalan/Little Schroeder numbers
Link NOC:Algebraic Combinatorics Lecture 31 - Regular Languages
Link NOC:Algebraic Combinatorics Lecture 32 - Finite Automata
Link NOC:Algebraic Combinatorics Lecture 33 - The Pumping Lemma
Link NOC:Algebraic Combinatorics Lecture 34 - The Dyck Language
Link NOC:Algebraic Combinatorics Lecture 35 - Permutations and their cycles
Link NOC:Algebraic Combinatorics Lecture 36 - Permutation Groups
Link NOC:Algebraic Combinatorics Lecture 37 - Orbits, fixed points, stabilizers
Link NOC:Algebraic Combinatorics Lecture 38 - The orbit counting theorem
Link NOC:Algebraic Combinatorics Lecture 39 - The Polya Enumeration Theorem
Link NOC:Algebraic Combinatorics Lecture 40 - The Cycle Index Polynomials
Link NOC:Algebraic Combinatorics Lecture 41 - Cycle Index of the Octahedral Group
Link NOC:Algebraic Combinatorics Lecture 42 - Cycle Index of the Full Permutation Group
Link NOC:Algebraic Combinatorics Lecture 43 - Combinatorial Species
Link NOC:Algebraic Combinatorics Lecture 44 - Generating Series of a Species
Link NOC:Algebraic Combinatorics Lecture 45 - Cycle Index Series of a Species
Link NOC:Algebraic Combinatorics Lecture 46 - Isomorphism of Species
Link NOC:Algebraic Combinatorics Lecture 47 - Visualization of Species
Link NOC:Algebraic Combinatorics Lecture 48 - Sum of Species
Link NOC:Algebraic Combinatorics Lecture 49 - Product of Species
Link NOC:Algebraic Combinatorics Lecture 50 - Sums and Products: More Examples
Link NOC:Algebraic Combinatorics Lecture 51 - Substitution of Species
Link NOC:Algebraic Combinatorics Lecture 52 - Derivative of a Species
Link NOC:Algebraic Combinatorics Lecture 53 - Powers and Seqeunces of Binomial Type
Link NOC:Algebraic Combinatorics Lecture 54 - Pointing and Cayley's Theorem
Link NOC:Algebraic Combinatorics Lecture 55 - R-enriched Trees
Link NOC:Algebraic Combinatorics Lecture 56 - R-enriched Endofunctions
Link NOC:Algebraic Combinatorics Lecture 57 - Lagrange Inversion Forumla
Link NOC:Algebraic Combinatorics Lecture 58 - Motivation for the LGV Lemma
Link NOC:Algebraic Combinatorics Lecture 59 - Statement of the LGV Lemma
Link NOC:Algebraic Combinatorics Lecture 60 - Nice Applications of the LGV Lemma
Link NOC:Algebraic Combinatorics Lecture 61 - Sign-Reversing Involutions
Link NOC:Algebraic Combinatorics Lecture 62 - Proof of the LGV Lemma
Link NOC:Algebraic Combinatorics Lecture 63 - The Cauchy-Binet Formula
Link NOC:Algebraic Combinatorics Lecture 64 - Symmetric polynomials: definition and examples
Link NOC:Algebraic Combinatorics Lecture 65 - Monomial symmetric polynomials
Link NOC:Algebraic Combinatorics Lecture 66 - Elementary and Complete symmetric polynomials - Part 1
Link NOC:Algebraic Combinatorics Lecture 67 - Elementary and Complete symmetric polynomials - Part 2
Link NOC:Algebraic Combinatorics Lecture 68 - Alternating polynomials
Link NOC:Algebraic Combinatorics Lecture 69 - Labelled abaci and alternants
Link NOC:Algebraic Combinatorics Lecture 70 - Schur polynomials
Link NOC:Algebraic Combinatorics Lecture 71 - Pieri Rule - Statement and Examples
Link NOC:Algebraic Combinatorics Lecture 72 - Pieri Rule - Proof
Link NOC:Algebraic Combinatorics Lecture 73 - The second Pieri rule
Link NOC:Algebraic Combinatorics Lecture 74 - Semi-standard tableaux
Link NOC:Algebraic Combinatorics Lecture 75 - Triangularity of Kostka matrix
Link NOC:Algebraic Combinatorics Lecture 76 - Monomial expansion of Schur
Link NOC:Algebraic Combinatorics Lecture 77 - The RSK correspondence
Link NOC:Algebraic Combinatorics Lecture 78 - Jacobi Trudi identities via LGV lemma
Link NOC:Algebraic Combinatorics Lecture 79 - Formal ring of symmetric functions in infinitely many variables
Link NOC:Algebraic Combinatorics Lecture 80 - Monomial expansions and RSK
Link NOC:Algebraic Combinatorics Lecture 81 - Generating functions for e, h
Link NOC:Algebraic Combinatorics Lecture 82 - The power sum symmetric functions
Link NOC:Algebraic Combinatorics Lecture 83 - The inner product and Cauchy identity
Link NOC:Algebraic Combinatorics Lecture 84 - Skew Schur functions and the LR rule
Link NOC:An Invitation to Topology Lecture 1 - Introduction to Topology
Link NOC:An Invitation to Topology Lecture 2 - Basic Set theory
Link NOC:An Invitation to Topology Lecture 3 - Mathematical Logic - Part 1
Link NOC:An Invitation to Topology Lecture 4 - Mathematical Logic - Part 2
Link NOC:An Invitation to Topology Lecture 5 - Functions
Link NOC:An Invitation to Topology Lecture 6 - Finite Sets - Part 1
Link NOC:An Invitation to Topology Lecture 7 - Finite Sets - Part 2
Link NOC:An Invitation to Topology Lecture 8 - Infinite Sets
Link NOC:An Invitation to Topology Lecture 9 - Infinite Sets and Axiom of Choice
Link NOC:An Invitation to Topology Lecture 10 - Definition of aTopology
Link NOC:An Invitation to Topology Lecture 11 - Examples of different topologies
Link NOC:An Invitation to Topology Lecture 12 - Basis for a topology
Link NOC:An Invitation to Topology Lecture 13 - Various topologies on the real line
Link NOC:An Invitation to Topology Lecture 14 - Comparison of topologies - Part 1: Finer and coarser topologies
Link NOC:An Invitation to Topology Lecture 15 - Comparison of topologies - Part 2: Comparing the various topologies on R
Link NOC:An Invitation to Topology Lecture 16 - Basis and Sub-basis for a topology
Link NOC:An Invitation to Topology Lecture 17 - Various topologies: the subspace topology
Link NOC:An Invitation to Topology Lecture 18 - The Product topology
Link NOC:An Invitation to Topology Lecture 19 - Topologies on arbitrary Cartesian products
Link NOC:An Invitation to Topology Lecture 20 - Metric topology - Part 1
Link NOC:An Invitation to Topology Lecture 21 - Metric topology - Part 2
Link NOC:An Invitation to Topology Lecture 22 - Metric topology - Part 3
Link NOC:An Invitation to Topology Lecture 23 - Closed Sets
Link NOC:An Invitation to Topology Lecture 24 - Closure and Limit points
Link NOC:An Invitation to Topology Lecture 25 - Continuous functions
Link NOC:An Invitation to Topology Lecture 26 - Construction of continuous functions
Link NOC:An Invitation to Topology Lecture 27 - Continuous functions on metric spaces - Part 1
Link NOC:An Invitation to Topology Lecture 28 - Continuous functions on metric spaces - Part 2
Link NOC:An Invitation to Topology Lecture 29 - Connectedness
Link NOC:An Invitation to Topology Lecture 30 - Some conditions for Connectedness
Link NOC:An Invitation to Topology Lecture 31 - Connectedness of the Real Line
Link NOC:An Invitation to Topology Lecture 32 - Connectedness of a Linear Continuum
Link NOC:An Invitation to Topology Lecture 33 - The Intermediate Value Theorem
Link NOC:An Invitation to Topology Lecture 34 - Path-connectedness
Link NOC:An Invitation to Topology Lecture 35 - Connectedness does not imply Path-connectedness - Part 1
Link NOC:An Invitation to Topology Lecture 36 - Connectedness does not imply Path-connectedness - Part 2
Link NOC:An Invitation to Topology Lecture 37 - Connected and Path-connected Components
Link NOC:An Invitation to Topology Lecture 38 - Local connectedness and Local Path-connectedness
Link NOC:An Invitation to Topology Lecture 39 - Compactness
Link NOC:An Invitation to Topology Lecture 40 - Properties of compact spaces
Link NOC:An Invitation to Topology Lecture 41 - The Heine-Borel Theorem
Link NOC:An Invitation to Topology Lecture 42 - Tychonoff't theorem
Link NOC:An Invitation to Topology Lecture 43 - Proof of Tychonoff's theorem - Part 1
Link NOC:An Invitation to Topology Lecture 44 - Proof of Tychonoff's theorem - Part 2
Link NOC:An Invitation to Topology Lecture 45 - Compactness in metric spaces
Link NOC:An Invitation to Topology Lecture 46 - Lebesgue Number Lemma and the Uniform Continuity theorem
Link NOC:An Invitation to Topology Lecture 47 - Different Kinds of Compactness
Link NOC:An Invitation to Topology Lecture 48 - Equivalence of various compactness properties for Metric Spaces
Link NOC:An Invitation to Topology Lecture 49 - Compactness and Sequential Compactness in arbitrary topological spaces
Link NOC:An Invitation to Topology Lecture 50 - Baire Spaces
Link NOC:An Invitation to Topology Lecture 51 - Properties and Examples of Baire Spaces
Link NOC:An Invitation to Topology Lecture 52 - The Baire Category Theorem
Link NOC:An Invitation to Topology Lecture 53 - Complete Metric Spaces and the Baire Category theorem - Part 1
Link NOC:An Invitation to Topology Lecture 54 - Complete Metric Spaces and the Baire Category theorem - Part 2
Link NOC:An Invitation to Topology Lecture 55 - Application of the Baire Category theorem
Link NOC:An Invitation to Topology Lecture 56 - Regular and Normal spaces
Link NOC:An Invitation to Topology Lecture 57 - Properties and examples of regular and normal spaces
Link NOC:An Invitation to Topology Lecture 58 - Urysohn's Lemma
Link NOC:An Invitation to Topology Lecture 59 - Proof of Urysohn's Lemma
Link NOC:An Invitation to Topology Lecture 60 - Tietze Extension theorem - Part 1
Link NOC:An Invitation to Topology Lecture 61 - Tietze Extension theorem - Part 2
Link NOC:An Invitation to Topology Lecture 62 - Compactness and Completeness in Metric spaces
Link NOC:An Invitation to Topology Lecture 63 - The space of continuous functions - Part 1
Link NOC:An Invitation to Topology Lecture 64 - The space of continuous functions - Part 2
Link NOC:An Invitation to Topology Lecture 65 - Equicontinuity
Link NOC:An Invitation to Topology Lecture 66 - Total boundedness and Equicontinuity - Part 1
Link NOC:An Invitation to Topology Lecture 67 - Total boundedness and Equicontinuity - Part 2
Link NOC:An Invitation to Topology Lecture 68 - Topology of compact convergence - Part 1
Link NOC:An Invitation to Topology Lecture 69 - Topology of compact convergence - Part 2
Link NOC:An Invitation to Topology Lecture 70 - Equicontinuity revisited - Part 1
Link NOC:An Invitation to Topology Lecture 71 - Equicontinuity revisited - Part 2
Link NOC:An Invitation to Topology Lecture 72 - Locally compact Hausdorff spaces
Link NOC:An Invitation to Topology Lecture 73 - The Arzelà - Ascoli theorem
Link NOC:Operator Theory Lecture 1 - Semi Inner product spaces
Link NOC:Operator Theory Lecture 2 - Inner Product Spaces
Link NOC:Operator Theory Lecture 3 - Parallelogram law
Link NOC:Operator Theory Lecture 4 - Hilbert Spaces
Link NOC:Operator Theory Lecture 5 - Orthogonality
Link NOC:Operator Theory Lecture 6 - Projection Theorem
Link NOC:Operator Theory Lecture 7 - Linear Operator
Link NOC:Operator Theory Lecture 8 - Bounded Operators
Link NOC:Operator Theory Lecture 9 - Norm of a linear operator
Link NOC:Operator Theory Lecture 10 - Examples of bounded operators
Link NOC:Operator Theory Lecture 11 - The Adjoint Operator
Link NOC:Operator Theory Lecture 12 - The Adjoint: Properties
Link NOC:Operator Theory Lecture 13 - Closed range operators - 1
Link NOC:Operator Theory Lecture 14 - Closed range operators - 2
Link NOC:Operator Theory Lecture 15 - Self-adjoint Operators
Link NOC:Operator Theory Lecture 16 - Normal operators
Link NOC:Operator Theory Lecture 17 - Isometris and Unitaries
Link NOC:Operator Theory Lecture 18 - Isometris and Unitaries
Link NOC:Operator Theory Lecture 19 - Mutually Orthogonal Projections
Link NOC:Operator Theory Lecture 20 - Invariant Subspaces
Link NOC:Operator Theory Lecture 21 - Monotone Convergence Theorem
Link NOC:Operator Theory Lecture 22 - Square root
Link NOC:Operator Theory Lecture 23 - Polar decomposition
Link NOC:Operator Theory Lecture 24 - Invertibility
Link NOC:Operator Theory Lecture 25 - Spectrum
Link NOC:Operator Theory Lecture 26 - Spectral Mapping Theorem
Link NOC:Operator Theory Lecture 27 - The spectral radius formula
Link NOC:Operator Theory Lecture 28 - multiplicative linear functionals
Link NOC:Operator Theory Lecture 29 - The GKZ-theorem
Link NOC:Operator Theory Lecture 30 - Maximal Ideal Space
Link NOC:Operator Theory Lecture 31 - Commutative C*-algebras
Link NOC:Operator Theory Lecture 32 - Decomposition of spectrum
Link NOC:Operator Theory Lecture 33 - Computing spectrum: Examples
Link NOC:Operator Theory Lecture 34 - Approximate spectrum
Link NOC:Operator Theory Lecture 35 - Approximate spectrum: Properties
Link NOC:Operator Theory Lecture 36 - Numerical bounds
Link NOC:Operator Theory Lecture 37 - Compact Operators
Link NOC:Operator Theory Lecture 38 - Compact Operators; Properties
Link NOC:Operator Theory Lecture 39 - Spectral Theorem: Compact Self-Adjoint Operators
Link NOC:Operator Theory Lecture 40 - Spectral Theorem: Consequences
Link NOC:Operator Theory Lecture 41 - Compact Normal Operators
Link NOC:Operator Theory Lecture 42 - Compact Operators Singular value Decomposition
Link NOC:Operator Theory Lecture 43 - Fredholm Alternative Theorem
Link NOC:Operator Theory Lecture 44 - Orthogonal decomposition of self-adjoint operators
Link NOC:Operator Theory Lecture 45 - Spectral family; Properties - I
Link NOC:Operator Theory Lecture 46 - Spectral family; Properties - II
Link NOC:Operator Theory Lecture 47 - Spectral theorem Self adjoint Operators
Link NOC:Operator Theory Lecture 48 - Spectral theorem Examples
Link NOC:Operator Theory Lecture 49 - Spectral theorem: Consequences
Link NOC:Operator Theory Lecture 50 - Continuous functional Calculus
Link NOC:Operator Theory Lecture 51 - Spectral mapping theorem
Link NOC:Measure and Integration Lecture 1 - Preamble
Link NOC:Measure and Integration Lecture 2 - Algebras of sets
Link NOC:Measure and Integration Lecture 3 - Measures on rings
Link NOC:Measure and Integration Lecture 4 - Outer-measure
Link NOC:Measure and Integration Lecture 5 - Measurable sets
Link NOC:Measure and Integration Lecture 6 - Caratheodory's method
Link NOC:Measure and Integration Lecture 7 - Exercises
Link NOC:Measure and Integration Lecture 8 - Exercises
Link NOC:Measure and Integration Lecture 9 - Lebesgue measure: the ring
Link NOC:Measure and Integration Lecture 10 - Construction of the Lebesgue measure
Link NOC:Measure and Integration Lecture 11 - Errata
Link NOC:Measure and Integration Lecture 12 - The Cantor set
Link NOC:Measure and Integration Lecture 13 - Approximation
Link NOC:Measure and Integration Lecture 14 - Approximation
Link NOC:Measure and Integration Lecture 15 - Approximation
Link NOC:Measure and Integration Lecture 16 - Translation Invariance
Link NOC:Measure and Integration Lecture 17 - Non-measurable sets
Link NOC:Measure and Integration Lecture 18 - Exercises
Link NOC:Measure and Integration Lecture 19 - Measurable functions
Link NOC:Measure and Integration Lecture 20 - Measurable functions
Link NOC:Measure and Integration Lecture 21 - The Cantor function
Link NOC:Measure and Integration Lecture 22 - Exercises
Link NOC:Measure and Integration Lecture 23 - Egorov's theorem
Link NOC:Measure and Integration Lecture 24 - Convergence in measure
Link NOC:Measure and Integration Lecture 25 - Convergence in measure
Link NOC:Measure and Integration Lecture 26 - Convergence in measure
Link NOC:Measure and Integration Lecture 27 - Exercises
Link NOC:Measure and Integration Lecture 28 - Integration: Simple functions
Link NOC:Measure and Integration Lecture 29 - Non-negative functions
Link NOC:Measure and Integration Lecture 30 - Monotone convergence theorem
Link NOC:Measure and Integration Lecture 31 - Examples
Link NOC:Measure and Integration Lecture 32 - Fatou's lemma
Link NOC:Measure and Integration Lecture 33 - Integrable functions
Link NOC:Measure and Integration Lecture 34 - Dominated convergence theorem
Link NOC:Measure and Integration Lecture 35 - Dominated convergence theorem: Applications
Link NOC:Measure and Integration Lecture 36 - Absolute continuity
Link NOC:Measure and Integration Lecture 37 - Integration on the real line
Link NOC:Measure and Integration Lecture 38 - Examples
Link NOC:Measure and Integration Lecture 39 - Weierstrass' theorem
Link NOC:Measure and Integration Lecture 40 - Exercises
Link NOC:Measure and Integration Lecture 41 - Exercises
Link NOC:Measure and Integration Lecture 42 - Vitali covering lemma
Link NOC:Measure and Integration Lecture 43 - Monotonic functions
Link NOC:Measure and Integration Lecture 44 - Functions of bounded variation
Link NOC:Measure and Integration Lecture 45 - Functions of bounded variation
Link NOC:Measure and Integration Lecture 46 - Functions of bounded variation
Link NOC:Measure and Integration Lecture 47 - Differentiation of an indefinite integral
Link NOC:Measure and Integration Lecture 48 - Absolute continuity
Link NOC:Measure and Integration Lecture 49 - Exercises
Link NOC:Measure and Integration Lecture 50 - Product spaces
Link NOC:Measure and Integration Lecture 51 - Product spaces: measurable functions
Link NOC:Measure and Integration Lecture 52 - Product measure
Link NOC:Measure and Integration Lecture 53 - Fubini's theorem
Link NOC:Measure and Integration Lecture 54 - Examples
Link NOC:Measure and Integration Lecture 55 - Examples
Link NOC:Measure and Integration Lecture 56 - Integration of radial functions
Link NOC:Measure and Integration Lecture 57 - Measure of the unit ball in N dimensions
Link NOC:Measure and Integration Lecture 58 - Exercises
Link NOC:Measure and Integration Lecture 59 - Signed measures
Link NOC:Measure and Integration Lecture 60 - Hahn and Jordan decompositions
Link NOC:Measure and Integration Lecture 61 - Upper,lower and totaal variations of a signed measure; Absolute continuity
Link NOC:Measure and Integration Lecture 62 - Absolute continuity
Link NOC:Measure and Integration Lecture 63 - Radon-Nikodym theorem
Link NOC:Measure and Integration Lecture 64 - Radon-Nikodym theorem
Link NOC:Measure and Integration Lecture 65 - Exercises
Link NOC:Measure and Integration Lecture 66 - Lebesgue spaces
Link NOC:Measure and Integration Lecture 67 - Examples. Inclusion questions
Link NOC:Measure and Integration Lecture 68 - Convergence in L^p
Link NOC:Measure and Integration Lecture 69 - Approximation
Link NOC:Measure and Integration Lecture 70 - Applications
Link NOC:Measure and Integration Lecture 71 - Duality
Link NOC:Measure and Integration Lecture 72 - Duality
Link NOC:Measure and Integration Lecture 73 - Convolutions
Link NOC:Measure and Integration Lecture 74 - Convolutions
Link NOC:Measure and Integration Lecture 75 - Convolutions
Link NOC:Measure and Integration Lecture 76 - Exercises
Link NOC:Measure and Integration Lecture 77 - Exercises
Link NOC:Measure and Integration Lecture 78 - Change of variable
Link NOC:Measure and Integration Lecture 79 - Change of variable
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 1 - Flow of the Course: A not-so-sneak peek
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 2 - Fuzzy Sets - The Necessity
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 3 - Fuzzy Sets - Representations
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 4 - Fuzziness vs Probability
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 5 - Fuzzy Sets - Some Important Notions
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 6 - Operations on Fuzzy Sets
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 7 - Posets on Fuzzy Sets
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 8 - Lattice of Fuzzy Sets
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 9 - Boolean Algebra of Sets
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 10 - Algebras on Fuzzy Sets
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 11 - Triangular Norms
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 12 - Triangular Norms: Analytical Aspects
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 13 - Triangular Norms: Algebraic Aspects
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 14 - T-Norms: Construction and Representations
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 15 - T-Norms:Complementation and Duality
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 16 - Fuzzy Implications
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 17 - Fuzzy Implications - Desirable Properties
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 18 - Construction of Fuzzy Implication - I
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 19 - Construction of Fuzzy Implication - II
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 20 - Construction of Fuzzy Implication - II
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 21 - Construction of Fuzzy Implication - III
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 22 - Construction of Fuzzy Implication - IV
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 23 - (N, T, I)- An Organic Relationship
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 24 - Fuzzy Relations
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 25 - Composition of Fuzzy Relations
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 26 - Similarity and Compatibility Classes
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 27 - On the Transitivity of Fuzzy Relations - I
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 28 - On the Transitivity of Fuzzy Relations - II
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 29 - Fuzzy Propositions: Some Interpretations
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 30 - Fuzzy If-Then Rules
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 31 - Fuzzy Relational Inference
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 32 - Fuzzy Relational Inference - MISO Case
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 33 - Fuzzy Relational Inference - Multiple Rules
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 34 - Fuzzy Inferencing Schemes - A Visual Illustration
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 35 - Similarity Based Reasoning
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 36 - SBR : Mamdani Fuzzy Systems
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 37 - Introduction to Building a Mamdani FIS
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 38 - Contrast Enhancement in Images: An FIS Approach
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 39 - Takagi-Sugeno-Kang Fuzzy Systems
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 40 - Fuzzy Inference Systems - Interpolativity
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 41 - Interpolativity of FRI - Single SISO Rule
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 42 - Fuzzy Relational Equations
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 43 - Interpolativity of FRI - Multiple SISO Rules
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 44 - Similarity Based Reasoning- Interpolativity
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 45 - FRI~SBR : FITA~FATI : Some Connections
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 46 - Continuous Models of FRI
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 47 - Continuous Models of CRI and BKS
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 48 - Continuous Models of SBR
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 49 - Extensionality of a Fuzzy Set
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 50 - Robustness of CRI
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 51 - Robustness of BKS
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 52 - Robustness of SBR
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 53 - Monotonicity of an FIS
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 54 - Monotonicity of an FRI
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 55 - Monotonicity of an SBR
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 56 - Functional (In)Equalities involving FLCs
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 57 - Suitability of BKS with Yager's Implications
Link NOC:Approximate Reasoning using Fuzzy Set Theory Lecture 58 - Law of Importation and Hierarchical CRI
Link NOC:Probability-II with Examples Using R Lecture 1 - Continuous Random Variables - Part 1
Link NOC:Probability-II with Examples Using R Lecture 2 - Continuous Random Variables - Part 2
Link NOC:Probability-II with Examples Using R Lecture 3 - R Set Up
Link NOC:Probability-II with Examples Using R Lecture 4 - Exponential and Normal Random Variable
Link NOC:Probability-II with Examples Using R Lecture 5 - Normal Random Variable
Link NOC:Probability-II with Examples Using R Lecture 6 - Distribution Function
Link NOC:Probability-II with Examples Using R Lecture 7 - Normal Distribution
Link NOC:Probability-II with Examples Using R Lecture 8 - Problem Solving for Week 12 - Part 2
Link NOC:Probability-II with Examples Using R Lecture 9 - Joint Distribution of Continuous Random Variables
Link NOC:Probability-II with Examples Using R Lecture 10 - Marginal Density and Independence
Link NOC:Probability-II with Examples Using R Lecture 11 - Uniform Distribution in R2
Link NOC:Probability-II with Examples Using R Lecture 12 - Problem Solving
Link NOC:Probability-II with Examples Using R Lecture 13 - Bivariate Normal - Part 1
Link NOC:Probability-II with Examples Using R Lecture 14 - Problem Solving 1 - Calculating Probabilities
Link NOC:Probability-II with Examples Using R Lecture 15 - Problem Solving 2 - Quadratic Equation, Random Coefficients
Link NOC:Probability-II with Examples Using R Lecture 16 - Conditional Density
Link NOC:Probability-II with Examples Using R Lecture 17 - Sums of Independent Random Variables
Link NOC:Probability-II with Examples Using R Lecture 18 - Quotient of Independent Random Variables
Link NOC:Probability-II with Examples Using R Lecture 19 - Simulating Bivariate Normal Random Variables
Link NOC:Probability-II with Examples Using R Lecture 20 - Problem Solving Conditional Density
Link NOC:Probability-II with Examples Using R Lecture 21 - Expectation and Variance of Continuous Random Variables
Link NOC:Probability-II with Examples Using R Lecture 22 - Revisit of Variance and Expectation
Link NOC:Probability-II with Examples Using R Lecture 23 - Revisit of Properties of Variance
Link NOC:Probability-II with Examples Using R Lecture 24 - Covariance and Correlation
Link NOC:Probability-II with Examples Using R Lecture 25 - Conditional Expectation and Conditional Variance
Link NOC:Probability-II with Examples Using R Lecture 26 - Analysis of Variance Formula
Link NOC:Probability-II with Examples Using R Lecture 27 - Problem Solving Expectations
Link NOC:Probability-II with Examples Using R Lecture 28 - Moment Generating Function
Link NOC:Probability-II with Examples Using R Lecture 29 - Moments and Moment Generating Function
Link NOC:Probability-II with Examples Using R Lecture 30 - Bivariate Normal - Part 2
Link NOC:Probability-II with Examples Using R Lecture 31 - Problem Solving Conditional Expectation and Conditional Variance
Link NOC:Probability-II with Examples Using R Lecture 32 - Sampling Distribution and Sample Mean
Link NOC:Probability-II with Examples Using R Lecture 33 - Weak Law of Large Numbers
Link NOC:Probability-II with Examples Using R Lecture 34 - Revisit Weak Law of Large Numbers
Link NOC:Probability-II with Examples Using R Lecture 35 - Problem Solving
Link NOC:Probability-II with Examples Using R Lecture 36 - Demoivre-Laplace Central Limit Theorem and Normal Random Variables
Link NOC:Probability-II with Examples Using R Lecture 37 - Revisit Normal Random Variables
Link NOC:Probability-II with Examples Using R Lecture 38 - Normal Tables, Mean and Variance
Link NOC:Probability-II with Examples Using R Lecture 39 - Problem Solving
Link NOC:Probability-II with Examples Using R Lecture 40 - Bivariate Normal Random Variables_Characterisation
Link NOC:Probability-II with Examples Using R Lecture 41 - Bivariate Normal Random Variables_Independence
Link NOC:Probability-II with Examples Using R Lecture 42 - Problem Solving
Link NOC:Probability-II with Examples Using R Lecture 43 - Bivariate Normal Random Variables Joint Density Calculation - Part 1
Link NOC:Probability-II with Examples Using R Lecture 44 - Bivariate Normal Random Variables Joint Density Calculation - Part 2
Link NOC:Probability-II with Examples Using R Lecture 45 - Problem Solving - Review of Transformation of Random Variables
Link NOC:Predictive Analytics - Regression and Classification Lecture 1 - Introduction
Link NOC:Predictive Analytics - Regression and Classification Lecture 2 - Least Squares method
Link NOC:Predictive Analytics - Regression and Classification Lecture 3 - Hands-on with Python - Part 1
Link NOC:Predictive Analytics - Regression and Classification Lecture 4 - Hands-on with R - Part 1
Link NOC:Predictive Analytics - Regression and Classification Lecture 5 - Categorical Variable as Predictor - Part 1
Link NOC:Predictive Analytics - Regression and Classification Lecture 6 - Categorical Variable as Predictor - Part 2
Link NOC:Predictive Analytics - Regression and Classification Lecture 7 - Hands-on with R - Part 2
Link NOC:Predictive Analytics - Regression and Classification Lecture 8 - Understanding the joint probability from data perspective
Link NOC:Predictive Analytics - Regression and Classification Lecture 9 - Hands-on with R - Part 3
Link NOC:Predictive Analytics - Regression and Classification Lecture 10 - Regression Line as Conditional Expectation
Link NOC:Predictive Analytics - Regression and Classification Lecture 11 - Normal Equations
Link NOC:Predictive Analytics - Regression and Classification Lecture 12 - Gauss Markov Theorem
Link NOC:Predictive Analytics - Regression and Classification Lecture 13 - Hands-on with Python - Part 2
Link NOC:Predictive Analytics - Regression and Classification Lecture 14 - Geometry of Regression Model and Feature Engineering
Link NOC:Predictive Analytics - Regression and Classification Lecture 15 - Sampling Distribution and Statistical Inference of Regression Coefficient
Link NOC:Predictive Analytics - Regression and Classification Lecture 16 - Hands-on with R - Part 4
Link NOC:Predictive Analytics - Regression and Classification Lecture 17 - Checking Model Assumptions
Link NOC:Predictive Analytics - Regression and Classification Lecture 18 - Comparing Models with Predictive Accuracy
Link NOC:Predictive Analytics - Regression and Classification Lecture 19 - Hands-on with Julia
Link NOC:Predictive Analytics - Regression and Classification Lecture 20 - Model Complexity, Bias and Variance Tradeoff
Link NOC:Predictive Analytics - Regression and Classification Lecture 21 - Feature Selection, Variable Selection
Link NOC:Predictive Analytics - Regression and Classification Lecture 22 - Hands on with R - Part 5
Link NOC:Predictive Analytics - Regression and Classification Lecture 23 - Understanding Multicollinearity
Link NOC:Predictive Analytics - Regression and Classification Lecture 24 - Ill-Posed Problem and Regularisation, LASSO and Risdge
Link NOC:Predictive Analytics - Regression and Classification Lecture 25 - Hands-on with Python - Part 3
Link NOC:Predictive Analytics - Regression and Classification Lecture 26 - Time Series Forecasting with Regression Model
Link NOC:Predictive Analytics - Regression and Classification Lecture 27 - Hands on with R - Part 6
Link NOC:Predictive Analytics - Regression and Classification Lecture 28 - Granger Causal model
Link NOC:Predictive Analytics - Regression and Classification Lecture 29 - Hands on with R - Part 7
Link NOC:Predictive Analytics - Regression and Classification Lecture 30 - Capital Asset Pricing Model
Link NOC:Predictive Analytics - Regression and Classification Lecture 31 - Hands on with R for CAPM
Link NOC:Predictive Analytics - Regression and Classification Lecture 32 - Bootstrap Regression
Link NOC:Predictive Analytics - Regression and Classification Lecture 33 - Hands on with R for Bootstrap Regression
Link NOC:Predictive Analytics - Regression and Classification Lecture 34 - Hands on with Python: Handle multicollinearity with Ridge correction
Link NOC:Predictive Analytics - Regression and Classification Lecture 35 - Hands on with Julia: Implemente Chennai Temperature Analysis with Julia and CRRao
Link NOC:Predictive Analytics - Regression and Classification Lecture 36 - Introduction to logistic Regression
Link NOC:Predictive Analytics - Regression and Classification Lecture 37 - Maximum Likelihood Estimate for Logistic Regression
Link NOC:Predictive Analytics - Regression and Classification Lecture 38 - Hands on with R for Logistic Regression
Link NOC:Predictive Analytics - Regression and Classification Lecture 39 - Hands on with R: Measure Time performance of R code
Link NOC:Predictive Analytics - Regression and Classification Lecture 40 - Statistical Inference of Logistic Regression
Link NOC:Predictive Analytics - Regression and Classification Lecture 41 - Hands on with R with Iris Dataset
Link NOC:Predictive Analytics - Regression and Classification Lecture 42 - Multi-Class Classification with Discriminant Analysis
Link NOC:Predictive Analytics - Regression and Classification Lecture 43 - Hands on with R: Implement LDA
Link NOC:Predictive Analytics - Regression and Classification Lecture 44 - Effect of Feature Engineer in Logistic Regression
Link NOC:Predictive Analytics - Regression and Classification Lecture 45 - Logistic Regression to Deep Learning Neural Network
Link NOC:Predictive Analytics - Regression and Classification Lecture 46 - Hands on with R: Feature Engineer in Logistic Regression
Link NOC:Predictive Analytics - Regression and Classification Lecture 47 - Generalised Linear Model
Link NOC:Predictive Analytics - Regression and Classification Lecture 48 - Hands on with R: Poisson Regression with Football Data
Link NOC:Predictive Analytics - Regression and Classification Lecture 49 - Gaussian Process Regression
Link NOC:Predictive Analytics - Regression and Classification Lecture 50 - Hands on with R: Implement GP Regression from scratch
Link NOC:Predictive Analytics - Regression and Classification Lecture 51 - Tree Structured Regression
Link NOC:Predictive Analytics - Regression and Classification Lecture 52 - Hands on with R: Implement Tree Regression and Random Forest with Simulated Data
Link NOC:Predictive Analytics - Regression and Classification Lecture 53 - Hands on with R: Implement Tree Regression and Random Forest with EPL football Data
Link NOC:Predictive Analytics - Regression and Classification Lecture 54 - Hands on with Python : Analysis of Bangalore House Price Data
Link NOC:Predictive Analytics - Regression and Classification Lecture 55 - Hands on with R: Prediction of Bangalore House Price
Link NOC:Predictive Analytics - Regression and Classification Lecture 56 - Hands on with R: More Prediction of Bangalore House Price
Link NOC:Predictive Analytics - Regression and Classification Lecture 57 - Hands on with R: Some Correction with Bangalore House Price Data Prediction
Link NOC:Predictive Analytics - Regression and Classification Lecture 58 - Hands on with R: Classify fake bank note with GLM
Link NOC:Predictive Analytics - Regression and Classification Lecture 59 - Hands on with R: Dynamic Pricing with Cheese Data
Link NOC:Predictive Analytics - Regression and Classification Lecture 60 - Hands on with Julia - Bayesian Logistic Regression with Horse Shoe Prior - Genetic Data Analysis
Link NOC:Predictive Analytics - Regression and Classification Lecture 61 - Hands on with Julia - Bayesian Poisson Regression with Horse Shoe Prior English Premier League Data
Link NOC:Predictive Analytics - Regression and Classification Lecture 62 - Why Julia is Future for Data Science Projects ?
Link NOC:Predictive Analytics - Regression and Classification Lecture 63 - Concluding Remarks
Link NOC:Predictive Analytics - Regression and Classification Lecture 64 - Course Review
Link NOC:Introduction to Algebraic Geometry Lecture 1 - Commutative Algebra - Part 1
Link NOC:Introduction to Algebraic Geometry Lecture 2 - Commutative Algebra - Part 2
Link NOC:Introduction to Algebraic Geometry Lecture 3 - Commutative Algebra - Part 3
Link NOC:Introduction to Algebraic Geometry Lecture 4 - Commutative Algebra - Part 4
Link NOC:Introduction to Algebraic Geometry Lecture 5 - Commutative Algebra - Part 5
Link NOC:Introduction to Algebraic Geometry Lecture 6 - Tutorial 1 : Cayley-Hamilton Theorem, Nakayama's Lemma
Link NOC:Introduction to Algebraic Geometry Lecture 7 - Commutative Algebra - Part 6
Link NOC:Introduction to Algebraic Geometry Lecture 8 - Commutative Algebra - Part 7
Link NOC:Introduction to Algebraic Geometry Lecture 9 - Commutative Algebra - Part 8
Link NOC:Introduction to Algebraic Geometry Lecture 10 - Affine Algebraic Sets - Part 1
Link NOC:Introduction to Algebraic Geometry Lecture 11 - Affine Algebraic Sets - Part 2
Link NOC:Introduction to Algebraic Geometry Lecture 12 - Tutorial 2 : Noether Normalization Lemma,Some Important Results in Dimension Theory
Link NOC:Introduction to Algebraic Geometry Lecture 13 - Regular Morphisms
Link NOC:Introduction to Algebraic Geometry Lecture 14 - Abstract Algebraic Sets
Link NOC:Introduction to Algebraic Geometry Lecture 15 - Zariski Topology on Affine Space
Link NOC:Introduction to Algebraic Geometry Lecture 16 - Irreducible Affine Algebraic Sets
Link NOC:Introduction to Algebraic Geometry Lecture 17 - Ring of Regular Functions
Link NOC:Introduction to Algebraic Geometry Lecture 18 - Projective Space
Link NOC:Introduction to Algebraic Geometry Lecture 19 - Tutorial 3 : Some Applications of Dimension Theory
Link NOC:Introduction to Algebraic Geometry Lecture 20 - Zariski Topology on Projective Space
Link NOC:Introduction to Algebraic Geometry Lecture 21 - Affine Open Cover of Projective Space
Link NOC:Introduction to Algebraic Geometry Lecture 22 - Projective and Quasi-Projective Varieties
Link NOC:Introduction to Algebraic Geometry Lecture 23 - Regular Functions on Quasi-Projective Varieties
Link NOC:Introduction to Algebraic Geometry Lecture 24 - Presheaves and Sheaves
Link NOC:Introduction to Algebraic Geometry Lecture 25 - Morphism of Presheaves/Sheaves
Link NOC:Introduction to Algebraic Geometry Lecture 26 - Tutorial 4 : More Applications of Dimension Theory
Link NOC:Introduction to Algebraic Geometry Lecture 27 - A Brief Overview of Sheaf Theory - Part 1
Link NOC:Introduction to Algebraic Geometry Lecture 28 - A Brief Overview of Sheaf Theory - Part 2
Link NOC:Introduction to Algebraic Geometry Lecture 29 - A Brief Overview of Sheaf Theory - Part 3
Link NOC:Introduction to Algebraic Geometry Lecture 30 - Prevarieties
Link NOC:Introduction to Algebraic Geometry Lecture 31 - Sheaf of Regular Functions
Link NOC:Introduction to Algebraic Geometry Lecture 32 - Ring of Germs of Regular Functions at a point, Field of Rational Functions
Link NOC:Introduction to Algebraic Geometry Lecture 33 - Tutorial 5 : Sheafification
Link NOC:Introduction to Algebraic Geometry Lecture 34 - Ring of Regular Functions, Local Ring at a Point,and Field of Rational Functions of an AffineVariety
Link NOC:Introduction to Algebraic Geometry Lecture 35 - Equivalence of Categories of the Category of Affine Varieties over a Field k and the Category
Link NOC:Introduction to Algebraic Geometry Lecture 36 - Equivalence of Categories of the Category of Affine Varieties over a Field k (Continued...)
Link NOC:Introduction to Algebraic Geometry Lecture 37 - Some Examples, Open Immersions and Closed Immersions
Link NOC:Introduction to Algebraic Geometry Lecture 38 - Product of Quasi-affine Varieties
Link NOC:Introduction to Algebraic Geometry Lecture 39 - Diagonal Morphisms, Abstract Varieties
Link NOC:Introduction to Algebraic Geometry Lecture 40 - Tutorial 6 : Normal Varieties and Normalization of a Variety
Link NOC:Introduction to Algebraic Geometry Lecture 41 - Projective Varieties Revisited - Part 1
Link NOC:Introduction to Algebraic Geometry Lecture 42 - Projective Varieties Revisited - Part 2
Link NOC:Introduction to Algebraic Geometry Lecture 43 - Global Regular Functions on ProjectiveVarieties are Constants - Part 1
Link NOC:Introduction to Algebraic Geometry Lecture 44 - Global Regular Functions on ProjectiveVarieties are Constants - Part 2
Link NOC:Introduction to Algebraic Geometry Lecture 45 - Product of Prevarieties - Part 1
Link NOC:Introduction to Algebraic Geometry Lecture 46 - Product of Prevarieties - Part 2
Link NOC:Introduction to Algebraic Geometry Lecture 47 - Tutorial 7 : A Result on Tensor Products of k-algebras
Link NOC:Introduction to Algebraic Geometry Lecture 48 - Morphisms of Prevarieties - Part 1
Link NOC:Introduction to Algebraic Geometry Lecture 49 - Morphisms of Prevarieties - Part 2
Link NOC:Introduction to Algebraic Geometry Lecture 50 - Finite Morphisms - Part 1
Link NOC:Introduction to Algebraic Geometry Lecture 51 - Finite Morphisms - Part 2
Link NOC:Introduction to Algebraic Geometry Lecture 52 - Fiber Products
Link NOC:Introduction to Algebraic Geometry Lecture 53 - Tutorial 8 : Finite Morphisms
Link NOC:Introduction to Algebraic Geometry Lecture 54 - Immersions
Link NOC:Introduction to Algebraic Geometry Lecture 55 - Fiber Products, Separatedness
Link NOC:Introduction to Algebraic Geometry Lecture 56 - Criterion of Separatedness
Link NOC:Introduction to Algebraic Geometry Lecture 57 - Proper Morphisms and Complete Varieties
Link NOC:Introduction to Algebraic Geometry Lecture 58 - Tutorial 9 : Closed Immersions and Graph of a Morphism
Link NOC:Introduction to Algebraic Geometry Lecture 59 - Projective Varieties are Complete
Link NOC:Introduction to Algebraic Geometry Lecture 60 - Zariski Tangent Space, Singular and Nonsingular Points
Link NOC:Introduction to Algebraic Geometry Lecture 61 - Smooth Points Form a Non-empty Open Subset
Link NOC:Introduction to Algebraic Geometry Lecture 62 - Blow-Ups, Rational Maps and Birational Maps
Link NOC:Introduction to Algebraic Geometry Lecture 63 - Tutorial 10 : Zariski Tangent Space at a Point of an Affine Variety
Link NOC:Introduction to Algebraic Geometry Lecture 64 - Blow-Ups (Continued...)
Link NOC:Introduction to Algebraic Geometry Lecture 65 - Smooth Morphisms
Link NOC:Introduction to Algebraic Geometry Lecture 66 - Bertini's Theorem
Link NOC:Introduction to Algebraic Geometry Lecture 67 - Sard's Theorem
Link NOC:Introduction to Algebraic Geometry Lecture 68 - Tutorial 11 : Dimension of fiber of a morphism
Link NOC:Introduction to Algebraic Geometry Lecture 69 - Introduction to Affine Schemes - Spectrum of a Ring
Link NOC:Introduction to Algebraic Geometry Lecture 70 - Introduction to Affine Schemes - Topology on Spec A
Link NOC:Introduction to Algebraic Geometry Lecture 71 - Introduction to Affine Schemes - Topology on Spec A (Continued...)
Link NOC:Introduction to Algebraic Geometry Lecture 72 - Introduction to Affine Schemes - Sheaf Structure on Spec A
Link NOC:Introduction to Algebraic Geometry Lecture 73 - Abstract Non-singular Curves - Part 1
Link NOC:Introduction to Algebraic Geometry Lecture 74 - Abstract Non-singular Curves - Part 2
Link NOC:Introduction to Algebraic Geometry Lecture 75 - Tutorial 12 : Extension of Regular Functions
Link NOC:Introduction to Statistics Lecture 1 - Types of variables
Link NOC:Introduction to Statistics Lecture 2 - Types of studies
Link NOC:Introduction to Statistics Lecture 3 - Types of sampling strategies
Link NOC:Introduction to Statistics Lecture 4 - Python - Session 1
Link NOC:Introduction to Statistics Lecture 5 - Python - Session 2
Link NOC:Introduction to Statistics Lecture 6 - Summary measures of categorical and numerical variables
Link NOC:Introduction to Statistics Lecture 7 - Measures of Dispersion
Link NOC:Introduction to Statistics Lecture 8 - Measures of Skewness
Link NOC:Introduction to Statistics Lecture 9 - Python - Session 3
Link NOC:Introduction to Statistics Lecture 10 - Python - Session 4
Link NOC:Introduction to Statistics Lecture 11 - Visualizing categorical and numerical data
Link NOC:Introduction to Statistics Lecture 12 - Visualizing numerical data
Link NOC:Introduction to Statistics Lecture 13 - Python - Session 5
Link NOC:Introduction to Statistics Lecture 14 - Python - Session 6
Link NOC:Introduction to Statistics Lecture 15 - Python - Session 7
Link NOC:Introduction to Statistics Lecture 16 - Sampling distribution of sample mean
Link NOC:Introduction to Statistics Lecture 17 - Central Limit Theorem
Link NOC:Introduction to Statistics Lecture 18 - Sampling distribution of sample variance and proportion
Link NOC:Introduction to Statistics Lecture 19 - Python - Session 8
Link NOC:Introduction to Statistics Lecture 20 - Python - Session 9
Link NOC:Introduction to Statistics Lecture 21 - Sampling distribution of difference of sample means - Part 1
Link NOC:Introduction to Statistics Lecture 22 - Sampling distribution of difference of sample means - Part 2
Link NOC:Introduction to Statistics Lecture 23 - Sampling distribution of ratio of sample variances and difference of sample proportions
Link NOC:Introduction to Statistics Lecture 24 - Python - Session 10
Link NOC:Introduction to Statistics Lecture 25 - Python - Session 11
Link NOC:Introduction to Statistics Lecture 26 - Point estimation - Part 1
Link NOC:Introduction to Statistics Lecture 27 - Point estimation - Part 2
Link NOC:Introduction to Statistics Lecture 28 - Point estimation - Part 3
Link NOC:Introduction to Statistics Lecture 29 - Python - Session 12
Link NOC:Introduction to Statistics Lecture 30 - Python - Session 13
Link NOC:Introduction to Statistics Lecture 31 - Unbiased estimation
Link NOC:Introduction to Statistics Lecture 32 - EM algorithm - Part 1
Link NOC:Introduction to Statistics Lecture 33 - EM algorithm - Part 2
Link NOC:Introduction to Statistics Lecture 34 - Python - Session 14
Link NOC:Introduction to Statistics Lecture 35 - Python - Session 15
Link NOC:Introduction to Statistics Lecture 36 - Hypothesis Testing - Part 1
Link NOC:Introduction to Statistics Lecture 37 - Hypothesis Testing - Part 2
Link NOC:Introduction to Statistics Lecture 38 - Hypothesis Testing - Part 3
Link NOC:Introduction to Statistics Lecture 39 - Python - Session 16
Link NOC:Introduction to Statistics Lecture 40 - Python - Session 17
Link NOC:Introduction to Statistics Lecture 41 - Hypothesis Testing for two sample problem - Part 1
Link NOC:Introduction to Statistics Lecture 42 - Hypothesis Testing for two sample problem - Part 2
Link NOC:Introduction to Statistics Lecture 43 - Hypothesis Testing for two sample problem - Part 3
Link NOC:Introduction to Statistics Lecture 44 - Python - Session 18
Link NOC:Introduction to Statistics Lecture 45 - Python - Session 19
Link NOC:Introduction to Statistics Lecture 46 - Bootstrap Hypothesis Testing - Part 1
Link NOC:Introduction to Statistics Lecture 47 - Python - Session 20
Link NOC:Introduction to Statistics Lecture 48 - Python - Session 21
Link NOC:Introduction to Statistics Lecture 49 - Bootstrap Hypothesis Testing - Part 2
Link NOC:Introduction to Statistics Lecture 50 - Python - Session 22
Link NOC:Introduction to Statistics Lecture 51 - Confidence Interval Estimation - Part 1
Link NOC:Introduction to Statistics Lecture 52 - Confidence Interval Estimation - Part 2
Link NOC:Introduction to Statistics Lecture 53 - Confidence Interval Estimation - Part 3
Link NOC:Introduction to Statistics Lecture 54 - Python - Session 23
Link NOC:Introduction to Statistics Lecture 55 - Python - Session 24
Link NOC:Introduction to Statistics Lecture 56 - Confidence interval for two sample problem
Link NOC:Introduction to Statistics Lecture 57 - Python - Session 25
Link NOC:Introduction to Statistics Lecture 58 - Bootstrap Confidence Interval
Link NOC:Introduction to Statistics Lecture 59 - Python - Session 26
Link NOC:Introduction to Statistics Lecture 60 - Python - Session 27
Link NOC:Probability Theory for Data Science Lecture 1 - Introduction
Link NOC:Probability Theory for Data Science Lecture 2 - Sample Space and Events
Link NOC:Probability Theory for Data Science Lecture 3 - Special Events and Various Approaches to Defining Probability
Link NOC:Probability Theory for Data Science Lecture 4 - Important Theorems
Link NOC:Probability Theory for Data Science Lecture 5 - Numerical Examples and Introduction to Conditional Probability
Link NOC:Probability Theory for Data Science Lecture 6 - Definition of Conditional Probability and Independence
Link NOC:Probability Theory for Data Science Lecture 7 - Bayes' Theorem
Link NOC:Probability Theory for Data Science Lecture 8 - Random Variable
Link NOC:Probability Theory for Data Science Lecture 9 - Events Defined by a Random Variable
Link NOC:Probability Theory for Data Science Lecture 10 - Cumulative Distribution Function
Link NOC:Probability Theory for Data Science Lecture 11 - Properties of the Cumulative Distribution Function and Discrete Random Variable
Link NOC:Probability Theory for Data Science Lecture 12 - Probability Mass Function
Link NOC:Probability Theory for Data Science Lecture 13 - Continuous Random Variable and Probability Density Function
Link NOC:Probability Theory for Data Science Lecture 14 - Numerical Examples
Link NOC:Probability Theory for Data Science Lecture 15 - Moments
Link NOC:Probability Theory for Data Science Lecture 16 - Higher Order Moments and Variance of a Random Variable
Link NOC:Probability Theory for Data Science Lecture 17 - Numerical Examples of Moments and Bernoulli Distribution
Link NOC:Probability Theory for Data Science Lecture 18 - Binomial Distribution
Link NOC:Probability Theory for Data Science Lecture 19 - Applications of Binomial Distribution
Link NOC:Probability Theory for Data Science Lecture 20 - Poisson Distribution
Link NOC:Probability Theory for Data Science Lecture 21 - Applications of Poisson Distribution
Link NOC:Probability Theory for Data Science Lecture 22 - Numerical Examples of Poisson Distribution and Uniform Distribution
Link NOC:Probability Theory for Data Science Lecture 23 - Application of Uniform Distribution and Exponential Distribution
Link NOC:Probability Theory for Data Science Lecture 24 - Applications of Exponential Distribution
Link NOC:Probability Theory for Data Science Lecture 25 - Memoryless Property and Gamma Distribution
Link NOC:Probability Theory for Data Science Lecture 26 - Example of Gamma Distribution and Normal Distribution
Link NOC:Probability Theory for Data Science Lecture 27 - Properties of Normal Distributions
Link NOC:Probability Theory for Data Science Lecture 28 - Numerical Examples of Normal Distributions
Link NOC:Probability Theory for Data Science Lecture 29 - Applications of Normal Distributions and Conditional Distribution Function
Link NOC:Probability Theory for Data Science Lecture 30 - Examples of Conditional Distribution Function and Bivariate Random Variable
Link NOC:Probability Theory for Data Science Lecture 31 - Example of Bivariate Random Variable
Link NOC:Probability Theory for Data Science Lecture 32 - Properties of the Joint Cumulative Distribution Function of a Bivariate Random Variable
Link NOC:Probability Theory for Data Science Lecture 33 - Independence Between Two Random Variables
Link NOC:Probability Theory for Data Science Lecture 34 - Examples of Joint Cumulative Distribution Functions, Marginals, and Independence
Link NOC:Probability Theory for Data Science Lecture 35 - Joint Probability Mass Function, Marginal Probability Mass Function, Examples
Link NOC:Probability Theory for Data Science Lecture 36 - Numerical Examples on Bivariate Discrete Random Variables and the Concept of Joint Probability
Link NOC:Probability Theory for Data Science Lecture 37 - Marginal Probability Density Function, Independence, and Examples
Link NOC:Probability Theory for Data Science Lecture 38 - Numerical Examples on Probability Density Function
Link NOC:Probability Theory for Data Science Lecture 39 - Conditional Probability Mass Function
Link NOC:Probability Theory for Data Science Lecture 40 - Conditional Probability Density Function
Link NOC:Probability Theory for Data Science Lecture 41 - Moments for Bivariate Random Variables
Link NOC:Probability Theory for Data Science Lecture 42 - Association Between Two Random Variables
Link NOC:Probability Theory for Data Science Lecture 43 - Numerical Examples on Moments for Bivariate Random Variables
Link NOC:Probability Theory for Data Science Lecture 44 - Conditional Mean and Variance for Discrete Random Variables
Link NOC:Probability Theory for Data Science Lecture 45 - Conditional Mean and Variance for Continuous Random Variables
Link NOC:Probability Theory for Data Science Lecture 46 - Numerical Examples on Conditional Mean and Variance
Link NOC:Probability Theory for Data Science Lecture 47 - Multivariate Random Variables
Link NOC:Probability Theory for Data Science Lecture 48 - Multivariate Probability Density Function and Independence
Link NOC:Probability Theory for Data Science Lecture 49 - Moments of a Multivariate Random Variable
Link NOC:Probability Theory for Data Science Lecture 50 - Numerical Examples on Joint Probability Mass Functions
Link NOC:Probability Theory for Data Science Lecture 51 - Numerical Examples on Joint Probability Density Functions
Link NOC:Probability Theory for Data Science Lecture 52 - Multinomial Distribution and Multivariate Normal Distribution
Link NOC:Probability Theory for Data Science Lecture 53 - Transformation of Random Variables
Link NOC:Probability Theory for Data Science Lecture 54 - Theorem on Transformation of Random Variables
Link NOC:Probability Theory for Data Science Lecture 55 - Transformation of Multivariate Random Variables
Link NOC:Probability Theory for Data Science Lecture 56 - Examples of Transformation of Bivariate Random Variables
Link NOC:Probability Theory for Data Science Lecture 57 - Convolution and Example on Transformation of n-variate Random Variables
Link NOC:Probability Theory for Data Science Lecture 58 - Transformation of Discrete Random Variables
Link NOC:Probability Theory for Data Science Lecture 59 - Moment Generating Functions
Link NOC:Probability Theory for Data Science Lecture 60 - Example of Moment Generating Functions
Link NOC:Probability Theory for Data Science Lecture 61 - Moment Generating Functions for the Transformation of Random Variables
Link NOC:Probability Theory for Data Science Lecture 62 - Chebyshev's Inequality
Link NOC:Probability Theory for Data Science Lecture 63 - Notions of Convergence, Law of Large Numbers, and the Central Limit Theorem
Link Discrete Mathematics Lecture 1 - Introduction to the theory of sets
Link Discrete Mathematics Lecture 2 - Set operation and laws of set operation
Link Discrete Mathematics Lecture 3 - The principle of inclusion and exclusion
Link Discrete Mathematics Lecture 4 - Application of the principle of inclusion and exclusion
Link Discrete Mathematics Lecture 5 - Fundamentals of logic
Link Discrete Mathematics Lecture 6 - Logical Inferences
Link Discrete Mathematics Lecture 7 - Methods of proof of an implication
Link Discrete Mathematics Lecture 8 - First order logic (1)
Link Discrete Mathematics Lecture 9 - First order logic (2)
Link Discrete Mathematics Lecture 10 - Rules of influence for quantified propositions
Link Discrete Mathematics Lecture 11 - Mathematical Induction (1)
Link Discrete Mathematics Lecture 12 - Mathematical Induction (2)
Link Discrete Mathematics Lecture 13 - Sample space, events
Link Discrete Mathematics Lecture 14 - Probability, conditional probability
Link Discrete Mathematics Lecture 15 - Independent events, Bayes theorem
Link Discrete Mathematics Lecture 16 - Information and mutual information
Link Discrete Mathematics Lecture 17 - Basic definition
Link Discrete Mathematics Lecture 18 - Isomorphism and sub graphs
Link Discrete Mathematics Lecture 19 - Walks, paths and circuits operations on graphs
Link Discrete Mathematics Lecture 20 - Euler graphs, Hamiltonian circuits
Link Discrete Mathematics Lecture 21 - Shortest path problem
Link Discrete Mathematics Lecture 22 - Planar graphs
Link Discrete Mathematics Lecture 23 - Basic definition
Link Discrete Mathematics Lecture 24 - Properties of relations
Link Discrete Mathematics Lecture 25 - Graph of relations
Link Discrete Mathematics Lecture 26 - Matrix of relation
Link Discrete Mathematics Lecture 27 - Closure of relaton (1)
Link Discrete Mathematics Lecture 28 - Closure of relaton (2)
Link Discrete Mathematics Lecture 29 - Warshall's algorithm
Link Discrete Mathematics Lecture 30 - Partially ordered relation
Link Discrete Mathematics Lecture 31 - Partially ordered sets
Link Discrete Mathematics Lecture 32 - Lattices
Link Discrete Mathematics Lecture 33 - Boolean algebra
Link Discrete Mathematics Lecture 34 - Boolean function (1)
Link Discrete Mathematics Lecture 35 - Boolean function (2)
Link Discrete Mathematics Lecture 36 - Discrete numeric function
Link Discrete Mathematics Lecture 37 - Generating function
Link Discrete Mathematics Lecture 38 - Introduction to recurrence relations
Link Discrete Mathematics Lecture 39 - Second order recurrence relation with constant coefficients (1)
Link Discrete Mathematics Lecture 40 - Second order recurrence relation with constant coefficients (2)
Link Discrete Mathematics Lecture 41 - Application of recurrence relation
Link NOC:Mathematical Methods and its Applications Lecture 1 - Introduction to linear differential equations
Link NOC:Mathematical Methods and its Applications Lecture 2 - Linear dependence, independence and Wronskian of functions
Link NOC:Mathematical Methods and its Applications Lecture 3 - Solution of second-order homogenous linear differential equations with constant coefficients - I
Link NOC:Mathematical Methods and its Applications Lecture 4 - Solution of second-order homogenous linear differential equations with constant coefficients - II
Link NOC:Mathematical Methods and its Applications Lecture 5 - Method of undetermined coefficients
Link NOC:Mathematical Methods and its Applications Lecture 6 - Methods for finding Particular Integral for second-order linear differential equations with constant coefficients - I
Link NOC:Mathematical Methods and its Applications Lecture 7 - Methods for finding Particular Integral for second-order linear differential equations with constant coefficients - II
Link NOC:Mathematical Methods and its Applications Lecture 8 - Methods for finding Particular Integral for second-order linear differential equations with constant coefficients - III
Link NOC:Mathematical Methods and its Applications Lecture 9 - Euler-Cauchy equations
Link NOC:Mathematical Methods and its Applications Lecture 10 - Method of reduction for second-order linear differential equations
Link NOC:Mathematical Methods and its Applications Lecture 11 - Method of variation of parameters
Link NOC:Mathematical Methods and its Applications Lecture 12 - Solution of second order differential equations by changing dependent variable
Link NOC:Mathematical Methods and its Applications Lecture 13 - Solution of second order differential equations by changing independent variable
Link NOC:Mathematical Methods and its Applications Lecture 14 - Solution of higher-order homogenous linear differential equations with constant coefficients
Link NOC:Mathematical Methods and its Applications Lecture 15 - Methods for finding Particular Integral for higher-order linear differential equations
Link NOC:Mathematical Methods and its Applications Lecture 16 - Formulation of Partial differential equations
Link NOC:Mathematical Methods and its Applications Lecture 17 - Solution of Lagrange’s equation - I
Link NOC:Mathematical Methods and its Applications Lecture 18 - Solution of Lagrange’s equation - II
Link NOC:Mathematical Methods and its Applications Lecture 19 - Solution of first order nonlinear equations - I
Link NOC:Mathematical Methods and its Applications Lecture 20 - Solution of first order nonlinear equations - II
Link NOC:Mathematical Methods and its Applications Lecture 21 - Solution of first order nonlinear equations - III
Link NOC:Mathematical Methods and its Applications Lecture 22 - Solution of first order nonlinear equations - IV
Link NOC:Mathematical Methods and its Applications Lecture 23 - Introduction to Laplace transforms
Link NOC:Mathematical Methods and its Applications Lecture 24 - Laplace transforms of some standard functions
Link NOC:Mathematical Methods and its Applications Lecture 25 - Existence theorem for Laplace transforms
Link NOC:Mathematical Methods and its Applications Lecture 26 - Properties of Laplace transforms - I
Link NOC:Mathematical Methods and its Applications Lecture 27 - Properties of Laplace transforms - II
Link NOC:Mathematical Methods and its Applications Lecture 28 - Properties of Laplace transforms - III
Link NOC:Mathematical Methods and its Applications Lecture 29 - Properties of Laplace transforms - IV
Link NOC:Mathematical Methods and its Applications Lecture 30 - Convolution theorem for Laplace transforms - I
Link NOC:Mathematical Methods and its Applications Lecture 31 - Convolution theorem for Laplace transforms - II
Link NOC:Mathematical Methods and its Applications Lecture 32 - Initial and final value theorems for Laplace transforms
Link NOC:Mathematical Methods and its Applications Lecture 33 - Laplace transforms of periodic functions
Link NOC:Mathematical Methods and its Applications Lecture 34 - Laplace transforms of Heaviside unit step function
Link NOC:Mathematical Methods and its Applications Lecture 35 - Laplace transforms of Dirac delta function
Link NOC:Mathematical Methods and its Applications Lecture 36 - Applications of Laplace transforms - I
Link NOC:Mathematical Methods and its Applications Lecture 37 - Applications of Laplace transforms - II
Link NOC:Mathematical Methods and its Applications Lecture 38 - Applications of Laplace transforms - III
Link NOC:Mathematical Methods and its Applications Lecture 39 - Z–transform and inverse Z-transform of elementary functions
Link NOC:Mathematical Methods and its Applications Lecture 40 - Properties of Z-transforms - I
Link NOC:Mathematical Methods and its Applications Lecture 41 - Properties of Z-transforms - II
Link NOC:Mathematical Methods and its Applications Lecture 42 - Initial and final value theorem for Z-transforms
Link NOC:Mathematical Methods and its Applications Lecture 43 - Convolution theorem for Z-transforms
Link NOC:Mathematical Methods and its Applications Lecture 44 - Applications of Z-transforms - I
Link NOC:Mathematical Methods and its Applications Lecture 45 - Applications of Z-transforms - II
Link NOC:Mathematical Methods and its Applications Lecture 46 - Applications of Z-transforms - III
Link NOC:Mathematical Methods and its Applications Lecture 47 - Fourier series and its convergence - I
Link NOC:Mathematical Methods and its Applications Lecture 48 - Fourier series and its convergence - II
Link NOC:Mathematical Methods and its Applications Lecture 49 - Fourier series of even and odd functions
Link NOC:Mathematical Methods and its Applications Lecture 50 - Fourier half-range series
Link NOC:Mathematical Methods and its Applications Lecture 51 - Parsevel’s Identity
Link NOC:Mathematical Methods and its Applications Lecture 52 - Complex form of Fourier series
Link NOC:Mathematical Methods and its Applications Lecture 53 - Fourier integrals
Link NOC:Mathematical Methods and its Applications Lecture 54 - Fourier sine and cosine integrals
Link NOC:Mathematical Methods and its Applications Lecture 55 - Fourier transforms
Link NOC:Mathematical Methods and its Applications Lecture 56 - Fourier sine and cosine transforms
Link NOC:Mathematical Methods and its Applications Lecture 57 - Convolution theorem for Fourier transforms
Link NOC:Mathematical Methods and its Applications Lecture 58 - Applications of Fourier transforms to BVP - I
Link NOC:Mathematical Methods and its Applications Lecture 59 - Applications of Fourier transforms to BVP - II
Link NOC:Mathematical Methods and its Applications Lecture 60 - Applications of Fourier transforms to BVP - III
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 1 - Definition and classification of linear integral equations
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 2 - Conversion of IVP into integral equations
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 3 - Conversion of BVP into an integral equations
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 4 - Conversion of integral equations into differential equations
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 5 - Integro-differential equations
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 6 - Fredholm integral equation with separable kernel: Theory
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 7 - Fredholm integral equation with separable kernel: Examples
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 8 - Solution of integral equations by successive substitutions
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 9 - Solution of integral equations by successive approximations
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 10 - Solution of integral equations by successive approximations: Resolvent kernel
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 11 - Fredholm integral equations with symmetric kernels: Properties of eigenvalues and eigenfunctions
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 12 - Fredholm integral equations with symmetric kernels: Hilbert Schmidt theory
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 13 - Fredholm integral equations with symmetric kernels: Examples
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 14 - Construction of Green function - I
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 15 - Construction of Green function - II
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 16 - Green function for self adjoint linear differential equations
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 17 - Green function for non-homogeneous boundary value problem
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 18 - Fredholm alternative theorem - I
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 19 - Fredholm alternative theorem - II
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 20 - Fredholm method of solutions
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 21 - Classical Fredholm theory: Fredholm first theorem - I
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 22 - Classical Fredholm theory: Fredholm first theorem - II
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 23 - Classical Fredholm theory: Fredholm second theorem and third theorem
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 24 - Method of successive approximations
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 25 - Neumann series and resolvent kernels - I
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 26 - Neumann series and resolvent kernels - II
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 27 - Equations with convolution type kernels - I
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 28 - Equations with convolution type kernels - II
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 29 - Singular integral equations - I
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 30 - Singular integral equations - II
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 31 - Cauchy type integral equations - I
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 32 - Cauchy type integral equations - II
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 33 - Cauchy type integral equations - III
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 34 - Cauchy type integral equations - IV
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 35 - Cauchy type integral equations - V
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 36 - Solution of integral equations using Fourier transform
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 37 - Solution of integral equations using Hilbert transform - I
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 38 - Solution of integral equations using Hilbert transform - II
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 39 - Calculus of variations: Introduction
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 40 - Calculus of variations: Basic concepts - I
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 41 - Calculus of variations: Basic concepts - II
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 42 - Calculus of variations: Basic concepts and Euler equation
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 43 - Euler equation: Some particular cases
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 44 - Euler equation : A particular case and Geodesics
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 45 - Brachistochrone problem and Euler equation - I
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 46 - Euler's equation - II
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 47 - Functions of several independent variables
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 48 - Variational problems in parametric form
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 49 - Variational problems of general type
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 50 - Variational derivative and invariance of Euler's equation
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 51 - Invariance of Euler's equation and isoperimetric problem - I
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 52 - Isoperimetric problem - II
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 53 - Variational problem involving a conditional extremum - I
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 54 - Variational problem involving a conditional extremum - II
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 55 - Variational problems with moving boundaries - I
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 56 - Variational problems with moving boundaries - II
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 57 - Variational problems with moving boundaries - III
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 58 - Variational problems with moving boundaries; One sided variation
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 59 - Variational problem with a movable boundary for a functional dependent on two functions
Link NOC:Integral Equations, Calculus of Variations and its Applications Lecture 60 - Hamilton's principle: Variational principle of least action
Link NOC:Nonlinear Programming Lecture 1 - Convex Sets and Functions
Link NOC:Nonlinear Programming Lecture 2 - Properties of Convex Functions - I
Link NOC:Nonlinear Programming Lecture 3 - Properties of Convex Functions - II
Link NOC:Nonlinear Programming Lecture 4 - Properties of Convex Functions- III
Link NOC:Nonlinear Programming Lecture 5 - Convex Programming Problems
Link NOC:Nonlinear Programming Lecture 6 - KKT optimality conditions
Link NOC:Nonlinear Programming Lecture 7 - Quadratic Programming Problems - I
Link NOC:Nonlinear Programming Lecture 8 - Quadratic Programming Problems - II
Link NOC:Nonlinear Programming Lecture 9 - Separable Programming - I
Link NOC:Nonlinear Programming Lecture 10 - Separable Programming - II
Link NOC:Nonlinear Programming Lecture 11 - Geometric Programming - I
Link NOC:Nonlinear Programming Lecture 12 - Geometric Programming - II
Link NOC:Nonlinear Programming Lecture 13 - Geometric Programming - III
Link NOC:Nonlinear Programming Lecture 14 - Dynamic Programming - I
Link NOC:Nonlinear Programming Lecture 15 - Dynamic Programming - II
Link NOC:Nonlinear Programming Lecture 16 - Dynamic programming approach to find shortest path in any network
Link NOC:Nonlinear Programming Lecture 17 - Dynamic Programming - IV
Link NOC:Nonlinear Programming Lecture 18 - Search Techniques - I
Link NOC:Nonlinear Programming Lecture 19 - Search Techniques - II
Link NOC:Nonlinear Programming Lecture 20 - Search Techniques - III
Link NOC:Numerical Methods Lecture 1 - Introduction to error analysis and linear systems
Link NOC:Numerical Methods Lecture 2 - Gaussian elimination with Partial pivoting
Link NOC:Numerical Methods Lecture 3 - LU decomposition
Link NOC:Numerical Methods Lecture 4 - Jacobi and Gauss Seidel methods
Link NOC:Numerical Methods Lecture 5 - Iterative methods-II
Link NOC:Numerical Methods Lecture 6 - Introduction to Non-linear equations and Bisection method
Link NOC:Numerical Methods Lecture 7 - Regula Falsi and Secant methods
Link NOC:Numerical Methods Lecture 8 - Newton-Raphson method
Link NOC:Numerical Methods Lecture 9 - Fixed point iteration method
Link NOC:Numerical Methods Lecture 10 - System of Nonlinear equations
Link NOC:Numerical Methods Lecture 11 - Introduction to Eigenvalues and Eigenvectors
Link NOC:Numerical Methods Lecture 12 - Similarity Transformations and Gershgorin Theorem
Link NOC:Numerical Methods Lecture 13 - Jacobi's Method for Computing Eigenvalues
Link NOC:Numerical Methods Lecture 14 - Power Method
Link NOC:Numerical Methods Lecture 15 - Inverse Power Method
Link NOC:Numerical Methods Lecture 16 - Interpolation - Part I (Introduction to Interpolation)
Link NOC:Numerical Methods Lecture 17 - Interpolation - Part II ( Some basic operators and their properties)
Link NOC:Numerical Methods Lecture 18 - Interpolation - Part III (Newton’s Forward/ Backward difference and derivation of general error)
Link NOC:Numerical Methods Lecture 19 - Interpolation - Part IV (Error in approximating a function by a polynomial using Newton’s Forward and Backward difference formula)
Link NOC:Numerical Methods Lecture 20 - Interpolation - Part V (Solving problems using Newton's Forward and Backward difference formula)
Link NOC:Numerical Methods Lecture 21 - Interpolation - Part VI (Central difference formula)
Link NOC:Numerical Methods Lecture 22 - Interpolation - Part VII (Lagrange interpolation formula with examples)
Link NOC:Numerical Methods Lecture 23 - Interpolation - Part VIII (Divided difference interpolation with examples)
Link NOC:Numerical Methods Lecture 24 - Interpolation - Part IX (Hermite's interpolation with examples)
Link NOC:Numerical Methods Lecture 25 - Numerical differentiation - Part I (Introduction to numerical differentiation by interpolation formula)
Link NOC:Numerical Methods Lecture 26 - Numerical differentiation - Part II (Numerical differentiation based on Lagrange’s interpolation with examples)
Link NOC:Numerical Methods Lecture 27 - Numerical differentiation - Part III (Numerical differentiation based on Divided difference formula with examples)
Link NOC:Numerical Methods Lecture 28 - Numerical differentiation - Part IV (Maxima and minima of a tabulated function and differentiation errors)
Link NOC:Numerical Methods Lecture 29 - Numerical differentiation - Part V (Differentiation based on finite difference operators)
Link NOC:Numerical Methods Lecture 30 - Numerical differentiation - Part VI (Method of undetermined coefficients and Derivatives with unequal intervals)
Link NOC:Numerical Methods Lecture 31 - Numerical Integration - Part I (Methodology of Numerical Integration and Rectangular rule )
Link NOC:Numerical Methods Lecture 32 - Numerical Integration - Part II (Quadrature formula and Trapezoidal rule with associated errors)merical Integration Part-I (Methodology of Numerical Integration and Rectangular rule )
Link NOC:Numerical Methods Lecture 33 - Numerical Integration - Part III (Simpsons 1/3rd rule with associated errors)
Link NOC:Numerical Methods Lecture 34 - Numerical Integration - Part IV (Composite Simpsons 1/3rd rule and Simpsons 3/8th rule with examples)
Link NOC:Numerical Methods Lecture 35 - Numerical Integration - Part V (Gauss Legendre 2-point and 3-point formula with examples)
Link NOC:Numerical Methods Lecture 36 - Introduction to Ordinary Differential equations
Link NOC:Numerical Methods Lecture 37 - Numerical methods for ODE-1
Link NOC:Numerical Methods Lecture 38 - Numerical Methods - II
Link NOC:Numerical Methods Lecture 39 - R-K Methods for solving ODEs
Link NOC:Numerical Methods Lecture 40 - Multi-step Method for solving ODEs
Link NOC:Numerical Linear Algebra Lecture 1 - Matrix Operations and Types of Matrices
Link NOC:Numerical Linear Algebra Lecture 2 - Determinant of a Matrix
Link NOC:Numerical Linear Algebra Lecture 3 - Rank of a Matrix
Link NOC:Numerical Linear Algebra Lecture 4 - Vector Space - I
Link NOC:Numerical Linear Algebra Lecture 5 - Vector Space - II
Link NOC:Numerical Linear Algebra Lecture 6 - Linear dependence and independence
Link NOC:Numerical Linear Algebra Lecture 7 - Bases and Dimension - I
Link NOC:Numerical Linear Algebra Lecture 8 - Bases and Dimension - II
Link NOC:Numerical Linear Algebra Lecture 9 - Linear Transformation - I
Link NOC:Numerical Linear Algebra Lecture 10 - Linear Transformation - II
Link NOC:Numerical Linear Algebra Lecture 11 - Orthogonal Subspaces
Link NOC:Numerical Linear Algebra Lecture 12 - Row Space, Column Space and Null Space
Link NOC:Numerical Linear Algebra Lecture 13 - Eigen Values and Eigen Vectors - I
Link NOC:Numerical Linear Algebra Lecture 14 - Eigen Values and Eigen Vectors - II
Link NOC:Numerical Linear Algebra Lecture 15 - Diagonalizable Matrices
Link NOC:Numerical Linear Algebra Lecture 16 - Orthogonal Sets
Link NOC:Numerical Linear Algebra Lecture 17 - Gram Schmidt ortthogonalization and orthogonal bases
Link NOC:Numerical Linear Algebra Lecture 18 - Introduction to Matlab
Link NOC:Numerical Linear Algebra Lecture 19 - Sign Integer Representation
Link NOC:Numerical Linear Algebra Lecture 20 - Computer Representation of Numbers
Link NOC:Numerical Linear Algebra Lecture 21 - Floating Point Representation
Link NOC:Numerical Linear Algebra Lecture 22 - Round-off Error
Link NOC:Numerical Linear Algebra Lecture 23 - Error Propagation in Computer Arithmetic
Link NOC:Numerical Linear Algebra Lecture 24 - Addition and Multiplication of Floating Point Numbers
Link NOC:Numerical Linear Algebra Lecture 25 - Conditioning and Condition Numbers - I
Link NOC:Numerical Linear Algebra Lecture 26 - Conditioning and Condition Numbers - II
Link NOC:Numerical Linear Algebra Lecture 27 - Stability of Numerical Algorithms - I
Link NOC:Numerical Linear Algebra Lecture 28 - Stability of Numerical Algorithms - II
Link NOC:Numerical Linear Algebra Lecture 29 - Vector Norms - I
Link NOC:Numerical Linear Algebra Lecture 30 - Vector Norms - II
Link NOC:Numerical Linear Algebra Lecture 31 - Matrix Norms - I
Link NOC:Numerical Linear Algebra Lecture 32 - Matrix Norms - II
Link NOC:Numerical Linear Algebra Lecture 33 - Convergent Matrices - I
Link NOC:Numerical Linear Algebra Lecture 34 - Convergent Matrices - II
Link NOC:Numerical Linear Algebra Lecture 35 - Stability of non linear system
Link NOC:Numerical Linear Algebra Lecture 36 - Condition number of a matrix: Elementary Properties
Link NOC:Numerical Linear Algebra Lecture 37 - Sensitivity Analysis - I
Link NOC:Numerical Linear Algebra Lecture 38 - Sensitivity Analysis - II
Link NOC:Numerical Linear Algebra Lecture 39 - Residual Theorem
Link NOC:Numerical Linear Algebra Lecture 40 - Nearness to Singularity
Link NOC:Numerical Linear Algebra Lecture 41 - Estimation of the Condition Number
Link NOC:Numerical Linear Algebra Lecture 42 - Singular value decomposition of a matrix - I
Link NOC:Numerical Linear Algebra Lecture 43 - Singular value decomposition of a matrix - II
Link NOC:Numerical Linear Algebra Lecture 44 - Orthonormal Projections
Link NOC:Numerical Linear Algebra Lecture 45 - Algebraic and geometric properties of SVD
Link NOC:Numerical Linear Algebra Lecture 46 - SVD and their applications
Link NOC:Numerical Linear Algebra Lecture 47 - Perturbation theorem for singular values
Link NOC:Numerical Linear Algebra Lecture 48 - Outer product expansion of a matrix
Link NOC:Numerical Linear Algebra Lecture 49 - Least square solutions - I
Link NOC:Numerical Linear Algebra Lecture 50 - Least square solutions - II
Link NOC:Numerical Linear Algebra Lecture 51 - Householder matrices
Link NOC:Numerical Linear Algebra Lecture 52 - Householder matrices and their applications
Link NOC:Numerical Linear Algebra Lecture 53 - Householder QR factorization - I
Link NOC:Numerical Linear Algebra Lecture 54 - Householder QR factorization - II
Link NOC:Numerical Linear Algebra Lecture 55 - Basic theorems on eigenvalues and QR method
Link NOC:Numerical Linear Algebra Lecture 56 - Power Method
Link NOC:Numerical Linear Algebra Lecture 57 - Rate of Convergence of Power Method
Link NOC:Numerical Linear Algebra Lecture 58 - Applications of Power Method with Shift
Link NOC:Numerical Linear Algebra Lecture 59 - Jacobi Method - I
Link NOC:Numerical Linear Algebra Lecture 60 - Jacobi Method - II
Link NOC:Numerical Methods - Finite Difference Approach Lecture 1 - Introduction to Numerical solutions
Link NOC:Numerical Methods - Finite Difference Approach Lecture 2 - Numerical Solution of ODE
Link NOC:Numerical Methods - Finite Difference Approach Lecture 3 - Numerical solution of PDE
Link NOC:Numerical Methods - Finite Difference Approach Lecture 4 - Finite difference approximation
Link NOC:Numerical Methods - Finite Difference Approach Lecture 5 - Polynomial fitting and one-sided approximation
Link NOC:Numerical Methods - Finite Difference Approach Lecture 6 - Solution of parabolic equation
Link NOC:Numerical Methods - Finite Difference Approach Lecture 7 - Implicit and C-N scheme for solving 1D parabolic equation
Link NOC:Numerical Methods - Finite Difference Approach Lecture 8 - Stability analysis of Explicit scheme for solving parabolic equation
Link NOC:Numerical Methods - Finite Difference Approach Lecture 9 - Stability of Crank-Nicoloson's scheme
Link NOC:Numerical Methods - Finite Difference Approach Lecture 10 - Approximation of derivative boundary conditions
Link NOC:Numerical Methods - Finite Difference Approach Lecture 11 - Solution of two-dimensional parabolic equation
Link NOC:Numerical Methods - Finite Difference Approach Lecture 12 - Solution of 2D parabolic equation using ADI scheme
Link NOC:Numerical Methods - Finite Difference Approach Lecture 13 - Solution of Elliptic Equation
Link NOC:Numerical Methods - Finite Difference Approach Lecture 14 - Solution of Elliptic equation using SOR method
Link NOC:Numerical Methods - Finite Difference Approach Lecture 15 - Solution of Elliptic equation using ADI scheme
Link NOC:Numerical Methods - Finite Difference Approach Lecture 16 - Solution of Hyperbolic equation
Link NOC:Numerical Methods - Finite Difference Approach Lecture 17 - Stability analysis for Hyperbolic equations
Link NOC:Numerical Methods - Finite Difference Approach Lecture 18 - Characteristics of PDE
Link NOC:Numerical Methods - Finite Difference Approach Lecture 19 - Lax-Wendroff's method
Link NOC:Numerical Methods - Finite Difference Approach Lecture 20 - Wendroff's method
Link NOC:Multivariable Calculus Lecture 1 - Functions of several variables
Link NOC:Multivariable Calculus Lecture 2 - Limits for multivariable functions - I
Link NOC:Multivariable Calculus Lecture 3 - Limits for multivariable functions - II
Link NOC:Multivariable Calculus Lecture 4 - Continuity of multivariable functions
Link NOC:Multivariable Calculus Lecture 5 - Partial Derivatives - I
Link NOC:Multivariable Calculus Lecture 6 - Partial Derivatives - II
Link NOC:Multivariable Calculus Lecture 7 - Differentiability - I
Link NOC:Multivariable Calculus Lecture 8 - Differentiability - II
Link NOC:Multivariable Calculus Lecture 9 - Chain rule - I
Link NOC:Multivariable Calculus Lecture 10 - Chain rule - II
Link NOC:Multivariable Calculus Lecture 11 - Change of variables
Link NOC:Multivariable Calculus Lecture 12 - Euler’s theorem for homogeneous functions
Link NOC:Multivariable Calculus Lecture 13 - Tangent planes and Normal lines
Link NOC:Multivariable Calculus Lecture 14 - Extreme values - I
Link NOC:Multivariable Calculus Lecture 15 - Extreme values - II
Link NOC:Multivariable Calculus Lecture 16 - Lagrange multipliers
Link NOC:Multivariable Calculus Lecture 17 - Taylor’s theorem
Link NOC:Multivariable Calculus Lecture 18 - Error approximation
Link NOC:Multivariable Calculus Lecture 19 - Polar-curves
Link NOC:Multivariable Calculus Lecture 20 - Multiple Integrals
Link NOC:Multivariable Calculus Lecture 21 - Change Of Order Of Integration
Link NOC:Multivariable Calculus Lecture 22 - Change of Variables in Multiple Integral
Link NOC:Multivariable Calculus Lecture 23 - Introduction to Gamma Function
Link NOC:Multivariable Calculus Lecture 24 - Introduction to Beta Function
Link NOC:Multivariable Calculus Lecture 25 - Properties of Beta and Gamma Functions - I
Link NOC:Multivariable Calculus Lecture 26 - Properties of Beta and Gamma Functions - II
Link NOC:Multivariable Calculus Lecture 27 - Dirichlet's Integral
Link NOC:Multivariable Calculus Lecture 28 - Applications of Multiple Integrals
Link NOC:Multivariable Calculus Lecture 29 - Vector Differentiation
Link NOC:Multivariable Calculus Lecture 30 - Gradient of a Scalar Field and Directional Derivative
Link NOC:Multivariable Calculus Lecture 31 - Normal Vector and Potential field
Link NOC:Multivariable Calculus Lecture 32 - Gradient (Identities), Divergence and Curl (Identities)
Link NOC:Multivariable Calculus Lecture 33 - Some Identities on Divergence and Curl
Link NOC:Multivariable Calculus Lecture 34 - Line Integral (I)
Link NOC:Multivariable Calculus Lecture 35 - Applications of Line Integrals
Link NOC:Multivariable Calculus Lecture 36 - Green's Theorem
Link NOC:Multivariable Calculus Lecture 37 - Surface Area
Link NOC:Multivariable Calculus Lecture 38 - Surface Integral
Link NOC:Multivariable Calculus Lecture 39 - Divergence Theorem of Gauss
Link NOC:Multivariable Calculus Lecture 40 - Stoke's Theorem
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 1 - Introduction to differential equations - I
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 2 - Introduction to differential equations - II
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 3 - Existence and uniqueness of solutions of differential equations - I
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 4 - Existence and uniqueness of solutions of differential equations - II
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 5 - Existence and uniqueness of solutions of differential equations - III
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 6 - Existence and uniqueness of solutions of a system of differential equations
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 7 - Linear System
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 8 - Properties of Homogeneous Systems
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 9 - Solution of Homogeneous Linear System with Constant Coefficients - I
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 10 - Solution of Homogeneous Linear System with Constant Coefficients - II
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 11 - Solution of Homogeneous Linear System with Constant Coefficients - III
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 12 - Solution of Non-Homogeneous Linear System with Constant Coefficients
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 13 - Power Series
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 14 - Uniform Convergence of Power Series
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 15 - Power Series Solution of Second Order Homogeneous Equations
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 16 - Regular singular points - I
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 17 - Regular singular points - II
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 18 - Regular singular points - III
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 19 - Regular singular points - IV
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 20 - Regular singular points - V
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 21 - Critical points
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 22 - Stability of Linear Systems - I
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 23 - Stability of Linear Systems - II
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 24 - Stability of Linear Systems - III
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 25 - Critical Points and Paths of Non-linear Systems
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 26 - Boundary value problems for second order differential equations
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 27 - Self - adjoint Forms
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 28 - Sturm - Liouville problem and its properties
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 29 - Sturm - Liouville problem and its applications
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 30 - Green’s function and its applications - I
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 31 - Green’s function and its applications - II
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 32 - Origins and Classification of First Order PDE
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 33 - Initial Value Problem for Quasi-linear First Order Equations
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 34 - Existence and Uniqueness of Solutions
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 35 - Surfaces orthogonal to a given system of surfaces
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 36 - Nonlinear PDE of first order
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 37 - Cauchy method of characteristics - I
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 38 - Cauchy method of characteristics - II
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 39 - Compatible systems of first order equations
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 40 - Charpit’s method - I
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 41 - Charpit’s method - II
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 42 - Second Order PDE with Variable Coefficients
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 43 - Classification and Canonical Form of Second Order PDE - I
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 44 - Classification and Canonical Form of Second Order PDE - II
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 45 - Classification and Characteristic Curves of Second Order PDEs
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 46 - Review of Integral Transforms - I
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 47 - Review of Integral Transforms - II
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 48 - Review of Integral Transforms - III
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 49 - Laplace Equation - I
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 50 - Laplace Equation - II
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 51 - Laplace Equation - III
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 52 - Laplace and Poisson Equations
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 53 - One dimensional wave equation and its solution - I
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 54 - One dimensional wave equation and its solution - II
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 55 - One dimensional wave equation and its solution - III
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 56 - Two dimensional wave equation and its solution - I
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 57 - Solution of non-homogeneous wave equation
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 58 - Solution of homogeneous diffusion equation - I
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 59 - Solution of homogeneous diffusion equation - II
Link NOC:Ordinary and Partial Differential Equations and Applications Lecture 60 - Duhamel’s principle
Link NOC:Matrix Analysis with Applications Lecture 1 - Elementary row operations
Link NOC:Matrix Analysis with Applications Lecture 2 - Echelon form of a matrix
Link NOC:Matrix Analysis with Applications Lecture 3 - Rank of a matrix
Link NOC:Matrix Analysis with Applications Lecture 4 - System of Linear Equations - I
Link NOC:Matrix Analysis with Applications Lecture 5 - System of Linear Equations - II
Link NOC:Matrix Analysis with Applications Lecture 6 - Introduction to Vector Spaces
Link NOC:Matrix Analysis with Applications Lecture 7 - Subspaces
Link NOC:Matrix Analysis with Applications Lecture 8 - Basis and Dimension
Link NOC:Matrix Analysis with Applications Lecture 9 - Linear Transformations
Link NOC:Matrix Analysis with Applications Lecture 10 - Rank and Nullity
Link NOC:Matrix Analysis with Applications Lecture 11 - Inverse of a Linear Transformation
Link NOC:Matrix Analysis with Applications Lecture 12 - Matrix Associated with a LT
Link NOC:Matrix Analysis with Applications Lecture 13 - Eigenvalues and Eigenvectors
Link NOC:Matrix Analysis with Applications Lecture 14 - Cayley-Hamilton Theorem and Minimal Polynomial
Link NOC:Matrix Analysis with Applications Lecture 15 - Diagonalization
Link NOC:Matrix Analysis with Applications Lecture 16 - Special Matrices
Link NOC:Matrix Analysis with Applications Lecture 17 - More on Special Matrices and Gerschgorin Theorem
Link NOC:Matrix Analysis with Applications Lecture 18 - Inner Product Spaces
Link NOC:Matrix Analysis with Applications Lecture 19 - Vector and Matrix Norms
Link NOC:Matrix Analysis with Applications Lecture 20 - Gram Schmidt Process
Link NOC:Matrix Analysis with Applications Lecture 21 - Normal Matrices
Link NOC:Matrix Analysis with Applications Lecture 22 - Positive Definite Matrices
Link NOC:Matrix Analysis with Applications Lecture 23 - Positive Definite and Quadratic Forms
Link NOC:Matrix Analysis with Applications Lecture 24 - Gram Matrix and Minimization of Quadratic Forms
Link NOC:Matrix Analysis with Applications Lecture 25 - Generalized Eigenvectors and Jordan Canonical Form
Link NOC:Matrix Analysis with Applications Lecture 26 - Evaluation of Matrix Functions
Link NOC:Matrix Analysis with Applications Lecture 27 - Least Square Approximation
Link NOC:Matrix Analysis with Applications Lecture 28 - Singular Value Decomposition
Link NOC:Matrix Analysis with Applications Lecture 29 - Pseudo-Inverse and SVD
Link NOC:Matrix Analysis with Applications Lecture 30 - Introduction to Ill-Conditioned Systems
Link NOC:Matrix Analysis with Applications Lecture 31 - Regularization of Ill-Conditioned Systems
Link NOC:Matrix Analysis with Applications Lecture 32 - Linear Systems: Iterative Methods - I
Link NOC:Matrix Analysis with Applications Lecture 33 - Linear Systems: Iterative Methods - II
Link NOC:Matrix Analysis with Applications Lecture 34 - Non-Stationary Iterative Methods: Steepest Descent - I
Link NOC:Matrix Analysis with Applications Lecture 35 - Non-Stationary Iterative Methods: Steepest Descent - II
Link NOC:Matrix Analysis with Applications Lecture 36 - Krylov Subspace Iterative Methods (Conjugate Gradient Method)
Link NOC:Matrix Analysis with Applications Lecture 37 - Krylov Subspace Iterative Methods (CG and Pre-Conditioning)
Link NOC:Matrix Analysis with Applications Lecture 38 - Introduction to Positive Matrices
Link NOC:Matrix Analysis with Applications Lecture 39 - Positive Matrices, Positive Eigenpair, Perron Root and vector, Example
Link NOC:Matrix Analysis with Applications Lecture 40 - Polar Decomposition
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 1 - Introduction to Mathematical Modeling
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 2 - Discrete Time Linear Models in Population Dynamics - I
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 3 - Discrete Time Linear Models in Population Dynamics - II
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 4 - Discrete Time Linear Age Structured Models
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 5 - Numerical Methods to Compute Eigen Values
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 6 - Discrete Time Non-Linear Models in Population Dynamics - I
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 7 - Analysis on Logistic Difference Equation
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 8 - Classifications of Bifurcation
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 9 - Discrete Time Non - Linear Models in Population Dynamics - II
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 10 - Discrete Time Prey - Predator Model
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 11 - Introduction to Continuous Time Models
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 12 - Solution of First Order First Degree Differential Equations
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 13 - Continuous Time Models in Population Dynamics - I
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 14 - Continuous Time Models in Population Dynamics - II
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 15 - Stability and Linearization of System of Ordinary Differential Equations
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 16 - Continuous Time Single Species Models
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 17 - Qualitative Solution of Differential Equations - Phase Diagrams - I
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 18 - Qualitative Solution of Differential Equations - Phase Diagrams - II
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 19 - Continuous Time Lotka - Volterra Competition Model
Link NOC:Mathematical Modelling: Analysis and Applications Lecture 20 - Continuous Time Prey - Predator Model
Link NOC:Dynamical System and Control Lecture 1 - Formulation of Dynamical Systems - I
Link NOC:Dynamical System and Control Lecture 2 - Formulation of Dynamical Systems - II
Link NOC:Dynamical System and Control Lecture 3 - Existence and Uniqueness Theorem - I
Link NOC:Dynamical System and Control Lecture 4 - Existence and Uniqueness Theorem - II
Link NOC:Dynamical System and Control Lecture 5 - Linear Systems - I
Link NOC:Dynamical System and Control Lecture 6 - Linear Systems - II
Link NOC:Dynamical System and Control Lecture 7 - Solutions of Linear Systems - I
Link NOC:Dynamical System and Control Lecture 8 - Solutions of Linear Systems - II
Link NOC:Dynamical System and Control Lecture 9 - Solutions of Linear Systems - III
Link NOC:Dynamical System and Control Lecture 10 - Fundamental Matrix - I
Link NOC:Dynamical System and Control Lecture 11 - Fundamental Matrix - II
Link NOC:Dynamical System and Control Lecture 12 - Fundamental Matrix for Non-Autonomous systems
Link NOC:Dynamical System and Control Lecture 13 - Solutions of Non-Homogeneous Systems
Link NOC:Dynamical System and Control Lecture 14 - Stability of Systems: Equilibrium Points
Link NOC:Dynamical System and Control Lecture 15 - Stability of Linear Autonomous Systems - I
Link NOC:Dynamical System and Control Lecture 16 - Stability of Linear Autonomous Systems - II
Link NOC:Dynamical System and Control Lecture 17 - Stability of Linear Autonomous Systems - III
Link NOC:Dynamical System and Control Lecture 18 - Stability of Weakly Non-Linear Systems - I
Link NOC:Dynamical System and Control Lecture 19 - Stability of Weakly Non-Linear Systems - II
Link NOC:Dynamical System and Control Lecture 20 - Stability of Non-Linear Systems using Linearization
Link NOC:Dynamical System and Control Lecture 21 - Properties of Phase Portrait
Link NOC:Dynamical System and Control Lecture 22 - Properties of Orbits
Link NOC:Dynamical System and Control Lecture 23 - Phase Portrait: Types of Critical Points
Link NOC:Dynamical System and Control Lecture 24 - Phase Portrait of Linear Differential Equations - I
Link NOC:Dynamical System and Control Lecture 25 - Phase Portrait of Linear Differential Equations - II
Link NOC:Dynamical System and Control Lecture 26 - Phase Portrait of Linear Differential Equations - III
Link NOC:Dynamical System and Control Lecture 27 - Poincare Bendixson Theorem
Link NOC:Dynamical System and Control Lecture 28 - Limit Cycle
Link NOC:Dynamical System and Control Lecture 29 - Lyapunov Stability - I
Link NOC:Dynamical System and Control Lecture 30 - Lyapunov Stability - II
Link NOC:Dynamical System and Control Lecture 31 - Introduction to Control Systems - I
Link NOC:Dynamical System and Control Lecture 32 - Introduction to Control Systems - II
Link NOC:Dynamical System and Control Lecture 33 - Controllability of Autonomous Systems
Link NOC:Dynamical System and Control Lecture 34 - Controllability of Non-autonomous Systems
Link NOC:Dynamical System and Control Lecture 35 - Observability - I
Link NOC:Dynamical System and Control Lecture 36 - Observability - II
Link NOC:Dynamical System and Control Lecture 37 - Results on Controllability and Observability
Link NOC:Dynamical System and Control Lecture 38 - Companion Form
Link NOC:Dynamical System and Control Lecture 39 - Feedback Control - I
Link NOC:Dynamical System and Control Lecture 40 - Feedback Control - II
Link NOC:Dynamical System and Control Lecture 41 - Feedback Control - III
Link NOC:Dynamical System and Control Lecture 42 - Feedback Control - IV
Link NOC:Dynamical System and Control Lecture 43 - State Observer
Link NOC:Dynamical System and Control Lecture 44 - Stabilizability
Link NOC:Dynamical System and Control Lecture 45 - Introduction to Discrete Systems - I
Link NOC:Dynamical System and Control Lecture 46 - Introduction to Discrete Systems - II
Link NOC:Dynamical System and Control Lecture 47 - Lyapunov Stability Theory - I
Link NOC:Dynamical System and Control Lecture 48 - Lyapunov Stability Theory - II
Link NOC:Dynamical System and Control Lecture 49 - Lyapunov Stability Theory - III
Link NOC:Dynamical System and Control Lecture 50 - Optimal Control - I
Link NOC:Dynamical System and Control Lecture 51 - Optimal Control - II
Link NOC:Dynamical System and Control Lecture 52 - Optimal Control - III
Link NOC:Dynamical System and Control Lecture 53 - Optimal Control - IV
Link NOC:Dynamical System and Control Lecture 54 - Optimal Control for Discrete Systems - I
Link NOC:Dynamical System and Control Lecture 55 - Optimal Control for Discrete Systems - II
Link NOC:Dynamical System and Control Lecture 56 - Controllability of Discrete Systems
Link NOC:Dynamical System and Control Lecture 57 - Observability of Discrete Systems
Link NOC:Dynamical System and Control Lecture 58 - Stability for Discrete Systems
Link NOC:Dynamical System and Control Lecture 59 - Relation between Continuous and Discrete Systems - I
Link NOC:Dynamical System and Control Lecture 60 - Relation between Continuous and Discrete Systems - II
Link NOC:Advanced Engineering Mathematics Lecture 1 - Analytic Function
Link NOC:Advanced Engineering Mathematics Lecture 2 - Cauchy-Riemann Equations
Link NOC:Advanced Engineering Mathematics Lecture 3 - Harmonic Functions, Harmonic Conjugates and Milne's Method
Link NOC:Advanced Engineering Mathematics Lecture 4 - Applications to the Problems of Potential Flow - I
Link NOC:Advanced Engineering Mathematics Lecture 5 - Applications to the Problems of Potential Flow - II
Link NOC:Advanced Engineering Mathematics Lecture 6 - Complex Integration
Link NOC:Advanced Engineering Mathematics Lecture 7 - Cauchy's Theorem - I
Link NOC:Advanced Engineering Mathematics Lecture 8 - Cauchy's Theorem - II
Link NOC:Advanced Engineering Mathematics Lecture 9 - Cauchy's Integral Formula for the Derivatives of Analytic Function
Link NOC:Advanced Engineering Mathematics Lecture 10 - Morera's Theorem, Liouville's Theorem and Fundamental Theorem of Algebra
Link NOC:Advanced Engineering Mathematics Lecture 11 - Winding Number and Maximum Modulus Principle
Link NOC:Advanced Engineering Mathematics Lecture 12 - Sequences and Series
Link NOC:Advanced Engineering Mathematics Lecture 13 - Uniform Convergence of Series
Link NOC:Advanced Engineering Mathematics Lecture 14 - Power Series
Link NOC:Advanced Engineering Mathematics Lecture 15 - Taylor Series
Link NOC:Advanced Engineering Mathematics Lecture 16 - Laurent Series
Link NOC:Advanced Engineering Mathematics Lecture 17 - Zeros and Singularities of an Analytic Function
Link NOC:Advanced Engineering Mathematics Lecture 18 - Residue at a Singularity
Link NOC:Advanced Engineering Mathematics Lecture 19 - Residue Theorem
Link NOC:Advanced Engineering Mathematics Lecture 20 - Meromorphic Functions
Link NOC:Advanced Engineering Mathematics Lecture 21 - Evaluation of real integrals using residues - I
Link NOC:Advanced Engineering Mathematics Lecture 22 - Evaluation of real integrals using residues - II
Link NOC:Advanced Engineering Mathematics Lecture 23 - Evaluation of real integrals using residues - III
Link NOC:Advanced Engineering Mathematics Lecture 24 - Evaluation of real integrals using residues - IV
Link NOC:Advanced Engineering Mathematics Lecture 25 - Evaluation of real integrals using residues - V
Link NOC:Advanced Engineering Mathematics Lecture 26 - Bilinear Transformations
Link NOC:Advanced Engineering Mathematics Lecture 27 - Cross Ratio
Link NOC:Advanced Engineering Mathematics Lecture 28 - Conformal Mapping - I
Link NOC:Advanced Engineering Mathematics Lecture 29 - Conformal Mapping - II
Link NOC:Advanced Engineering Mathematics Lecture 30 - Conformal mapping from half plane to disk and half plane to half plane - I
Link NOC:Advanced Engineering Mathematics Lecture 31 - Conformal mapping from disk to disk and angular region to disk
Link NOC:Advanced Engineering Mathematics Lecture 32 - Application of Conformal Mapping to Potential Theory
Link NOC:Advanced Engineering Mathematics Lecture 33 - Review of Z-transforms - I
Link NOC:Advanced Engineering Mathematics Lecture 34 - Review of Z-transforms - II
Link NOC:Advanced Engineering Mathematics Lecture 35 - Review of Z-transforms - III
Link NOC:Advanced Engineering Mathematics Lecture 36 - Review of Bilateral Z-transforms
Link NOC:Advanced Engineering Mathematics Lecture 37 - Finite Fourier Transforms
Link NOC:Advanced Engineering Mathematics Lecture 38 - Fourier Integral and Fourier Transforms
Link NOC:Advanced Engineering Mathematics Lecture 39 - Fourier Series
Link NOC:Advanced Engineering Mathematics Lecture 40 - Discrete Fourier Transforms - I
Link NOC:Advanced Engineering Mathematics Lecture 41 - Discrete Fourier Transforms - II
Link NOC:Advanced Engineering Mathematics Lecture 42 - Basic Concepts of Probability
Link NOC:Advanced Engineering Mathematics Lecture 43 - Conditional Probability
Link NOC:Advanced Engineering Mathematics Lecture 44 - Bayes Theorem and Probability Networks
Link NOC:Advanced Engineering Mathematics Lecture 45 - Discrete Probability Distribution
Link NOC:Advanced Engineering Mathematics Lecture 46 - Binomial Distribution
Link NOC:Advanced Engineering Mathematics Lecture 47 - Negative Binomial Distribution and Poisson Distribution
Link NOC:Advanced Engineering Mathematics Lecture 48 - Continuous Probability Distribution
Link NOC:Advanced Engineering Mathematics Lecture 49 - Poisson Process
Link NOC:Advanced Engineering Mathematics Lecture 50 - Exponential Distribution
Link NOC:Advanced Engineering Mathematics Lecture 51 - Normal Distribution
Link NOC:Advanced Engineering Mathematics Lecture 52 - Joint Probability Distribution - I
Link NOC:Advanced Engineering Mathematics Lecture 53 - Joint Probability Distribution - II
Link NOC:Advanced Engineering Mathematics Lecture 54 - Joint Probability Distribution - III
Link NOC:Advanced Engineering Mathematics Lecture 55 - Correlation and Regression - I
Link NOC:Advanced Engineering Mathematics Lecture 56 - Correlation and Regression - II
Link NOC:Advanced Engineering Mathematics Lecture 57 - Testing of Hypotheses - I
Link NOC:Advanced Engineering Mathematics Lecture 58 - Testing of Hypotheses - II
Link NOC:Advanced Engineering Mathematics Lecture 59 - Testing of Hypotheses - III
Link NOC:Advanced Engineering Mathematics Lecture 60 - Application to Queuing Theory and Reliability Theory
Link NOC:Higher Engineering Mathematics Lecture 1 - Symbolic Representation of Statements - I
Link NOC:Higher Engineering Mathematics Lecture 2 - Symbolic Representation of Statements - II
Link NOC:Higher Engineering Mathematics Lecture 3 - Tautologies and Contradictions
Link NOC:Higher Engineering Mathematics Lecture 4 - Predicates and Quantifires - I
Link NOC:Higher Engineering Mathematics Lecture 5 - Predicates and Quantifiers - II
Link NOC:Higher Engineering Mathematics Lecture 6 - Validity of Arguments
Link NOC:Higher Engineering Mathematics Lecture 7 - Language and Grammers - I
Link NOC:Higher Engineering Mathematics Lecture 8 - Language and Grammers - II
Link NOC:Higher Engineering Mathematics Lecture 9 - Language and Grammers - III
Link NOC:Higher Engineering Mathematics Lecture 10 - Finite- State Machines
Link NOC:Higher Engineering Mathematics Lecture 11 - Partially Ordered Sets - I
Link NOC:Higher Engineering Mathematics Lecture 12 - Partially Ordered Sets - II
Link NOC:Higher Engineering Mathematics Lecture 13 - Partially Ordered Sets - III
Link NOC:Higher Engineering Mathematics Lecture 14 - Lattices - I
Link NOC:Higher Engineering Mathematics Lecture 15 - Lattices - II
Link NOC:Higher Engineering Mathematics Lecture 16 - Lattices - III
Link NOC:Higher Engineering Mathematics Lecture 17 - Lattices - IV
Link NOC:Higher Engineering Mathematics Lecture 18 - Lattices - V
Link NOC:Higher Engineering Mathematics Lecture 19 - Boolean Algebra - I
Link NOC:Higher Engineering Mathematics Lecture 20 - Boolean Algebra - II
Link NOC:Higher Engineering Mathematics Lecture 21 - Boolean Algebra - III
Link NOC:Higher Engineering Mathematics Lecture 22 - Boolean Algebra - IV
Link NOC:Higher Engineering Mathematics Lecture 23 - Logic Gates
Link NOC:Higher Engineering Mathematics Lecture 24 - Karnaugh Map - I
Link NOC:Higher Engineering Mathematics Lecture 25 - Karnaugh Map - II
Link NOC:Higher Engineering Mathematics Lecture 26 - Various type of Graphs - I
Link NOC:Higher Engineering Mathematics Lecture 27 - Various types of Graphs - II
Link NOC:Higher Engineering Mathematics Lecture 28 - Paths and Connectivity
Link NOC:Higher Engineering Mathematics Lecture 29 - Subgraphs and Traversable Multigraphs
Link NOC:Higher Engineering Mathematics Lecture 30 - Undirected and Directed Graphs
Link NOC:Higher Engineering Mathematics Lecture 31 - Eulerian and Hamiltonian Graphs
Link NOC:Higher Engineering Mathematics Lecture 32 - Planar Graphs
Link NOC:Higher Engineering Mathematics Lecture 33 - Representation of Graphs
Link NOC:Higher Engineering Mathematics Lecture 34 - Isomorphic and Homeomorphic Graphs
Link NOC:Higher Engineering Mathematics Lecture 35 - Kuratowski's Theorem
Link NOC:Higher Engineering Mathematics Lecture 36 - Dual of a Graph
Link NOC:Higher Engineering Mathematics Lecture 37 - Coloring of Graphs - I
Link NOC:Higher Engineering Mathematics Lecture 38 - Coloring of Graphs - II
Link NOC:Higher Engineering Mathematics Lecture 39 - Tree - I
Link NOC:Higher Engineering Mathematics Lecture 40 - Tree - II
Link NOC:Higher Engineering Mathematics Lecture 41 - Graphical Method - I
Link NOC:Higher Engineering Mathematics Lecture 42 - Graphical Method - II
Link NOC:Higher Engineering Mathematics Lecture 43 - General Linear Programming Problem
Link NOC:Higher Engineering Mathematics Lecture 44 - Simplex Method - I
Link NOC:Higher Engineering Mathematics Lecture 45 - Simplex Method - II
Link NOC:Higher Engineering Mathematics Lecture 46 - Big - M Method - I
Link NOC:Higher Engineering Mathematics Lecture 47 - Big - M Method - II (Special Cases)
Link NOC:Higher Engineering Mathematics Lecture 48 - Two Phase Method - I
Link NOC:Higher Engineering Mathematics Lecture 49 - Two Phase method - II
Link NOC:Higher Engineering Mathematics Lecture 50 - Duality - I
Link NOC:Higher Engineering Mathematics Lecture 51 - Duality - II
Link NOC:Higher Engineering Mathematics Lecture 52 - Dual Simplex Method
Link NOC:Higher Engineering Mathematics Lecture 53 - Transportation Problem - I
Link NOC:Higher Engineering Mathematics Lecture 54 - Transportation Problem - II
Link NOC:Higher Engineering Mathematics Lecture 55 - Assignment Problem - I
Link NOC:Higher Engineering Mathematics Lecture 56 - Assignment Problem - II
Link NOC:Operations Research Lecture 1 - Introduction to OR Models
Link NOC:Operations Research Lecture 2 - More OR Models
Link NOC:Operations Research Lecture 3 - Graphical Method for LPP
Link NOC:Operations Research Lecture 4 - Convex sets
Link NOC:Operations Research Lecture 5 - Simplex Method
Link NOC:Operations Research Lecture 6 - Big M Method
Link NOC:Operations Research Lecture 7 - Two Phase
Link NOC:Operations Research Lecture 8 - Multiple solutions of LPP
Link NOC:Operations Research Lecture 9 - Unbounded solution of LPP
Link NOC:Operations Research Lecture 10 - Infeasible solution of LPP
Link NOC:Operations Research Lecture 11 - Revised Simplex Method
Link NOC:Operations Research Lecture 12 - Case studies and Exercises - I
Link NOC:Operations Research Lecture 13 - Case studies and Exercises - II
Link NOC:Operations Research Lecture 14 - Case studies and Exercises - III
Link NOC:Operations Research Lecture 15 - Primal Dual Construction
Link NOC:Operations Research Lecture 16 - Weak Duality Theorem
Link NOC:Operations Research Lecture 17 - More Duality Theorems
Link NOC:Operations Research Lecture 18 - Primal-Dual relationship of solutions
Link NOC:Operations Research Lecture 19 - Dual Simplex Method
Link NOC:Operations Research Lecture 20 - Sensitivity Analysis - I
Link NOC:Operations Research Lecture 21 - Sensitivity Analysis - II
Link NOC:Operations Research Lecture 22 - Case studies and Exercises - I
Link NOC:Operations Research Lecture 23 - Case studies and Exercises - II
Link NOC:Operations Research Lecture 24 - Integer Programming
Link NOC:Operations Research Lecture 25 - Goal Programming
Link NOC:Operations Research Lecture 26 - Multi-Objective Programming
Link NOC:Operations Research Lecture 27 - Dynamic Programming
Link NOC:Operations Research Lecture 28 - Transportation Problem
Link NOC:Operations Research Lecture 29 - Assignment Problem
Link NOC:Operations Research Lecture 30 - Case studies and Exercises
Link NOC:Operations Research Lecture 31 - Processing n Jobs on Two Machines
Link NOC:Operations Research Lecture 32 - Processing n Jobs through Three Machines
Link NOC:Operations Research Lecture 33 - Processing two jobs through m machines
Link NOC:Operations Research Lecture 34 - Processing n jobs through m machines
Link NOC:Operations Research Lecture 35 - Case studies and Exercises
Link NOC:Operations Research Lecture 36 - Two Person Zero-Sum Game
Link NOC:Operations Research Lecture 37 - Theorems of Game Theory
Link NOC:Operations Research Lecture 38 - Solution of Mixed Strategy Games
Link NOC:Operations Research Lecture 39 - Linear Programming method for solving games
Link NOC:Operations Research Lecture 40 - Case studies and Exercises
Link NOC:Essential Mathematics for Machine Learning Lecture 1 - Vectors in Machine Learning
Link NOC:Essential Mathematics for Machine Learning Lecture 2 - Basics of Matrix Algebra
Link NOC:Essential Mathematics for Machine Learning Lecture 3 - Vector Space: Definition and Examples
Link NOC:Essential Mathematics for Machine Learning Lecture 4 - Vector Subspace: Examples and Properties
Link NOC:Essential Mathematics for Machine Learning Lecture 5 - Basis and Dimension
Link NOC:Essential Mathematics for Machine Learning Lecture 6 - Linear Transformations
Link NOC:Essential Mathematics for Machine Learning Lecture 7 - Norms and Spaces
Link NOC:Essential Mathematics for Machine Learning Lecture 8 - Orthogonal Complement and Projection Mapping
Link NOC:Essential Mathematics for Machine Learning Lecture 9 - Eigenvalues and Eigenvectors
Link NOC:Essential Mathematics for Machine Learning Lecture 10 - Special matrices and Properties
Link NOC:Essential Mathematics for Machine Learning Lecture 11 - Spectral Decomposition
Link NOC:Essential Mathematics for Machine Learning Lecture 12 - Singular Value Decomposition
Link NOC:Essential Mathematics for Machine Learning Lecture 13 - SVD: Properties and Applications
Link NOC:Essential Mathematics for Machine Learning Lecture 14 - Low Rank Approximations
Link NOC:Essential Mathematics for Machine Learning Lecture 15 - Python Implementation of SVD and Low - rank Approximation
Link NOC:Essential Mathematics for Machine Learning Lecture 16 - Principal Component Analysis - I
Link NOC:Essential Mathematics for Machine Learning Lecture 17 - PCA: Derivation and Examples
Link NOC:Essential Mathematics for Machine Learning Lecture 18 - Python Implementation of PCA
Link NOC:Essential Mathematics for Machine Learning Lecture 19 - Linear Discriminant Analysis
Link NOC:Essential Mathematics for Machine Learning Lecture 20 - Python Implementation of LDA
Link NOC:Essential Mathematics for Machine Learning Lecture 21 - Least Square Approximation and Minimum Normed Solution
Link NOC:Essential Mathematics for Machine Learning Lecture 22 - Linear and Multiple Regression - I
Link NOC:Essential Mathematics for Machine Learning Lecture 23 - Linear and Multiple Regression - II
Link NOC:Essential Mathematics for Machine Learning Lecture 24 - Logistic Regression - I
Link NOC:Essential Mathematics for Machine Learning Lecture 25 - Logistic Regression - II
Link NOC:Essential Mathematics for Machine Learning Lecture 26 - Classification Metrics
Link NOC:Essential Mathematics for Machine Learning Lecture 27 - Gram Schmidt Process
Link NOC:Essential Mathematics for Machine Learning Lecture 28 - Polar Decomposition
Link NOC:Essential Mathematics for Machine Learning Lecture 29 - Minimal Polynomial and Jordan Canonical Form - I
Link NOC:Essential Mathematics for Machine Learning Lecture 30 - Minimal Polynomial and Jordan Canonical Form - II
Link NOC:Essential Mathematics for Machine Learning Lecture 31 - Basic Concepts of Calculus - I
Link NOC:Essential Mathematics for Machine Learning Lecture 32 - Basic Concepts of Calculus - II
Link NOC:Essential Mathematics for Machine Learning Lecture 33 - Basic Concepts of Calculus - III
Link NOC:Essential Mathematics for Machine Learning Lecture 34 - Basic Concepts of Calculus - IV
Link NOC:Essential Mathematics for Machine Learning Lecture 35 - Basic Concepts of Calculus - V
Link NOC:Essential Mathematics for Machine Learning Lecture 36 - Calculus in Python
Link NOC:Essential Mathematics for Machine Learning Lecture 37 - Convex Sets and Functions
Link NOC:Essential Mathematics for Machine Learning Lecture 38 - Properties of convex functions - I
Link NOC:Essential Mathematics for Machine Learning Lecture 39 - Properties of Convex functions - II
Link NOC:Essential Mathematics for Machine Learning Lecture 40 - Introduction to Optimization
Link NOC:Essential Mathematics for Machine Learning Lecture 41 - Unconstrained Optimization
Link NOC:Essential Mathematics for Machine Learning Lecture 42 - Constrained Optimization - I
Link NOC:Essential Mathematics for Machine Learning Lecture 43 - Constrained Optimization - II
Link NOC:Essential Mathematics for Machine Learning Lecture 44 - Steepest Descent method
Link NOC:Essential Mathematics for Machine Learning Lecture 45 - Newton's and Penalty function method
Link NOC:Essential Mathematics for Machine Learning Lecture 46 - Optimization using Python
Link NOC:Essential Mathematics for Machine Learning Lecture 47 - Operations on Sets
Link NOC:Essential Mathematics for Machine Learning Lecture 48 - Review on Probability
Link NOC:Essential Mathematics for Machine Learning Lecture 49 - Bayes' theorem and Random variables
Link NOC:Essential Mathematics for Machine Learning Lecture 50 - Expectation and Variance
Link NOC:Essential Mathematics for Machine Learning Lecture 51 - Discrete probability distributions
Link NOC:Essential Mathematics for Machine Learning Lecture 52 - Continuous probability distributions
Link NOC:Essential Mathematics for Machine Learning Lecture 53 - Joint probability distribution and covariance
Link NOC:Essential Mathematics for Machine Learning Lecture 54 - Introduction to SVM
Link NOC:Essential Mathematics for Machine Learning Lecture 55 - Error Minimizing LPP
Link NOC:Essential Mathematics for Machine Learning Lecture 56 - Concepts of Duality
Link NOC:Essential Mathematics for Machine Learning Lecture 57 - Hard Margin classifier
Link NOC:Essential Mathematics for Machine Learning Lecture 58 - Soft margin classifier
Link NOC:Essential Mathematics for Machine Learning Lecture 59 - SVM using Python - I
Link NOC:Essential Mathematics for Machine Learning Lecture 60 - SVM using Python - II
Link NOC:Advanced Linear Algebra Lecture 1 - System of Linear Equations
Link NOC:Advanced Linear Algebra Lecture 2 - Elementary Row Operations
Link NOC:Advanced Linear Algebra Lecture 3 - Row-Reduced Echelon Form and its Applications
Link NOC:Advanced Linear Algebra Lecture 4 - Vector Spaces - I
Link NOC:Advanced Linear Algebra Lecture 5 - Vector Spaces - II
Link NOC:Advanced Linear Algebra Lecture 6 - Basis and Dimensions - I
Link NOC:Advanced Linear Algebra Lecture 7 - Basis and Dimensions - II
Link NOC:Advanced Linear Algebra Lecture 8 - Change of Ordered Basis in F. D. V. S.
Link NOC:Advanced Linear Algebra Lecture 9 - Row Space of a Matrix
Link NOC:Advanced Linear Algebra Lecture 10 - Computations concerning Subspaces
Link NOC:Advanced Linear Algebra Lecture 11 - Linear Transformations
Link NOC:Advanced Linear Algebra Lecture 12 - Concept of Rank
Link NOC:Advanced Linear Algebra Lecture 13 - Algebra of Linear Transformations - I
Link NOC:Advanced Linear Algebra Lecture 14 - Algebra of Linear Transformations - II
Link NOC:Advanced Linear Algebra Lecture 15 - Algebra of Linear Transformations - III
Link NOC:Advanced Linear Algebra Lecture 16 - Matrix Representation of Linear Transformations - I
Link NOC:Advanced Linear Algebra Lecture 17 - Matrix Representation of Linear Transformations - II
Link NOC:Advanced Linear Algebra Lecture 18 - Linear Functional - I
Link NOC:Advanced Linear Algebra Lecture 19 - Linear Functional - II
Link NOC:Advanced Linear Algebra Lecture 20 - Linear Functional - III
Link NOC:Advanced Linear Algebra Lecture 21 - Linear Functional and Transpose of L.T. - I
Link NOC:Advanced Linear Algebra Lecture 22 - Linear Functional and Transpose of L.T. - II
Link NOC:Advanced Linear Algebra Lecture 23 - Eigenvalue and Eigenvector of Linear Operator - I
Link NOC:Advanced Linear Algebra Lecture 24 - Eigenvalue and Eigenvector of Linear Operator - II
Link NOC:Advanced Linear Algebra Lecture 25 - Eigenvalue and Eigenvector of Digonalizable L.O.
Link NOC:Advanced Linear Algebra Lecture 26 - Annihilating Polynomial of Linear Operator
Link NOC:Advanced Linear Algebra Lecture 27 - Cayley-Hamilton Theorem and Its Applications - I
Link NOC:Advanced Linear Algebra Lecture 28 - Cayley-Hamilton Theorem and its Applications - II
Link NOC:Advanced Linear Algebra Lecture 29 - Invariant Subspaces - I
Link NOC:Advanced Linear Algebra Lecture 30 - Invariant Subspaces - II
Link NOC:Advanced Linear Algebra Lecture 31 - Application of Invariant Subspaces - I
Link NOC:Advanced Linear Algebra Lecture 32 - Application of Invariant Subspaces - II
Link NOC:Advanced Linear Algebra Lecture 33 - Direct Sum Decompositions - I
Link NOC:Advanced Linear Algebra Lecture 34 - Direct Sum Decompositions - II
Link NOC:Advanced Linear Algebra Lecture 35 - Invariant Direct Sums - I
Link NOC:Advanced Linear Algebra Lecture 36 - Invariant Direct Sums - II
Link NOC:Advanced Linear Algebra Lecture 37 - Decomposition of space and Operator - I
Link NOC:Advanced Linear Algebra Lecture 38 - Decomposition of Space and Operator - II
Link NOC:Advanced Linear Algebra Lecture 39 - Applications of Primary Decomposition Theorem - I
Link NOC:Advanced Linear Algebra Lecture 40 - Applications of Primary Decomposition Theorem - II
Link NOC:Advanced Linear Algebra Lecture 41 - Applications of Primary Decomposition Theorem - III
Link NOC:Advanced Linear Algebra Lecture 42 - Inner Products - I
Link NOC:Advanced Linear Algebra Lecture 43 - Inner Products - II
Link NOC:Advanced Linear Algebra Lecture 44 - Inner Product Spaces - I
Link NOC:Advanced Linear Algebra Lecture 45 - Inner Product Spaces - II
Link NOC:Advanced Linear Algebra Lecture 46 - Best Approximation in I.P.S.
Link NOC:Advanced Linear Algebra Lecture 47 - Orthogonal Projection in I.P.S.
Link NOC:Advanced Linear Algebra Lecture 48 - Linear Functionals and Adjoints - I
Link NOC:Advanced Linear Algebra Lecture 49 - Linear Functionals and Adjoints - II
Link NOC:Advanced Linear Algebra Lecture 50 - Linear Functionals and Adjoints - III
Link NOC:Advanced Linear Algebra Lecture 51 - Linear Functionals and Adjoints - IV
Link NOC:Advanced Linear Algebra Lecture 52 - Isomorphism in Inner Product Spaces
Link NOC:Advanced Linear Algebra Lecture 53 - Unitary Operators - I
Link NOC:Advanced Linear Algebra Lecture 54 - Unitary Operators - II
Link NOC:Advanced Linear Algebra Lecture 55 - Application of Unitary O. and Initiation of Normal Operator
Link NOC:Advanced Linear Algebra Lecture 56 - Normal Operator - I
Link NOC:Advanced Linear Algebra Lecture 57 - Normal Operator - II
Link NOC:Advanced Linear Algebra Lecture 58 - Normal Operator and It's Spectral Resolution
Link NOC:Advanced Linear Algebra Lecture 59 - Singular Value Decomposition of a Matrix
Link NOC:Advanced Linear Algebra Lecture 60 - Forms on Inner product Spaces
Link NOC:EXCELing with Mathematical Modeling Lecture 1 - Introduction, Importance and Limitations
Link NOC:EXCELing with Mathematical Modeling Lecture 2 - Units and Dimensions
Link NOC:EXCELing with Mathematical Modeling Lecture 3 - Scaling
Link NOC:EXCELing with Mathematical Modeling Lecture 4 - How to build mathematical models?
Link NOC:EXCELing with Mathematical Modeling Lecture 5 - Basics of Excel - 1
Link NOC:EXCELing with Mathematical Modeling Lecture 6 - Basics of Excel - 2
Link NOC:EXCELing with Mathematical Modeling Lecture 7 - Basics of Excel - 3
Link NOC:EXCELing with Mathematical Modeling Lecture 8 - Linear, Quadratic, Cubic Models
Link NOC:EXCELing with Mathematical Modeling Lecture 9 - Linear Stability Analysis - I
Link NOC:EXCELing with Mathematical Modeling Lecture 10 - Linear Stability Analysis - II
Link NOC:EXCELing with Mathematical Modeling Lecture 11 - Lyapunov Stability
Link NOC:EXCELing with Mathematical Modeling Lecture 12 - Phase Plane Analysis - 1
Link NOC:EXCELing with Mathematical Modeling Lecture 13 - Phase Plane Analysis - 2
Link NOC:EXCELing with Mathematical Modeling Lecture 14 - Phase Plane Analysis - 3
Link NOC:EXCELing with Mathematical Modeling Lecture 15 - Growth Models (Continuous model)
Link NOC:EXCELing with Mathematical Modeling Lecture 16 - Predator-Prey models
Link NOC:EXCELing with Mathematical Modeling Lecture 17 - Two species competition model
Link NOC:EXCELing with Mathematical Modeling Lecture 18 - Arms Race Model
Link NOC:EXCELing with Mathematical Modeling Lecture 19 - Combat Model - I
Link NOC:EXCELing with Mathematical Modeling Lecture 20 - Combat Model - II
Link NOC:EXCELing with Mathematical Modeling Lecture 21 - Carbon Dating
Link NOC:EXCELing with Mathematical Modeling Lecture 22 - Drug Distribution
Link NOC:EXCELing with Mathematical Modeling Lecture 23 - Growth and decay in L-R circuit
Link NOC:EXCELing with Mathematical Modeling Lecture 24 - Rectilinear motion under variable force
Link NOC:EXCELing with Mathematical Modeling Lecture 25 - Dynamice of Rowing
Link NOC:EXCELing with Mathematical Modeling Lecture 26 - Horizontal oscillations
Link NOC:EXCELing with Mathematical Modeling Lecture 27 - Vertical oscillations
Link NOC:EXCELing with Mathematical Modeling Lecture 28 - Epidemic model - 1
Link NOC:EXCELing with Mathematical Modeling Lecture 29 - Epidemic model - 2
Link NOC:EXCELing with Mathematical Modeling Lecture 30 - Rumor model
Link NOC:EXCELing with Mathematical Modeling Lecture 31 - Varying Gravity model
Link NOC:EXCELing with Mathematical Modeling Lecture 32 - Tumor model - I
Link NOC:EXCELing with Mathematical Modeling Lecture 33 - Tumor model - II
Link NOC:EXCELing with Mathematical Modeling Lecture 34 - Vegetation in a desert model
Link NOC:EXCELing with Mathematical Modeling Lecture 35 - Mathematical model of love affairs
Link NOC:EXCELing with Mathematical Modeling Lecture 36 - Discrete models: Difference Equation - I
Link NOC:EXCELing with Mathematical Modeling Lecture 37 - Difference Equations - II
Link NOC:EXCELing with Mathematical Modeling Lecture 38 - Basics of Excel - 4
Link NOC:EXCELing with Mathematical Modeling Lecture 39 - Stability Analysis - I
Link NOC:EXCELing with Mathematical Modeling Lecture 40 - Stability Analysis - II
Link NOC:EXCELing with Mathematical Modeling Lecture 41 - Population Models
Link NOC:EXCELing with Mathematical Modeling Lecture 42 - Bank Account Models
Link NOC:EXCELing with Mathematical Modeling Lecture 43 - Economic Model (Harrod Model
Link NOC:EXCELing with Mathematical Modeling Lecture 44 - Lake Pollutant Models
Link NOC:EXCELing with Mathematical Modeling Lecture 45 - Mathematical Model of the Dynamics of Alcohol
Link NOC:EXCELing with Mathematical Modeling Lecture 46 - Discrete Predator-Prey Model
Link NOC:EXCELing with Mathematical Modeling Lecture 47 - Forsenic Model
Link NOC:EXCELing with Mathematical Modeling Lecture 48 - Drug Delivery Models
Link NOC:EXCELing with Mathematical Modeling Lecture 49 - Lanchester's Combat Model
Link NOC:EXCELing with Mathematical Modeling Lecture 50 - Two-Species Competition Model (Discrete)
Link NOC:EXCELing with Mathematical Modeling Lecture 51 - Infection model
Link NOC:EXCELing with Mathematical Modeling Lecture 52 - Smoking Model
Link NOC:EXCELing with Mathematical Modeling Lecture 53 - Price and Demand Model
Link NOC:EXCELing with Mathematical Modeling Lecture 54 - Paper Towel model, Burning Calories Model
Link NOC:EXCELing with Mathematical Modeling Lecture 55 - Learning model, Kidney function model
Link NOC:EXCELing with Mathematical Modeling Lecture 56 - Empirical Modelling
Link NOC:EXCELing with Mathematical Modeling Lecture 57 - Estimation of Parameters - I
Link NOC:EXCELing with Mathematical Modeling Lecture 58 - Estimation of Parameters - II
Link NOC:EXCELing with Mathematical Modeling Lecture 59 - Estimation of Parameters - III
Link NOC:EXCELing with Mathematical Modeling Lecture 60 - Simulation Modeling
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 1 - Prologue - Part 1
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 2 - Prologue - Part 2
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 3 - Prologue - Part 3
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 4 - Linear Systems - Part 1
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 5 - Linear Systems - Part 2
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 6 - Linear Systems - Part 3
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 7 - Linear Systems - Part 4
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 8 - Vector Spaces - Part 1
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 9 - Vector Spaces - Part 2
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 10 - Linear Independence and Subspaces - Part 1
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 11 - Linear Independence and Subspaces - Part 2
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 12 - Linear Independence and Subspaces - Part 3
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 13 - Linear Independence and Subspaces - Part 4
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 14 - Basis - Part 1
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 15 - Basis - Part 2
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 16 - Basis - Part 3
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 17 - Linear Transformations - Part 1
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 18 - Linear Transformations - Part 2
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 19 - Linear Transformations - Part 3
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 20 - Linear Transformations - Part 4
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 21 - Linear Transformations - Part 5
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 22 - Inner Product and Orthogonality - Part 1
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 23 - Inner Product and Orthogonality - Part 2
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 24 - Inner Product and Orthogonality - Part 3
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 25 - Inner Product and Orthogonality - Part 4
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 26 - Inner Product and Orthogonality - Part 5
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 27 - Inner Product and Orthogonality - Part 6
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 28 - Diagonalization - Part 1
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 29 - Diagonalization - Part 2
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 30 - Diagonalization - Part 3
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 31 - Diagonalization - Part 4
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 32 - Hermitian and Symmetric matrices - Part 1
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 33 - Hermitian and Symmetric matrices - Part 2
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 34 - Hermitian and Symmetric matrices - Part 3
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 35 - Hermitian and Symmetric matrices - Part 4
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 36 - Singular Value Decomposition (SVD) - Part 1
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 37 - Singular Value Decomposition (SVD) - Part 2
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 38 - Back To Linear Systems - Part 1
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 39 - Back To Linear Systems - Part 2
Link Advanced Matrix Theory and Linear Algebra for Engineers Lecture 40 - Epilogue
Link Ordinary Differential Equations and Applications Lecture 1 - General Introduction
Link Ordinary Differential Equations and Applications Lecture 2 - Examples
Link Ordinary Differential Equations and Applications Lecture 3 - Examples (Continued - I)
Link Ordinary Differential Equations and Applications Lecture 4 - Examples (Continued - II)
Link Ordinary Differential Equations and Applications Lecture 5 - Linear Algebra
Link Ordinary Differential Equations and Applications Lecture 6 - Linear Algebra (Continued - I)
Link Ordinary Differential Equations and Applications Lecture 7 - Linear Algebra (Continued - II)
Link Ordinary Differential Equations and Applications Lecture 8 - Analysis
Link Ordinary Differential Equations and Applications Lecture 9 - Analysis (Continued...)
Link Ordinary Differential Equations and Applications Lecture 10 - First Order Linear Equations
Link Ordinary Differential Equations and Applications Lecture 11 - Exact Equations
Link Ordinary Differential Equations and Applications Lecture 12 - Second Order Linear Equations
Link Ordinary Differential Equations and Applications Lecture 13 - Second Order Linear Equations (Continued - I)
Link Ordinary Differential Equations and Applications Lecture 14 - Second Order Linear Equations (Continued - II)
Link Ordinary Differential Equations and Applications Lecture 15 - Well-posedness and Examples of IVP
Link Ordinary Differential Equations and Applications Lecture 16 - Gronwall's Lemma
Link Ordinary Differential Equations and Applications Lecture 17 - Basic Lemma and Uniqueness Theorem
Link Ordinary Differential Equations and Applications Lecture 18 - Picard's Existence and Uniqueness Theorem
Link Ordinary Differential Equations and Applications Lecture 19 - Picard's Existence and Uniqueness (Continued...)
Link Ordinary Differential Equations and Applications Lecture 20 - Cauchy Peano Existence Theorem
Link Ordinary Differential Equations and Applications Lecture 21 - Existence using Fixed Point Theorem
Link Ordinary Differential Equations and Applications Lecture 22 - Continuation of Solutions
Link Ordinary Differential Equations and Applications Lecture 23 - Series Solution
Link Ordinary Differential Equations and Applications Lecture 24 - General System and Diagonalizability
Link Ordinary Differential Equations and Applications Lecture 25 - 2 by 2 systems and Phase Plane Analysis
Link Ordinary Differential Equations and Applications Lecture 26 - 2 by 2 systems and Phase Plane Analysis (Continued...)
Link Ordinary Differential Equations and Applications Lecture 27 - General Systems
Link Ordinary Differential Equations and Applications Lecture 28 - General Systems (Continued...) and Non-homogeneous Systems
Link Ordinary Differential Equations and Applications Lecture 29 - Basic Definitions and Examples
Link Ordinary Differential Equations and Applications Lecture 30 - Stability Equilibrium Points
Link Ordinary Differential Equations and Applications Lecture 31 - Stability Equilibrium Points (Continued - I)
Link Ordinary Differential Equations and Applications Lecture 32 - Stability Equilibrium Points (Continued - II)
Link Ordinary Differential Equations and Applications Lecture 33 - Second Order Linear Equations (Continued - III)
Link Ordinary Differential Equations and Applications Lecture 34 - Lyapunov Function
Link Ordinary Differential Equations and Applications Lecture 35 - Lyapunov Function (Continued...)
Link Ordinary Differential Equations and Applications Lecture 36 - Periodic Orbits and Poincare Bendixon Theory
Link Ordinary Differential Equations and Applications Lecture 37 - Periodic Orbits and Poincare Bendixon Theory (Continued...)
Link Ordinary Differential Equations and Applications Lecture 38 - Linear Second Order Equations
Link Ordinary Differential Equations and Applications Lecture 39 - General Second Order Equations
Link Ordinary Differential Equations and Applications Lecture 40 - General Second Order Equations (Continued...)
Link NOC:Linear Algebra Lecture 1 - Introduction to Algebraic Structures - Rings and Fields
Link NOC:Linear Algebra Lecture 2 - Definition of Vector Spaces
Link NOC:Linear Algebra Lecture 3 - Examples of Vector Spaces
Link NOC:Linear Algebra Lecture 4 - Definition of subspaces
Link NOC:Linear Algebra Lecture 5 - Examples of subspaces
Link NOC:Linear Algebra Lecture 6 - Examples of subspaces (Continued...)
Link NOC:Linear Algebra Lecture 7 - Sum of subspaces
Link NOC:Linear Algebra Lecture 8 - System of linear equations
Link NOC:Linear Algebra Lecture 9 - Gauss elimination
Link NOC:Linear Algebra Lecture 10 - Generating system, linear independence and bases
Link NOC:Linear Algebra Lecture 11 - Examples of a basis of a vector space
Link NOC:Linear Algebra Lecture 12 - Review of univariate polynomials
Link NOC:Linear Algebra Lecture 13 - Examples of univariate polynomials and rational functions
Link NOC:Linear Algebra Lecture 14 - More examples of a basis of vector spaces
Link NOC:Linear Algebra Lecture 15 - Vector spaces with finite generating system
Link NOC:Linear Algebra Lecture 16 - Steinitzs exchange theorem and examples
Link NOC:Linear Algebra Lecture 17 - Examples of finite dimensional vector spaces
Link NOC:Linear Algebra Lecture 18 - Dimension formula and its examples
Link NOC:Linear Algebra Lecture 19 - Existence of a basis
Link NOC:Linear Algebra Lecture 20 - Existence of a basis (Continued...)
Link NOC:Linear Algebra Lecture 21 - Existence of a basis (Continued...)
Link NOC:Linear Algebra Lecture 22 - Introduction to Linear Maps
Link NOC:Linear Algebra Lecture 23 - Examples of Linear Maps
Link NOC:Linear Algebra Lecture 24 - Linear Maps and Bases
Link NOC:Linear Algebra Lecture 25 - Pigeonhole principle in Linear Algebra
Link NOC:Linear Algebra Lecture 26 - Interpolation and the rank theorem
Link NOC:Linear Algebra Lecture 27 - Examples
Link NOC:Linear Algebra Lecture 28 - Direct sums of vector spaces
Link NOC:Linear Algebra Lecture 29 - Projections
Link NOC:Linear Algebra Lecture 30 - Direct sum decomposition of a vector space
Link NOC:Linear Algebra Lecture 31 - Dimension equality and examples
Link NOC:Linear Algebra Lecture 32 - Dual spaces
Link NOC:Linear Algebra Lecture 33 - Dual spaces (Continued...)
Link NOC:Linear Algebra Lecture 34 - Quotient spaces
Link NOC:Linear Algebra Lecture 35 - Homomorphism theorem of vector spaces
Link NOC:Linear Algebra Lecture 36 - Isomorphism theorem of vector spaces
Link NOC:Linear Algebra Lecture 37 - Matrix of a linear map
Link NOC:Linear Algebra Lecture 38 - Matrix of a linear map (Continued...)
Link NOC:Linear Algebra Lecture 39 - Matrix of a linear map (Continued...)
Link NOC:Linear Algebra Lecture 40 - Change of bases
Link NOC:Linear Algebra Lecture 41 - Computational rules for matrices
Link NOC:Linear Algebra Lecture 42 - Rank of a matrix
Link NOC:Linear Algebra Lecture 43 - Computation of the rank of a matrix
Link NOC:Linear Algebra Lecture 44 - Elementary matrices
Link NOC:Linear Algebra Lecture 45 - Elementary operations on matrices
Link NOC:Linear Algebra Lecture 46 - LR decomposition
Link NOC:Linear Algebra Lecture 47 - Elementary Divisor Theorem
Link NOC:Linear Algebra Lecture 48 - Permutation groups
Link NOC:Linear Algebra Lecture 49 - Canonical cycle decomposition of permutations
Link NOC:Linear Algebra Lecture 50 - Signature of a permutation
Link NOC:Linear Algebra Lecture 51 - Introduction to multilinear maps
Link NOC:Linear Algebra Lecture 52 - Multilinear maps (Continued...)
Link NOC:Linear Algebra Lecture 53 - Introduction to determinants
Link NOC:Linear Algebra Lecture 54 - Determinants (Continued...)
Link NOC:Linear Algebra Lecture 55 - Computational rules for determinants
Link NOC:Linear Algebra Lecture 56 - Properties of determinants and adjoint of a matrix
Link NOC:Linear Algebra Lecture 57 - Adjoint-determinant theorem
Link NOC:Linear Algebra Lecture 58 - The determinant of a linear operator
Link NOC:Linear Algebra Lecture 59 - Determinants and Volumes
Link NOC:Linear Algebra Lecture 60 - Determinants and Volumes (Continued...)
Link NOC:An Introduction to Smooth Manifolds Lecture 1 - Basic linear algebra
Link NOC:An Introduction to Smooth Manifolds Lecture 2 - Multivariable calculus - 1
Link NOC:An Introduction to Smooth Manifolds Lecture 3 - Multivariable calculus - 2
Link NOC:An Introduction to Smooth Manifolds Lecture 4 - The derivative map
Link NOC:An Introduction to Smooth Manifolds Lecture 5 - Inverse Function Theorem
Link NOC:An Introduction to Smooth Manifolds Lecture 6 - Constant Rank Theorem
Link NOC:An Introduction to Smooth Manifolds Lecture 7 - Smooth functions with compact support
Link NOC:An Introduction to Smooth Manifolds Lecture 8 - Smooth manifold
Link NOC:An Introduction to Smooth Manifolds Lecture 9 - Examples of smooth manifolds
Link NOC:An Introduction to Smooth Manifolds Lecture 10 - Higher dimensional spheres as smooth manifolds
Link NOC:An Introduction to Smooth Manifolds Lecture 11 - Smooth maps
Link NOC:An Introduction to Smooth Manifolds Lecture 12 - Examples of smooth maps
Link NOC:An Introduction to Smooth Manifolds Lecture 13 - Tangent spaces - 1
Link NOC:An Introduction to Smooth Manifolds Lecture 14 - Tangent spaces - 2
Link NOC:An Introduction to Smooth Manifolds Lecture 15 - Derivatives of smooth maps
Link NOC:An Introduction to Smooth Manifolds Lecture 16 - Chain rule on manifolds
Link NOC:An Introduction to Smooth Manifolds Lecture 17 - Dimension of tangent space - 1
Link NOC:An Introduction to Smooth Manifolds Lecture 18 - Dimension of tangent space - 2
Link NOC:An Introduction to Smooth Manifolds Lecture 19 - Derivative of inclusion map
Link NOC:An Introduction to Smooth Manifolds Lecture 20 - Basis of tangent space
Link NOC:An Introduction to Smooth Manifolds Lecture 21 - Inverse Function Theorem for manifolds
Link NOC:An Introduction to Smooth Manifolds Lecture 22 - Submanifolds
Link NOC:An Introduction to Smooth Manifolds Lecture 23 - Tangent space of a submanifold
Link NOC:An Introduction to Smooth Manifolds Lecture 24 - Regular Value Theorem
Link NOC:An Introduction to Smooth Manifolds Lecture 25 - Special linear group as a submanifold of the set of all square matrices
Link NOC:An Introduction to Smooth Manifolds Lecture 26 - Hypersurfaces
Link NOC:An Introduction to Smooth Manifolds Lecture 27 - Tangent spaces to level sets
Link NOC:An Introduction to Smooth Manifolds Lecture 28 - Vector fields - 1
Link NOC:An Introduction to Smooth Manifolds Lecture 29 - Vector fields - 2
Link NOC:An Introduction to Smooth Manifolds Lecture 30 - Vector fields - 3
Link NOC:An Introduction to Smooth Manifolds Lecture 31 - Lie groups - 1
Link NOC:An Introduction to Smooth Manifolds Lecture 32 - Lie groups - 2
Link NOC:An Introduction to Smooth Manifolds Lecture 33 - Integral curve and flows - 1
Link NOC:An Introduction to Smooth Manifolds Lecture 34 - Integral curve and flows - 2
Link NOC:An Introduction to Smooth Manifolds Lecture 35 - Integral curve and flows - 3
Link NOC:An Introduction to Smooth Manifolds Lecture 36 - Complete vector fields
Link NOC:An Introduction to Smooth Manifolds Lecture 37 - Vector fields and smooth maps
Link NOC:An Introduction to Smooth Manifolds Lecture 38 - Lie Brackets - 1
Link NOC:An Introduction to Smooth Manifolds Lecture 39 - Lie brackets - 2
Link NOC:An Introduction to Smooth Manifolds Lecture 40 - Lie brackets - 3
Link NOC:An Introduction to Smooth Manifolds Lecture 41 - Lie algebras of matrix groups - 1
Link NOC:An Introduction to Smooth Manifolds Lecture 42 - Lie algebras of matrix groups - 2
Link NOC:An Introduction to Smooth Manifolds Lecture 43 - Exponential map
Link NOC:An Introduction to Smooth Manifolds Lecture 44 - Frobenius theorems
Link NOC:An Introduction to Smooth Manifolds Lecture 45 - Tensors and differential forms - 1
Link NOC:An Introduction to Smooth Manifolds Lecture 46 - Tensors and differential forms - 2
Link NOC:An Introduction to Smooth Manifolds Lecture 47 - Pull-back form
Link NOC:An Introduction to Smooth Manifolds Lecture 48 - Symmetric Tensors
Link NOC:An Introduction to Smooth Manifolds Lecture 49 - Alternating Tensors - 1
Link NOC:An Introduction to Smooth Manifolds Lecture 50 - Alternating Tensors - 2
Link NOC:An Introduction to Smooth Manifolds Lecture 51 - Alternating Tensors - 3
Link NOC:An Introduction to Smooth Manifolds Lecture 52 - Alternating Tensors - 4
Link NOC:An Introduction to Smooth Manifolds Lecture 53 - Alternating Tensors - 5
Link NOC:An Introduction to Smooth Manifolds Lecture 54 - Alternating Tensors - 6
Link NOC:An Introduction to Smooth Manifolds Lecture 55 - Alternating Tensors - 7
Link NOC:An Introduction to Smooth Manifolds Lecture 56 - Alternating Tensors - 8
Link NOC:An Introduction to Smooth Manifolds Lecture 57 - Alternating Tensors - 9
Link NOC:An Introduction to Smooth Manifolds Lecture 58 - Differential forms on manifolds - 1
Link NOC:An Introduction to Smooth Manifolds Lecture 59 - Differential forms on manifolds - 2
Link NOC:An Introduction to Smooth Manifolds Lecture 60 - The Exterior derivative - 1
Link NOC:An Introduction to Smooth Manifolds Lecture 61 - The Exterior derivative - 2
Link NOC:An Introduction to Smooth Manifolds Lecture 62 - The Exterior derivative - 3
Link NOC:An Introduction to Smooth Manifolds Lecture 63 - The Exterior derivative - 4
Link NOC:An Introduction to Smooth Manifolds Lecture 64 - The Exterior derivative - 5
Link NOC:An Introduction to Smooth Manifolds Lecture 65 - Special classes of forms
Link NOC:An Introduction to Smooth Manifolds Lecture 66 - Orientation on manifolds - 1
Link NOC:An Introduction to Smooth Manifolds Lecture 67 - Orientation on manifolds - 2
Link NOC:An Introduction to Smooth Manifolds Lecture 68 - Orientation on manifolds - 3
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 1 - Review of Riemann integration and introduction to sigma algebras
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 2 - Sigma algebras and measurability
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 3 - Measurable functions and approximation by simple functions
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 4 - Properties of countably additive measures
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 5 - Integration of positive measurable functions
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 6 - Some properties of integrals of positive simple functions
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 7 - Monotone convergence theorem and Fatou's lemma
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 8 - Integration of complex valued measurable functions
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 9 - Dominated convergence theorem
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 10 - Sets of measure zero and completion
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 11 - Consequences of MCT, Fatou's lemma and DCT
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 12 - Rectangles in R^n and some properties
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 13 - Outer measure on R^n
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 14 - Properties of outer measure on R^n
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 15 - Lebesgue measurable sets and Lebesgue measure on R^n
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 16 - Lebesgue sigma algebra
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 17 - Lebesgue measure
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 18 - Fine properties of measurable sets
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 19 - Invariance properties of Lebesgue measure
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 20 - Non measurable set
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 21 - Measurable functions
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 22 - Riemann and Lebesgue integrals
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 23 - Locally compact Hausdorff spaces
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 24 - Riesz representation theorem
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 25 - Positive Borel measures
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 26 - Lebesgue measure via Riesz representation theorem
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 27 - Construction of Lebesgue measure
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 28 - Invariance properties of Lebesgue measure
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 29 - Linear transformations and Lebesgue measure
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 30 - Cantor set
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 31 - Cantor function
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 32 - Lebesgue set which is not Borel
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 33 - L^p spaces
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 34 - L^p norm
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 35 - Completeness of L^p
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 36 - Properties of L^p spaces
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 37 - Examples of L^p spaces
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 38 - Product sigma algebra
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 39 - Product measures - I
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 40 - Product measures - II
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 41 - Fubini's theorem - I
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 42 - Fubini's theorem - II
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 43 - Completeness of product measures
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 44 - Polar coordinates
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 45 - Applications of Fubini's theorem
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 46 - Complex measures - I
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 47 - Complex measures - II
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 48 - Absolutely continuous measures
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 49 - L^2 space
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 50 - Continuous linear functionals
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 51 - Radon-Nikodym theorem - I
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 52 - Radon Nikodym theorem - II
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 53 - Consequences of Radon-Nikodym theorem - I
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 54 - Consequences of Radon-Nikodym theorem - II
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 55 - Continuous linear functionals on L^p spaces - I
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 56 - Continuous linear functionals on L^p spaces - II
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 57 - Riesz representation theorem - I
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 58 - Riesz representation theorem - II
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 59 - Hardy-Littlewood maximal function
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 60 - Lebesgue differentiation theorem
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 61 - Absolutely continuous functions - I
Link NOC:Measure Theory (Prof. E. K. Narayanan) Lecture 62 - Absolutely continuous functions - II
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 1 - Motivation for K-algebraic sets
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 2 - Definitions and examples of Affine Algebraic Set
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 3 - Rings and Ideals
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 4 - Operation on Ideals
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 5 - Prime Ideals and Maximal Ideals
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 6 - Krull's Theorem and consequences
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 7 - Module, submodules and quotient modules
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 8 - Algebras and polynomial algebras
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 9 - Universal property of polynomial algebra and examples
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 10 - Finite and Finite type algebras
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 11 - K-Spectrum (K-rational points)
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 12 - Identity theorem for Polynomial functions
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 13 - Basic properties of K-algebraic sets
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 14 - Examples of K-algebraic sets
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 15 - K-Zariski Topology
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 16 - The map V L
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 17 - Noetherian and Artinian Ordered sets
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 18 - Noetherian induction and Transfinite induction
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 19 - Modules with Chain Conditions
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 20 - Properties of Noetherian and Artinian Modules
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 21 - Examples of Artinian and Noetherian Modules
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 22 - Finite modules over Noetherian Rings
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 23 - Hilbert’s Basis Theorem (HBT)
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 24 - Consequences of HBT
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 25 - Free Modules and rank
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 26 - More on Noetherian and Artinian modules
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 27 - Ring of Fractions (Localization)
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 28 - Nil radical, contraction of ideals
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 29 - Universal property of S -1 A
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 30 - Ideal structure in S -1 A
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 31 - Consequences of the Correspondence of Ideals
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 32 - Consequences of the Correspondence of Ideals (Continued...)
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 33 - Modules of Fraction and universal properties
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 34 - Exactness of the functor S -1
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 35 - Universal property of Modules of Fractions
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 36 - Further properties of Modules and Module of Fractions
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 37 - Local-Global Principle
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 38 - Consequences of Local-Global Principle
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 39 - Properties of Artinian Rings
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 40 - Krull-Nakayama Lemma
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 41 - Properties of I K and V L maps
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 42 - Hilbert’s Nullstelensatz
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 43 - Hilbert’s Nullstelensatz (Continued...)
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 44 - Proof of Zariski’s Lemma (HNS 3)
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 45 - Consequences of HNS
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 46 - Consequences of HNS (Continued...)
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 47 - Jacobson Ring and examples
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 48 - Irreducible subsets of Zariski Topology (Finite type K-algebra)
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 49 - Spec functor on Finite type K-algebras
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 50 - Properties of Irreducible topological spaces
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 51 - Zariski Topology on arbitrary commutative rings
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 52 - Spec functor on arbitrary commutative rings
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 53 - Topological properties of Spec A
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 54 - Example to support the term Spectrum
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 55 - Integral Extensions
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 56 - Elementwise characterization of Integral extensions
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 57 - Properties and examples of Integral extensions
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 58 - Prime and Maximal ideals in integral extensions
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 59 - Lying over Theorem
Link NOC:Introduction to Algebraic Geometry and Commutative Algebra Lecture 60 - Cohen-Siedelberg Theorem
Link NOC:First Course on Partial Differential Equations-I Lecture 1 - Introduction - 1
Link NOC:First Course on Partial Differential Equations-I Lecture 2 - Introduction - 2
Link NOC:First Course on Partial Differential Equations-I Lecture 3 - Priliminaries - 1
Link NOC:First Course on Partial Differential Equations-I Lecture 4 - Priliminaries - 2
Link NOC:First Course on Partial Differential Equations-I Lecture 5 - Priliminaries - 3
Link NOC:First Course on Partial Differential Equations-I Lecture 6 - Priliminaries - 4
Link NOC:First Course on Partial Differential Equations-I Lecture 7 - First order equations in two variables - 1
Link NOC:First Course on Partial Differential Equations-I Lecture 8 - First order equations in two variables - 2
Link NOC:First Course on Partial Differential Equations-I Lecture 9 - First order equations in two variables - 3
Link NOC:First Course on Partial Differential Equations-I Lecture 10 - First order equations in two variables - 4
Link NOC:First Course on Partial Differential Equations-I Lecture 11 - First order equations in two variables - 5
Link NOC:First Course on Partial Differential Equations-I Lecture 12 - First order equations in more than two variables - 6
Link NOC:First Course on Partial Differential Equations-I Lecture 13 - First order equations in more than two variables - 7
Link NOC:First Course on Partial Differential Equations-I Lecture 14 - First order equations in more than two variables - 8
Link NOC:First Course on Partial Differential Equations-I Lecture 15 - Classification - 1
Link NOC:First Course on Partial Differential Equations-I Lecture 16 - Classification - 2
Link NOC:First Course on Partial Differential Equations-I Lecture 17 - Classification - 3
Link NOC:First Course on Partial Differential Equations-I Lecture 18 - Laplace and Poisson equations - 1
Link NOC:First Course on Partial Differential Equations-I Lecture 19 - Laplace and Poisson equations - 2
Link NOC:First Course on Partial Differential Equations-I Lecture 20 - Laplace and Poisson equations - 3
Link NOC:First Course on Partial Differential Equations-I Lecture 21 - Laplace and Poisson equations - 4
Link NOC:First Course on Partial Differential Equations-I Lecture 22 - Laplace and Poisson equations - 5
Link NOC:First Course on Partial Differential Equations-I Lecture 23 - Laplace and Poisson equations - 6
Link NOC:First Course on Partial Differential Equations-I Lecture 24 - Laplace and Poisson equations - 7
Link NOC:First Course on Partial Differential Equations-I Lecture 25 - Laplace and Poisson equations - 8
Link NOC:First Course on Partial Differential Equations-I Lecture 26 - Laplace and Poisson equations - 9
Link NOC:First Course on Partial Differential Equations-I Lecture 27 - Laplace and Poisson equations - 10
Link NOC:First Course on Partial Differential Equations-I Lecture 28 - One dimensional heat equation - 1
Link NOC:First Course on Partial Differential Equations-I Lecture 29 - One dimensional heat equation - 2
Link NOC:First Course on Partial Differential Equations-I Lecture 30 - One dimensional heat equation - 3
Link NOC:First Course on Partial Differential Equations-I Lecture 31 - One dimensional heat equation - 4
Link NOC:First Course on Partial Differential Equations-I Lecture 32 - One dimensional heat equation - 5
Link NOC:First Course on Partial Differential Equations-I Lecture 33 - One dimensional heat equation - 6
Link NOC:First Course on Partial Differential Equations-I Lecture 34 - One dimensional wave equation - 1
Link NOC:First Course on Partial Differential Equations-I Lecture 35 - One dimensional wave equation - 2
Link NOC:First Course on Partial Differential Equations-I Lecture 36 - One dimensional wave equation - 3
Link NOC:First Course on Partial Differential Equations-I Lecture 37 - One dimensional wave equation - 4
Link NOC:First Course on Partial Differential Equations-I Lecture 38 - One dimensional wave equation - 5
Link NOC:First Course on Partial Differential Equations-I Lecture 39 - One dimensional wave equation - 6
Link NOC:First Course on Partial Differential Equations-I Lecture 40 - One dimensional wave equation - 7
Link NOC:First Course on Partial Differential Equations-I Lecture 41 - One dimensional wave equation - 8
Link NOC:First Course on Partial Differential Equations - II Lecture 1 - Introduction
Link NOC:First Course on Partial Differential Equations - II Lecture 2 - HJE 1
Link NOC:First Course on Partial Differential Equations - II Lecture 3 - HJE 2
Link NOC:First Course on Partial Differential Equations - II Lecture 4 - HJE 3
Link NOC:First Course on Partial Differential Equations - II Lecture 5 - HJE 4
Link NOC:First Course on Partial Differential Equations - II Lecture 6 - HJE 5
Link NOC:First Course on Partial Differential Equations - II Lecture 7 - HJE 6
Link NOC:First Course on Partial Differential Equations - II Lecture 8 - CL1
Link NOC:First Course on Partial Differential Equations - II Lecture 9 - CL2
Link NOC:First Course on Partial Differential Equations - II Lecture 10 - CL3
Link NOC:First Course on Partial Differential Equations - II Lecture 11 - CL4
Link NOC:First Course on Partial Differential Equations - II Lecture 12 - CL5
Link NOC:First Course on Partial Differential Equations - II Lecture 13 - CL6
Link NOC:First Course on Partial Differential Equations - II Lecture 14 - Perron Method - 1
Link NOC:First Course on Partial Differential Equations - II Lecture 15 - Perron Method - 2
Link NOC:First Course on Partial Differential Equations - II Lecture 16 - Perron Method - 3
Link NOC:First Course on Partial Differential Equations - II Lecture 17 - Perron Method - 4
Link NOC:First Course on Partial Differential Equations - II Lecture 18 - Newtonian Potential - 1
Link NOC:First Course on Partial Differential Equations - II Lecture 19 - Newtonian Potential - 2
Link NOC:First Course on Partial Differential Equations - II Lecture 20 - Newtonian Potential - 3
Link NOC:First Course on Partial Differential Equations - II Lecture 21 - Newtonian Potential - 4
Link NOC:First Course on Partial Differential Equations - II Lecture 22 - Newtonian Potential - 5
Link NOC:First Course on Partial Differential Equations - II Lecture 23 - Eigen Value Problem - 1
Link NOC:First Course on Partial Differential Equations - II Lecture 24 - Eigen Value Problem - 2
Link NOC:First Course on Partial Differential Equations - II Lecture 25 - Heat Equation - 1
Link NOC:First Course on Partial Differential Equations - II Lecture 26 - Heat Equation - 2
Link NOC:First Course on Partial Differential Equations - II Lecture 27 - Heat Equation - 3
Link NOC:First Course on Partial Differential Equations - II Lecture 28 - Heat Equation - 4
Link NOC:First Course on Partial Differential Equations - II Lecture 29 - Heat Equation - 5
Link NOC:First Course on Partial Differential Equations - II Lecture 30 - Wave Equation - 1
Link NOC:First Course on Partial Differential Equations - II Lecture 31 - Wave Equation - 2
Link NOC:First Course on Partial Differential Equations - II Lecture 32 - Wave Equation - 3
Link NOC:First Course on Partial Differential Equations - II Lecture 33 - Wave Equation - 4
Link NOC:First Course on Partial Differential Equations - II Lecture 34 - Wave Equation - 5
Link NOC:First Course on Partial Differential Equations - II Lecture 35 - Wave Equation - 6
Link NOC:First Course on Partial Differential Equations - II Lecture 36 - Wave Equation - 7
Link NOC:First Course on Partial Differential Equations - II Lecture 37 - Weak Solutions - 1
Link NOC:First Course on Partial Differential Equations - II Lecture 38 - Weak Solutions - 2
Link NOC:First Course on Partial Differential Equations - II Lecture 39 - Weak Solutions - 3
Link NOC:First Course on Partial Differential Equations - II Lecture 40 - Weak Solutions - 4
Link NOC:First Course on Partial Differential Equations - II Lecture 41 - Weak Solutions - 5
Link Matrix Theory Lecture 1 - Course introduction and properties of matrices
Link Matrix Theory Lecture 2 - Vector spaces
Link Matrix Theory Lecture 3 - Basis, dimension
Link Matrix Theory Lecture 4 - Linear transforms
Link Matrix Theory Lecture 5 - Fundamental subspaces of a matrix
Link Matrix Theory Lecture 6 - Fundamental theorem of linear algebra
Link Matrix Theory Lecture 7 - Properties of rank
Link Matrix Theory Lecture 8 - Inner product
Link Matrix Theory Lecture 9 - Gram-schmidt algorithm
Link Matrix Theory Lecture 10 - Orthonormal matrices definition
Link Matrix Theory Lecture 11 - Determinant
Link Matrix Theory Lecture 12 - Properties of determinants
Link Matrix Theory Lecture 13 - Introduction to norms and inner products
Link Matrix Theory Lecture 14 - Vector norms and their properties
Link Matrix Theory Lecture 15 - Applications and equivalence of vector norms
Link Matrix Theory Lecture 16 - Summary of equivalence of norms
Link Matrix Theory Lecture 17 - Dual norms
Link Matrix Theory Lecture 18 - Properties and examples of dual norms
Link Matrix Theory Lecture 19 - Matrix norms
Link Matrix Theory Lecture 20 - Matrix norms: Properties
Link Matrix Theory Lecture 21 - Induced norms
Link Matrix Theory Lecture 22 - Induced norms and examples
Link Matrix Theory Lecture 23 - Spectral radius
Link Matrix Theory Lecture 24 - Properties of spectral radius
Link Matrix Theory Lecture 25 - Convergent matrices, Banach lemma
Link Matrix Theory Lecture 26 - Recap of matrix norms and Levy-Desplanques theorem
Link Matrix Theory Lecture 27 - Equivalence of matrix norms and error in inverses of linear systems
Link Matrix Theory Lecture 28 - Errors in inverses of matrices
Link Matrix Theory Lecture 29 - Errors in solving systems of linear equations
Link Matrix Theory Lecture 30 - Introduction to eigenvalues and eigenvectors
Link Matrix Theory Lecture 31 - The characteristic polynomial
Link Matrix Theory Lecture 32 - Solving characteristic polynomials, eigenvectors properties
Link Matrix Theory Lecture 33 - Similarity
Link Matrix Theory Lecture 34 - Diagonalization
Link Matrix Theory Lecture 35 - Relationship between eigenvalues of BA and AB
Link Matrix Theory Lecture 36 - Eigenvector and principle of biorthogonality
Link Matrix Theory Lecture 37 - Unitary matrices
Link Matrix Theory Lecture 38 - Properties of unitary matrices
Link Matrix Theory Lecture 39 - Unitary equivalence
Link Matrix Theory Lecture 40 - Schur's triangularization theorem
Link Matrix Theory Lecture 41 - Cayley-Hamilton theorem
Link Matrix Theory Lecture 42 - Uses of cayley-hamilton theorem and diagonalizability revisited
Link Matrix Theory Lecture 43 - Normal matrices: Definition and fundamental properties
Link Matrix Theory Lecture 44 - Fundamental properties of normal matrices
Link Matrix Theory Lecture 45 - QR decomposition and canonical forms
Link Matrix Theory Lecture 46 - Jordan canonical form
Link Matrix Theory Lecture 47 - Determining the Jordan form of a matrix
Link Matrix Theory Lecture 48 - Properties of the Jordan canonical form - Part 1
Link Matrix Theory Lecture 49 - Properties of the Jordan canonical form - Part 2
Link Matrix Theory Lecture 50 - Properties of convergent matrices
Link Matrix Theory Lecture 51 - Polynomials and matrices
Link Matrix Theory Lecture 52 - Other canonical forms and factorization of matrices: Gaussian elimination and LU factorization
Link Matrix Theory Lecture 53 - LU decomposition
Link Matrix Theory Lecture 54 - LU decomposition with pivoting
Link Matrix Theory Lecture 55 - Solving pivoted system and LDM decomposition
Link Matrix Theory Lecture 56 - Cholesky decomposition and uses
Link Matrix Theory Lecture 57 - Hermitian and symmetric matrix
Link Matrix Theory Lecture 58 - Properties of hermitian matrices
Link Matrix Theory Lecture 59 - Variational characterization of Eigenvalues: Rayleigh-Ritz theorem
Link Matrix Theory Lecture 60 - Variational characterization of eigenvalues (Continued...)
Link Matrix Theory Lecture 61 - Courant-Fischer theorem
Link Matrix Theory Lecture 62 - Summary of Rayliegh-Ritz and Courant-Fischer theorems
Link Matrix Theory Lecture 63 - Weyl's theorem
Link Matrix Theory Lecture 64 - Positive semi-definite matrix, monotonicity theorem and interlacing theorems
Link Matrix Theory Lecture 65 - Interlacing theorem - I
Link Matrix Theory Lecture 66 - Interlacing theorem - II (Converse)
Link Matrix Theory Lecture 67 - Interlacing theorem (Continued...)
Link Matrix Theory Lecture 68 - Eigenvalues: Majorization theorem and proof
Link Matrix Theory Lecture 69 - Location and perturbation of Eigenvalues - Part 1: Dominant diagonal theorem
Link Matrix Theory Lecture 70 - Location and perturbation of Eigenvalues - Part 2: Gersgorin's theorem
Link Matrix Theory Lecture 71 - Implications of Gersgorin disc theorem, condition of eigenvalues
Link Matrix Theory Lecture 72 - Condition of eigenvalues for diagonalizable matrices
Link Matrix Theory Lecture 73 - Perturbation of eigenvalues Birkhoff's theorem Hoffman-Weiland ttheorem
Link Matrix Theory Lecture 74 - Singular value definition and some remarks
Link Matrix Theory Lecture 75 - Proof of singular value decomposition theorem
Link Matrix Theory Lecture 76 - Partitioning the SVD
Link Matrix Theory Lecture 77 - Properties of SVD
Link Matrix Theory Lecture 78 - Generalized inverse of matrices
Link Matrix Theory Lecture 79 - Least squares
Link Matrix Theory Lecture 80 - Constrained least squares
Link NOC:C* Algebras and Spectral Theorem Lecture 1 - Finite dimensional Spectral theorem
Link NOC:C* Algebras and Spectral Theorem Lecture 2 - Compact operators
Link NOC:C* Algebras and Spectral Theorem Lecture 3 - Spectral theorem for Compact self-adjoint operators
Link NOC:C* Algebras and Spectral Theorem Lecture 4 - Spectral theorem for Compact Normal operators
Link NOC:C* Algebras and Spectral Theorem Lecture 5 - Banach algebras
Link NOC:C* Algebras and Spectral Theorem Lecture 6 - Gelfand-Mazur theorem
Link NOC:C* Algebras and Spectral Theorem Lecture 7 - Spectral radius
Link NOC:C* Algebras and Spectral Theorem Lecture 8 - Multiplicative functionals
Link NOC:C* Algebras and Spectral Theorem Lecture 9 - Gelfand transform - I
Link NOC:C* Algebras and Spectral Theorem Lecture 10 - Gelfand transform - II
Link NOC:C* Algebras and Spectral Theorem Lecture 11 - C* algebras
Link NOC:C* Algebras and Spectral Theorem Lecture 12 - Examples and Wiener’s theorem
Link NOC:C* Algebras and Spectral Theorem Lecture 13 - Gelfand-Naimark theorem
Link NOC:C* Algebras and Spectral Theorem Lecture 14 - Non-unital Banach algebras
Link NOC:C* Algebras and Spectral Theorem Lecture 15 - Non-unital C* algebra
Link NOC:C* Algebras and Spectral Theorem Lecture 16 - Gelfand transform of non-unital C*algebras
Link NOC:C* Algebras and Spectral Theorem Lecture 17 - Gelfand-Naimark theorem for non-unital C* algebras
Link NOC:C* Algebras and Spectral Theorem Lecture 18 - Continuous functional calculus
Link NOC:C* Algebras and Spectral Theorem Lecture 19 - Bounded functional calculus - I
Link NOC:C* Algebras and Spectral Theorem Lecture 20 - Bounded functional calculus - II
Link NOC:C* Algebras and Spectral Theorem Lecture 21 - Projection valued measures
Link NOC:C* Algebras and Spectral Theorem Lecture 22 - Bounded functional calculus with respect to a projection valued measure
Link NOC:C* Algebras and Spectral Theorem Lecture 23 - Spectral Theorem - I
Link NOC:C* Algebras and Spectral Theorem Lecture 24 - Spectral theorem - II
Link NOC:C* Algebras and Spectral Theorem Lecture 25 - Some applications
Link NOC:C* Algebras and Spectral Theorem Lecture 26 - Spectral theorem for a bounded normal operator
Link NOC:C* Algebras and Spectral Theorem Lecture 27 - Resolution of identity - I
Link NOC:C* Algebras and Spectral Theorem Lecture 28 - Resolution of identity - II
Link NOC:C* Algebras and Spectral Theorem Lecture 29 - Resolution of identity - III
Link NOC:C* Algebras and Spectral Theorem Lecture 30 - Resolution of identity - IV
Link NOC:C* Algebras and Spectral Theorem Lecture 31 - Equivalence of various forms of spectral theorems - I
Link NOC:C* Algebras and Spectral Theorem Lecture 32 - Equivalence of various forms of spectral theorems - II
Link NOC:C* Algebras and Spectral Theorem Lecture 33 - Spectrum of a self-adjoint operator - I
Link NOC:C* Algebras and Spectral Theorem Lecture 34 - Spectrum of a self-adjoint operator - II
Link NOC:C* Algebras and Spectral Theorem Lecture 35 - Commuting family of self-adjoint operators
Link NOC:C* Algebras and Spectral Theorem Lecture 36 - Continuous functional calculus for commuting family of self-adjoint operators - I
Link NOC:C* Algebras and Spectral Theorem Lecture 37 - Continuous functional calculus for commuting family of self-adjoint operators - II
Link NOC:C* Algebras and Spectral Theorem Lecture 38 - Fuglede’s theorem
Link NOC:C* Algebras and Spectral Theorem Lecture 39 - Spectral theorem for commuting finite family of normal operators
Link NOC:C* Algebras and Spectral Theorem Lecture 40 - Multiplicity theory
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 1 - Introduction - 1
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 2 - Preliminaries - 1
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 3 - Preliminaries - 2
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 4 - Priliminaries - 3
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 5 - Priliminaries - 4
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 6 - Preliminaries - 5
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 7 - Prelimunaries - 6
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 8 - Preliminaries - 7
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 9 - Preliminaries - 8
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 10 - Preliminaries - 9
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 11 - Introduction to Distributions
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 12 - Properties and Examples
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 13 - Convergence of distributions
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 14 - Convergence of distributions
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 15 - Calculus in the space of distributions
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 16 - Further discussion on Distributions
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 17 - Order and support of a distribution
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 18 - Laplace and Poisson equations - Distributions with compact support
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 19 - Validity of the definition of the support
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 20 - Convolution and Fourier transform of distributions
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 21 - The Schwartz space andAKN Lec 15 its dual
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 22 - Fourier transform of a tempered distribution, convolution
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 23 - Properties of Convolution
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 24 - Further discussion on Fourier transform and convolution
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 25 - Convolution of two distributions
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 26 - Convolution of distributions
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 27 - Introduction to Sobolev spaces
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 28 - Properties of Sobloev Spaces
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 29 - Extension and Density results
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 30 - General Extension result
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 31 - Integration on a smooth surface
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 32 - A more general extension result
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 33 - Notion of the trace
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 34 - A compactness theorem
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 35 - Equivalent norms
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 36 - Sobolev lemma
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 37 - Sobolev lemma (Continued...)
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 38 - Analysis near the boundary
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 39 - Trace in the upper half space
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 40 - Trace in the upper half space
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 41 - Supplementary lecture
Link NOC:Advanced Partial Differential Equations (Part I: Distributions and Sobolev Spaces) Lecture 42 - Supplementary lecture
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 1 - Introduction and Outline
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 2 - Review of Sobolev spaces - 1
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 3 - Review of Sobolev spaces - 2
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 4 - Review of Sobolev spaces - 3
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 5 - Review of Sobolev spaces - 4
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 6 - Review of Sobolev spaces - 5
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 7 - Elliptic equations and weak formulation
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 8 - Abstract Formulation
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 9 - Variational Inequality
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 10 - Babuska-Brezzi Theorem
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 11 - Strong vs Weak Form of PDE
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 12 - General Second Order Equations
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 13 - Non-uniqueness of Neumann problem
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 14 - Biharmonic equation, Stokes system
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 15 - Stokes system (Continued...)
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 16 - Regularity of Ellptic Equations
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 17 - Regularity (Continued...)
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 18 - Maximum and Minimum Principles for weak formulation
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 19 - Spectrum of the Laplace operator
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 20 - First eigenvalue of the Laplace operator and a brief discussion of a Galerkin method
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 21 - Introduction to semi-groups and unbounded operators
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 22 - Spectrum of an operator
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 23 - Examples of operators and operators in a Hilbert space
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 24 - Perturbation of an operator, Kato theorems. Definition of a semi-group
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 25 - Semi-group and its infinitesimal generator
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 26 - Examples of semi-groups; spectrum and resolvent of the infinitesimal generator
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 27 - An application. Saturation theorem
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 28 - Hille-Yosida Theorem
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 29 - Lumer-Philips Theorem. Stone's theorem
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 30 - Abstract Cauchy Problem
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 31 - Semi-group arising from the heat equation
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 32 - Geneartor of the heat semi-group
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 33 - Semi-group arising from the wave equation
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 34 - Semi-group arising from the wave equation in energy space
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 35 - Wave equation in energy space
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 36 - Wave equation in energy space (Continued...)
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 37 - Semi-group arising from the wave equation in H^1 x L^2
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 38 - Schroedinger equation in free space
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 39 - Schroedinger equation with a potential. Application of Kato's theorem
Link NOC:Advanced Course on Partial Differential Equations - II Lecture 40 - Equations in a bounded domain. Concluding remarks
Link NOC:Introduction to Group Theory Lecture 1 - Motivation of group theory
Link NOC:Introduction to Group Theory Lecture 2 - Definition of a group
Link NOC:Introduction to Group Theory Lecture 3 - Examples of groups
Link NOC:Introduction to Group Theory Lecture 4 - The symmetric group
Link NOC:Introduction to Group Theory Lecture 5 - Subgroups of integers
Link NOC:Introduction to Group Theory Lecture 6 - Basic properties of groups
Link NOC:Introduction to Group Theory Lecture 7 - Subgroups of a group
Link NOC:Introduction to Group Theory Lecture 8 - Subgroup generated by subsets of a group
Link NOC:Introduction to Group Theory Lecture 9 - Group of integers modulo n
Link NOC:Introduction to Group Theory Lecture 10 - Some elementary number theory - I
Link NOC:Introduction to Group Theory Lecture 11 - Some elementary number theory - II
Link NOC:Introduction to Group Theory Lecture 12 - Order of an elements in a group
Link NOC:Introduction to Group Theory Lecture 13 - Cyclic groups and its subgroups
Link NOC:Introduction to Group Theory Lecture 14 - Characterization of cyclic groups
Link NOC:Introduction to Group Theory Lecture 15 - Examples of cosets of a subgroup in a group
Link NOC:Introduction to Group Theory Lecture 16 - Cosets of a subgroup of a group
Link NOC:Introduction to Group Theory Lecture 17 - Lagrange's Theorem
Link NOC:Introduction to Group Theory Lecture 18 - Number theoretic applications of Lagrange's Theorem
Link NOC:Introduction to Group Theory Lecture 19 - Normal subgroup
Link NOC:Introduction to Group Theory Lecture 20 - Some useful definitions
Link NOC:Introduction to Group Theory Lecture 21 - Internal direct product
Link NOC:Introduction to Group Theory Lecture 22 - More on normal subgroups
Link NOC:Introduction to Group Theory Lecture 23 - Normalizer of a subgroup
Link NOC:Introduction to Group Theory Lecture 24 - First Isomorphism Theorem
Link NOC:Introduction to Group Theory Lecture 25 - Second Isomorphism Theorem
Link NOC:Introduction to Group Theory Lecture 26 - Third Isomorphism Theorem
Link NOC:Introduction to Group Theory Lecture 27 - Group acting on a set
Link NOC:Introduction to Group Theory Lecture 28 - Group action - Examples
Link NOC:Introduction to Group Theory Lecture 29 - Isometries of the plane is a group
Link NOC:Introduction to Group Theory Lecture 30 - Orthogonal maps
Link NOC:Introduction to Group Theory Lecture 31 - Dihedral groups
Link NOC:Introduction to Group Theory Lecture 32 - Finite subgroups of the orthogonal group
Link NOC:Introduction to Group Theory Lecture 33 - Group acting on a set
Link NOC:Introduction to Group Theory Lecture 34 - Group action - Examples
Link NOC:Introduction to Group Theory Lecture 35 - Orbit-decomposition Theorem
Link NOC:Introduction to Group Theory Lecture 36 - Stabilizer of a subset
Link NOC:Introduction to Group Theory Lecture 37 - Applications of group action
Link NOC:Introduction to Group Theory Lecture 38 - Class equation
Link NOC:Introduction to Group Theory Lecture 39 - Some more applications of group action
Link NOC:Introduction to Group Theory Lecture 40 - G-sets and morphisms
Link NOC:Introduction to Group Theory Lecture 41 - More examples
Link NOC:Introduction to Group Theory Lecture 42 - Burnside's lemma
Link NOC:Introduction to Group Theory Lecture 43 - The Sylow's theorems
Link NOC:Introduction to Group Theory Lecture 44 - The Sylow's theorems (Continued...)
Link NOC:Introduction to Group Theory Lecture 45 - Application of Sylow's Theorems
Link NOC:Introduction to Group Theory Lecture 46 - Semidirect product of groups
Link NOC:Introduction to Group Theory Lecture 47 - Automorphisms of groups
Link NOC:Introduction to Group Theory Lecture 48 - Symmetric and alternating groups
Link NOC:Introduction to Group Theory Lecture 49 - Conjugacy in the symmetric group
Link NOC:Introduction to Group Theory Lecture 50 - Conjugacy in the symmetric group (Continued...)
Link NOC:Introduction to Group Theory Lecture 51 - Simplicity of the alternating groups
Link NOC:Introduction to Group Theory Lecture 52 - The sign map
Link NOC:Introduction to Group Theory Lecture 53 - The sign map (Continued...)
Link NOC:Introduction to Group Theory Lecture 54 - Structure theorem for finite abelian groups (using invariant factors)
Link NOC:Introduction to Group Theory Lecture 55 - The structure theorem for finite abelian groups
Link NOC:Introduction to Group Theory Lecture 56 - Proof of the structure theorem for finite abelian groups (Continued...)
Link NOC:Introduction to Group Theory Lecture 57 - Proof of the structure theorem for finite abelian groups
Link NOC:Introduction to Group Theory Lecture 58 - Structure theory of finite abelian p-groups
Link NOC:Introduction to Lie Algebras Lecture 1 - An Introduction to Lie Algebras
Link NOC:Introduction to Lie Algebras Lecture 2 - Lie subalgebra and Homomorphism
Link NOC:Introduction to Lie Algebras Lecture 3 - Some Problems
Link NOC:Introduction to Lie Algebras Lecture 4 - Ideals and Quotient algebras
Link NOC:Introduction to Lie Algebras Lecture 5 - Isomorphism theorems
Link NOC:Introduction to Lie Algebras Lecture 6 - Correspondence between ideals
Link NOC:Introduction to Lie Algebras Lecture 7 - Low dimensional Lie algebra - 1
Link NOC:Introduction to Lie Algebras Lecture 8 - Low dimensional Lie algebra - 2
Link NOC:Introduction to Lie Algebras Lecture 9 - Some more definitions
Link NOC:Introduction to Lie Algebras Lecture 10 - Solvable and nilpotent Lie algebra
Link NOC:Introduction to Lie Algebras Lecture 11 - Nilpotent Lie algebra
Link NOC:Introduction to Lie Algebras Lecture 12 - The invariance Lemma
Link NOC:Introduction to Lie Algebras Lecture 13 - Engel's and Lie's Theorem
Link NOC:Introduction to Lie Algebras Lecture 14 - Engel's and Lie's Theorem (Continued...)
Link NOC:Introduction to Lie Algebras Lecture 15 - Lie's Theorem
Link NOC:Introduction to Lie Algebras Lecture 16 - Basics of Representation Theory
Link NOC:Introduction to Lie Algebras Lecture 17 - Basics of Representation Theory (Continued...)
Link NOC:Introduction to Lie Algebras Lecture 18 - Schur's lemma
Link NOC:Introduction to Lie Algebras Lecture 19 - Finite dimensional representations of of sl2(C)
Link NOC:Introduction to Lie Algebras Lecture 20 - Classification of finite dimensional representations of sl2(C)
Link NOC:Introduction to Lie Algebras Lecture 21 - Complete reducibility of finite dimensional representation of sl2(C) - Part 1
Link NOC:Introduction to Lie Algebras Lecture 22 - Complete reducibility of finite dimensional representation of sl2(C) - Part 2
Link NOC:Introduction to Lie Algebras Lecture 23 - Applications of Lie's and Engel's theorem
Link NOC:Introduction to Lie Algebras Lecture 24 - Applications of Weyl's Theorem for sl2(C)
Link NOC:Introduction to Lie Algebras Lecture 25 - New representations form given representations
Link NOC:Introduction to Lie Algebras Lecture 26 - Primary decomposition Theorem and Jordan-Chevalley decomposition
Link NOC:Introduction to Lie Algebras Lecture 27 - Cartan's criteria for solvability
Link NOC:Introduction to Lie Algebras Lecture 28 - Cartan's criteria for semisimplicity and its consequences
Link NOC:Introduction to Lie Algebras Lecture 29 - Abstract Jordan decomposition in semisimple Lie algebras
Link NOC:Introduction to Lie Algebras Lecture 30 - Casimir element of a representation of a semisimple Lie algebra
Link NOC:Introduction to Lie Algebras Lecture 31 - Weyl's Theorem of complete reducibility for semisimple Lie algebras
Link NOC:Introduction to Lie Algebras Lecture 32 - Root space decomposition of semisimple Lie algebras
Link NOC:Introduction to Lie Algebras Lecture 33 - Centralizer of a maximal toral subalgebra
Link NOC:Introduction to Lie Algebras Lecture 34 - Properties of roots
Link NOC:Introduction to Lie Algebras Lecture 35 - More properties of roots
Link NOC:Introduction to Lie Algebras Lecture 36 - Rationality of roots
Link NOC:Introduction to Lie Algebras Lecture 37 - Abstract root system and Weyl groups
Link NOC:Introduction to Lie Algebras Lecture 38 - Isomorphism of Root systems and dual root systems
Link NOC:Introduction to Lie Algebras Lecture 39 - Root systems of Ranks 1 and 2
Link NOC:Introduction to Lie Algebras Lecture 40 - Classification of rank 2 root systems
Link NOC:Introduction to Lie Algebras Lecture 41 - Base of a root system
Link NOC:Introduction to Lie Algebras Lecture 42 - Classification of bases
Link NOC:Introduction to Lie Algebras Lecture 43 - Basic properties of simple roots
Link NOC:Introduction to Lie Algebras Lecture 44 - Characterization of length function
Link NOC:Introduction to Lie Algebras Lecture 45 - Decomposition of root systems
Link NOC:Introduction to Lie Algebras Lecture 46 - Root lengths, Cartan Matrices
Link NOC:Introduction to Lie Algebras Lecture 47 - Cartan matrices and Dynkin diagrams
Link NOC:Introduction to Lie Algebras Lecture 48 - Classification of Root systems
Link NOC:Introduction to Lie Algebras Lecture 49 - Classification of Root systems (Continued...)
Link NOC:Introduction to Lie Algebras Lecture 50 - Concrete description of root systems
Link NOC:Introduction to Lie Algebras Lecture 51 - Uniqueness of root systems
Link NOC:Introduction to Lie Algebras Lecture 52 - Isomorphism theorem
Link NOC:Introduction to Lie Algebras Lecture 53 - Isomorphism theorem (Continued...)
Link NOC:Introduction to Lie Algebras Lecture 54 - Generators and relations
Link NOC:Introduction to Lie Algebras Lecture 55 - Serre presentation
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 1 - Basic Theory of Lie algebras
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 2 - Basic Theory of Lie algebras (Continued...)
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 3 - Basic Theory of Lie algebras (Continued...)
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 4 - Representation Theory of Lie algebras
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 5 - Representation Theory of Lie algebras (Continued...)
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 6 - Representation of Lie algebras
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 7 - Classification of 2 dimensional representation of two dimensional non-abelian Lie algebra
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 8 - Isomorphism Theorem
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 9 - Characterization of completely reducible module
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 10 - Representation theory of sl2(C)
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 11 - Irreducible representation of sl2(C)
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 12 - Irreducible representation of sl2(C) (Continued...)
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 13 - Complete reducibility of sl2(C)
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 14 - Complete reducibility of sl2(C) (Continued...)
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 15 - Representation theory of sl2(C)-basic observation
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 16 - Application of sl2(C) representation theory in combinatorics
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 17 - Constructions of new representations
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 18 - Construction of universal algebras - I
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 19 - Construction of universal algebras - II
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 20 - Non-degenerate and invariant bilinear forms
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 21 - Schur’s lemma and Killing form
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 22 - Killing form of general and special linear Lie algebras
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 23 - The universal enveloping algebra
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 24 - Properties of the universal enveloping algebra
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 25 - The Casimir operator for representations of gln(C) and sln(C)
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 26 - Weyl’s theorem of complete reducibility
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 27 - The structure of sln+1(C)
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 28 - Representations of sln+1(C) - I
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 29 - Representations of sln+1(C) - II
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 30 - Representations of sln+1(C) - III
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 31 - Casimir operator and highest weight modules - I
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 32 - Casimir operator and highest weight modules - II
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 33 - Irreducible representations of sln+1(C)
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 34 - Verma module and its irreducible quotient
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 35 - Verma modules and standard cyclic irreducible modules
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 36 - Finite dimensional standard cyclic irreducible modules
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 37 - Standard cyclic irreducible modules
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 38 - Character Theory - I
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 39 - Character Theory - II
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 40 - Deniminator Identity - Prep 1
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 41 - Deniminator Identity - Prep 2
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 42 - Proof of the denominator identity
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 43 - Freudenthal's formula
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 44 - The Weyl character formula
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 45 - The Laplacian operator and the Weyl Character Formula
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 46 - Proof of the Weyl Character Formula
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 47 - Applications of Weyl Character formula
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 48 - The Weyl dimension formula, Schur polynomials
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 49 - Semi-standard Young Tableaux
Link NOC:Representation Theory of General Linear Lie Algebra Lecture 50 - BGG resolution